Articles | Volume 37, issue 1
https://doi.org/10.5194/ejm-37-101-2025
https://doi.org/10.5194/ejm-37-101-2025
Research article
 | 
25 Feb 2025
Research article |  | 25 Feb 2025

Incorporation of W6+ into hematite (α-Fe2O3) in the form of ferberite nanolamellae

Juraj Majzlan, Ralph Bolanz, Jörg Göttlicher, Martin Števko, Tomáš Mikuš, Mária Čaplovičová, Jan Filip, Jiří Tuček, Christiane Rößler, and Christian Matthes

Related authors

Thermodynamics of vivianite-group arsenates M3(AsO4)2 ⋅  8H2O (M is Ni, Co, Mg, Zn, Cu) and chemical variability in the natural arsenates of this group
Juraj Majzlan, Anna Reichstein, Patrick Haase, Martin Števko, Jiří Sejkora, and Edgar Dachs
Eur. J. Mineral., 36, 31–54, https://doi.org/10.5194/ejm-36-31-2024,https://doi.org/10.5194/ejm-36-31-2024, 2024
Short summary
The effect of chemical variability and weathering on Raman spectra of enargite and fahlore
Khulan Berkh, Juraj Majzlan, Jeannet A. Meima, Jakub Plášil, and Dieter Rammlmair
Eur. J. Mineral., 35, 737–754, https://doi.org/10.5194/ejm-35-737-2023,https://doi.org/10.5194/ejm-35-737-2023, 2023
Short summary
Thermodynamic and structural variations along the olivenite–libethenite solid solution
Juraj Majzlan, Alexandra Plumhoff, Martin Števko, Gwladys Steciuk, Jakub Plášil, Edgar Dachs, and Artur Benisek
Eur. J. Mineral., 35, 157–169, https://doi.org/10.5194/ejm-35-157-2023,https://doi.org/10.5194/ejm-35-157-2023, 2023
Short summary
Weathering of stannite–kësterite [Cu2(Fe,Zn)SnS4] and the environmental mobility of the released elements
Patrick Haase, Stefan Kiefer, Kilian Pollok, Petr Drahota, and Juraj Majzlan
Eur. J. Mineral., 34, 493–506, https://doi.org/10.5194/ejm-34-493-2022,https://doi.org/10.5194/ejm-34-493-2022, 2022
Short summary
Chapmanite [Fe2Sb(Si2O5)O3(OH)]: thermodynamic properties and formation in low-temperature environments
Juraj Majzlan, Stefan Kiefer, Kristina Lilova, Tamilarasan Subramani, Alexandra Navrotsky, Edgar Dachs, and Artur Benisek
Eur. J. Mineral., 33, 357–371, https://doi.org/10.5194/ejm-33-357-2021,https://doi.org/10.5194/ejm-33-357-2021, 2021
Short summary

Related subject area

Spectroscopic methods applied to minerals
Fingerprinting of ruby and sapphire gemstones through Fourier-transform infrared (FTIR) methodologies
António Soares de Sousa, Elsa Maria Carvalho Gomes, Laura Bayés-García, Alessandra Di Mariano, and Maite Garcia-Valles
Eur. J. Mineral., 37, 53–62, https://doi.org/10.5194/ejm-37-53-2025,https://doi.org/10.5194/ejm-37-53-2025, 2025
Short summary
Mineralogical characterization of magnesium-based nanoparticles recovered from a swirl-stabilized magnesium flame by analytical and scanning/transmission electron microscopy
Ruggero Vigliaturo, Giulia Pia Servetto, Erica Bittarello, Quentin Wehrung, Jean-François Brilhac, and Gwenaëlle Trouvé
Eur. J. Mineral., 36, 831–843, https://doi.org/10.5194/ejm-36-831-2024,https://doi.org/10.5194/ejm-36-831-2024, 2024
Short summary
Laser-induced breakdown spectroscopy analysis of tourmaline: protocols, procedures, and predicaments
Nancy J. McMillan and Barbara L. Dutrow
Eur. J. Mineral., 36, 369–379, https://doi.org/10.5194/ejm-36-369-2024,https://doi.org/10.5194/ejm-36-369-2024, 2024
Short summary
Near-infrared signature of hydrothermal opal: a case study of Icelandic silica sinters
Maxime Pineau, Boris Chauviré, and Benjamin Rondeau
Eur. J. Mineral., 35, 949–967, https://doi.org/10.5194/ejm-35-949-2023,https://doi.org/10.5194/ejm-35-949-2023, 2023
Short summary
Vibrational properties of OH groups associated with divalent cations in corundum (α-Al2O3)
Michael C. Jollands, Shiyun Jin, Martial Curti, Maxime Guillaumet, Keevin Béneut, Paola Giura, and Etienne Balan
Eur. J. Mineral., 35, 873–890, https://doi.org/10.5194/ejm-35-873-2023,https://doi.org/10.5194/ejm-35-873-2023, 2023
Short summary

Cited articles

Aquino, C. L. E. and Balela, M. D. L.: Thermally grown Zn-doped hematite (α-Fe2O3) nanostructures for efficient adsorption of Cr(VI) and Fenton-assisted degradation of methyl orange, SN Appl. Sci., 2, 2099, https://doi.org/10.1007/s42452-020-03950-1, 2020. 
Backstrom, M., Nilsson, U., Hakansson, K., Allard, B., and Karlsson, S.: Speciation of heavy metals in road runoff and roadside total deposition, Water Air Soil Pollut., 147, 343–366, 2003. 
Balko, B. A. and Clarkson, K. M.: The effect of doping with Ti(IV) and Sn(IV) on oxygen reduction at hematite electrodes, J. Electrochem. Soc., 148, E85–E91, 2001.  
Barker, A. J., Clausen, J. L., Douglas, T. A., Bednar, A. J., Griggs, C. S., and Martin, W. A.: Environmental impact of metals resulting from military training activities: A review, Chemosphere, 265, 129110, https://doi.org/10.1016/j.chemosphere.2020.129110, 2021. 
Bednar, A. J., Jones, W. T., Boyd, R. E., Ringelberg, D. B., and Larson, S. L.: Geochemical parameters influencing tungsten mobility in soils, J. Environ. Qual., 37, 229–233, 2008. 
Download
Short summary
Many chemical elements occur in rocks, in ore deposits, and in the environment in trace amounts. One of them is the element tungsten. It is not clear, however, where the trace amounts of tungsten reside and how they move around. In this work, we found that the element tungsten can be carried by a common iron oxide mineral, hematite. It can be transported in hematite and released under appropriate conditions, for example in reducing environments.
Share