Articles | Volume 35, issue 2
https://doi.org/10.5194/ejm-35-243-2023
https://doi.org/10.5194/ejm-35-243-2023
Research article
 | 
05 Apr 2023
Research article |  | 05 Apr 2023

A framework for quantitative in situ evaluation of coupled substitutions between H+ and trace elements in natural rutile

Mona Lueder, Renée Tamblyn, and Jörg Hermann

Related authors

OH incorporation and retention in eclogite-facies garnets from the Zermatt–Saas area (Switzerland) and their contribution to the deep water cycle
Julien Reynes, Jörg Hermann, Pierre Lanari, and Thomas Bovay
Eur. J. Mineral., 35, 679–701, https://doi.org/10.5194/ejm-35-679-2023,https://doi.org/10.5194/ejm-35-679-2023, 2023
Short summary
A combined Fourier transform infrared and Cr K-edge X-ray absorption near-edge structure spectroscopy study of the substitution and diffusion of H in Cr-doped forsterite
Michael C. Jollands, Hugh St.C. O'Neill, Andrew J. Berry, Charles Le Losq, Camille Rivard, and Jörg Hermann
Eur. J. Mineral., 33, 113–138, https://doi.org/10.5194/ejm-33-113-2021,https://doi.org/10.5194/ejm-33-113-2021, 2021
Short summary
Tracing fluid transfers in subduction zones: an integrated thermodynamic and δ18O fractionation modelling approach
Alice Vho, Pierre Lanari, Daniela Rubatto, and Jörg Hermann
Solid Earth, 11, 307–328, https://doi.org/10.5194/se-11-307-2020,https://doi.org/10.5194/se-11-307-2020, 2020
Short summary

Related subject area

Spectroscopic methods applied to minerals
Laser-induced breakdown spectroscopy analysis of tourmaline: protocols, procedures, and predicaments
Nancy J. McMillan and Barbara L. Dutrow
Eur. J. Mineral., 36, 369–379, https://doi.org/10.5194/ejm-36-369-2024,https://doi.org/10.5194/ejm-36-369-2024, 2024
Short summary
Near-infrared signature of hydrothermal opal: a case study of Icelandic silica sinters
Maxime Pineau, Boris Chauviré, and Benjamin Rondeau
Eur. J. Mineral., 35, 949–967, https://doi.org/10.5194/ejm-35-949-2023,https://doi.org/10.5194/ejm-35-949-2023, 2023
Short summary
Vibrational properties of OH groups associated with divalent cations in corundum (α-Al2O3)
Michael C. Jollands, Shiyun Jin, Martial Curti, Maxime Guillaumet, Keevin Béneut, Paola Giura, and Etienne Balan
Eur. J. Mineral., 35, 873–890, https://doi.org/10.5194/ejm-35-873-2023,https://doi.org/10.5194/ejm-35-873-2023, 2023
Short summary
The effect of chemical variability and weathering on Raman spectra of enargite and fahlore
Khulan Berkh, Juraj Majzlan, Jeannet A. Meima, Jakub Plášil, and Dieter Rammlmair
Eur. J. Mineral., 35, 737–754, https://doi.org/10.5194/ejm-35-737-2023,https://doi.org/10.5194/ejm-35-737-2023, 2023
Short summary
OH incorporation and retention in eclogite-facies garnets from the Zermatt–Saas area (Switzerland) and their contribution to the deep water cycle
Julien Reynes, Jörg Hermann, Pierre Lanari, and Thomas Bovay
Eur. J. Mineral., 35, 679–701, https://doi.org/10.5194/ejm-35-679-2023,https://doi.org/10.5194/ejm-35-679-2023, 2023
Short summary

Cited articles

Andersson, P.-O., Kollberg, E. L., and Jelenski, A.: Extra EPR Spectra of Iron-Doped Rutile, Phys. Rev. B, 8, 4956–4965, https://doi.org/10.1103/PhysRevB.8.4956, 1973. 
Andersson, P. O., Kollberg, E. L., and Jelenski, A.: Charge compensation in iron-doped rutile, J. Phys. C Solid State, 7, 1868–1880, https://doi.org/10.1088/0022-3719/7/10/014, 1974. 
Barnicoat, A. C. and Fry, N.: High-pressure metamorphism of the Zermatt-Saas ophiolite zone, Switzerland, J. Geol. Soc. London, 143, 607–618, 1986. 
Baur, W. H.: The rutile type and its derivatives, Crystallogr. Rev., 13, 65–113, https://doi.org/10.1080/08893110701433435, 2007. 
Beran, A. and Zemann, J.: Messung des Ultrarot-Pleochroismus von Mineralen XI. Der Pleochroismus der OH-Streckfrequenz in Rutil, Anatas, Brookit und Cassiterit, Tscher. Miner. Petrog., 15, 71–80, 1971. 
Download
Short summary
Although rutile does not have water in its chemical formula, it can contain trace amounts. We applied a new measurement protocol to study water incorporation into rutile from eight geological environments. H2O in natural rutile can be linked to six crystal defects, most importantly to Ti3+ and Fe3+. Quantifying the H2O in the individual defects can help us understand relationships of trace elements in rutile and might give us valuable information on the conditions under which the rock formed.