Articles | Volume 33, issue 3
https://doi.org/10.5194/ejm-33-283-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-33-283-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A Raman spectroscopic study of the natural carbonophosphates Na3MCO3PO4 (M is Mn, Fe, and Mg)
Evgeniy Nikolaevich Kozlov
CORRESPONDING AUTHOR
Geological Institute, Kola Science Centre, Russian Academy of
Sciences, Apatity, 184209, Russia
Ekaterina Nikolaevna Fomina
Geological Institute, Kola Science Centre, Russian Academy of
Sciences, Apatity, 184209, Russia
Vladimir Nikolaevich Bocharov
Research Center GEOMODEL, St Petersburg State University,
Saint Petersburg, 198504, Russia
Mikhail Yurievich Sidorov
Geological Institute, Kola Science Centre, Russian Academy of
Sciences, Apatity, 184209, Russia
Natalia Sergeevna Vlasenko
Research Center GEOMODEL, St Petersburg State University,
Saint Petersburg, 198504, Russia
Vladimir Vladimirovich Shilovskikh
Research Center GEOMODEL, St Petersburg State University,
Saint Petersburg, 198504, Russia
Related authors
No articles found.
Oleg S. Vereshchagin, Sergey N. Britvin, Aleksey I. Brusnitsyn, Anastasiia K. Shagova, Elena N. Perova, Igor V. Pekov, Vladimir V. Shilovskikh, Natalia S. Vlasenko, Evgeniya Y. Avdontseva, Natalia V. Platonova, and Vladimir N. Bocharov
Eur. J. Mineral., 37, 829–840, https://doi.org/10.5194/ejm-37-829-2025, https://doi.org/10.5194/ejm-37-829-2025, 2025
Short summary
Short summary
Kayupovaite is a new mineral named in honor of Maria Mikhailovna Kayupova (1921–1980), the mineralogist who studied the Ushkatyn-III deposit (Kazakhstan), the type of locality of the described mineral. Kayupovaite is monoclinic and of space group C2/c. The mineral belongs to the group of modulated manganese phyllosilicates and is structurally related to stilpnomelane. The absence of iron in the mineral is a result of oxidative Mn–Fe fractionation during the formation of braunite-rich Mn ores.
Sergey N. Britvin, Mikhail N. Murashko, Maria G. Krzhizhanovskaya, Yevgeny Vapnik, Natalia S. Vlasenko, Oleg S. Vereshchagin, Dmitrii V. Pankin, and Evgeny A. Vasiliev
Eur. J. Mineral., 37, 353–363, https://doi.org/10.5194/ejm-37-353-2025, https://doi.org/10.5194/ejm-37-353-2025, 2025
Short summary
Short summary
This paper reports a new natural oxyphosphate, the first mineral that crystallizes in the α-Fe2PO5 structure type. It is isotypic to a series of synthetic oxyphosphates with promising magnetic and electrochemical properties.
Oleg S. Vereshchagin, Sergey N. Britvin, Dmitrii V. Pankin, Marina S. Zelenskaya, Maria G. Krzhizhanovskaya, Maria A. Kuz'mina, Natalia S. Vlasenko, and Olga V. Frank-Kamenetskaya
Eur. J. Mineral., 37, 63–74, https://doi.org/10.5194/ejm-37-63-2025, https://doi.org/10.5194/ejm-37-63-2025, 2025
Short summary
Short summary
Andreybulakhite, ideally Ni(C2O4) · 2H2O, is a new oxalate mineral, which was discovered on the Kola Peninsula, Russia. Andreybulakhite forms segregations of crystals up to 2 × 1 × 1 mm in size disseminated within the fruiting bodies of Lecanora cf. polytropa lichen, whose colonies overgrow the oxidized surfaces of pyrrhotite–pentlandite–chalcopyrite ore. Andreybulakhite is named in honour of Andrey Glebovich Bulakh of Saint Petersburg State University.
Elena V. Belogub, Vladimir V. Shilovskikh, Konstantin A. Novoselov, Ivan A. Blinov, and Ksenia A. Filippova
Eur. J. Mineral., 33, 605–620, https://doi.org/10.5194/ejm-33-605-2021, https://doi.org/10.5194/ejm-33-605-2021, 2021
Short summary
Short summary
We found Ca- and S-rich rhabdophane in the upper part of the oxidation zone of a sulfide occurrence, where it forms spherules up to 35 µm in size and aggregates in fractures in goethite. Its formation is probably associated with desorption of REEs from Fe3+ oxyhydroxides and clay minerals in the oxidation zone and the influx of P from the soil as well as from the precursor rocks. The enrichment with REE phosphate in the studied case is similar to that in REE regolith-hosted deposits.
Cited articles
Abersteiner, A., Giuliani, A., Kamenetsky, V. S., and Phillips, D.:
Petrographic and melt-inclusion constraints on the petrogenesis of a
magmaclast from the Venetia kimberlite cluster, South Africa, Chem. Geol.,
455, 331–341, https://doi.org/10.1016/j.chemgeo.2016.08.029, 2017.
Abersteiner, A., Kamenetsky, V. S., Kamenetsky, M., Goemann, K., Ehrig, K.,
and Rodemann, T.: Significance of halogens (F, Cl) in kimberlite melts:
Insights from mineralogy and melt inclusions in the Roger pipe (Ekati,
Canada), Chem. Geol., 478, 148–163,
https://doi.org/10.1016/j.chemgeo.2017.06.008, 2018.
Abersteiner, A., Kamenetsky, V. S., Goemann, K., Giuliani, A., Howarth, G.
H., Castillo-Oliver, M., Thompson, J., Kamenetsky, M., and Cherry, A.:
Composition and emplacement of the Benfontein kimberlite sill complex
(Kimberley, South Africa): Textural, petrographic and melt inclusion
constraints, Lithos, 324–325, 297–314,
https://doi.org/10.1016/j.lithos.2018.11.017, 2019.
Abersteiner, A., Kamenetsky, V. S., Goemann, K., Kjarsgaard, B. A.,
Rodemann, T., Kamenetsky, M., and Ehrig, K.: A genetic story of olivine
crystallisation in the Mark kimberlite (Canada) revealed by zoning and melt
inclusions, Lithos, 358–359, 105405–105405,
https://doi.org/10.1016/j.lithos.2020.105405, 2020.
Afanasyev, B. V.: Mineral resources of the alkaline–ultramafic massifs of
the Kola Peninsula, Roza Vetrov, St. Petersburg., 224 pp., 2011 (in
Russian).
Amaral, I. R., Alencar, R. S., Paraguassu, W., Costa, D. A. S., Costa, L. A.
C., Montoro, L. A., and Souza Filho, A. G.: Structural and vibrational
properties of carbonophosphates: Na3MCO3PO4 (M = Mn, Fe, Co
and Ni), Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 223, 117298,
https://doi.org/10.1016/j.saa.2019.117298, 2019.
Anenburg, M., Mavrogenes, J. A., Frigo, C., and Wall, F.: Rare earth element
mobility in and around carbonatites controlled by sodium, potassium, and
silica, Sci. Adv., 41, eabb6570, https://doi.org/10.1126/sciadv.abb6570, 2020.
Bryant, R. N., Pasteris, J. D., and Fike, D. A.: Variability in the Raman
Spectrum of Unpolished Growth and Fracture Surfaces of Pyrite Due to Laser
Heating and Crystal Orientation, Appl. Spectrosc., 72, 37–47,
https://doi.org/10.1177/0003702817736516, 2018.
Chakhmouradian, A. R. and Zaitsev, A. N.: Calcite – amphibole –
clinopyroxene rock from the Afrikanda, Kola Peninsula, Russia: Mineralogy
and a possible link to carbonatites. III. Silicate minerals, Can. Mineral.,
40, 1347–1374, https://doi.org/10.2113/gscanmin.40.5.1347, 2002.
Chen, H., Hautier, G., and Ceder, G.: Synthesis, Computed Stability, and
Crystal Structure of a New Family of Inorganic Compounds: Carbonophosphates,
J. Am. Chem. Soc., 134, 19619–19627, https://doi.org/10.1021/ja3040834,
2012a.
Chen, H., Hautier, G., Jain, A., Moore, C., Kang, B., Doe, R., Wu, L., Zhu,
Y., Tang, Y., and Ceder, G.: Carbonophosphates: A New Family of Cathode
Materials for Li-Ion Batteries Identified Computationally, Chem. Mater.,
24, 2009–2016, https://doi.org/10.1021/cm203243x, 2012b.
Chukanov, V. N. and Vigasina, M. F.: Vibrational (Infrared and Raman)
Spectra of Minerals and Related Compounds, Springer International
Publishing, Cham, Switzerland, 1376 pp., https://doi.org/10.1007/978-3-030-26803-9, 2020.
Downes, H., Balaganskaya, E., Beard, A., Liferovich, R., and Demaiffe, D.:
Petrogenetic processes in the ultramafic, alkaline and carbonatitic
magmatism in the Kola Alkaline Province: A review, Lithos, 85, 48–75,
https://doi.org/10.1016/j.lithos.2005.03.020, 2005.
Fahey, J. J. and Tunell, G.: Bradleyite, a new mineral, sodium
phosphate-magnesium carbonate, Am. Minerogist, 26, 646–650, 1941.
Fleck, N., Hobson, T. D. C., Savory, C. N., Buckeridge, J., Veal, T. D.,
Correia, M. R., Scanlon, D. O., Durose, K., and Jäckel, F.: Identifying
Raman modes of Sb2Se3 and their symmetries using angle-resolved
polarised Raman spectra, J. Mater. Chem. A, 8, 8337–8344,
https://doi.org/10.1039/D0TA01783C, 2020.
Freeman, J. J., Wang, A., Kuebler, K. E., Jolliff, B. L., and Haskin, L. A.:
Characterization of natural feldspars by Raman spectroscopy for future
planetary exploration, Can. Mineral., 46, 1477–1500,
https://doi.org/10.3749/canmin.46.6.1477, 2008.
Frezzotti, M. L., Tecce, F., and Casagli, A.: Raman spectroscopy for fluid
inclusion analysis, J. Geochem. Explor., 112, 1–20,
https://doi.org/10.1016/j.gexplo.2011.09.009, 2012.
Frost, R. L., López, A., Scholz, R., Belotti, F. M., and Xi, Y.: A
vibrational spectroscopic study of the anhydrous phosphate mineral
sidorenkite Na3Mn(PO4)(CO3), Spectrochim. Acta. A. Mol.
Biomol. Spectrosc., 137, 930–934,
https://doi.org/10.1016/j.saa.2014.08.029, 2015.
Gao, J., Huang, W., Wu, X., Fan, D., Wu, Z., Xia, D., and Qin, S.:
Compressibility of carbonophosphate bradleyite
Na3Mg(CO3)(PO4) by X-ray diffraction and Raman spectroscopy,
Phys. Chem. Miner., 42, 191–201,
https://doi.org/10.1007/s00269-014-0710-0, 2015.
Gao, J., Huang, W., Wu, X., and Qin, S.: High pressure experimental studies
on Na3Fe(PO4)(CO3) and Na3Mn(PO4)(CO3):
Extensive pressure behaviors of carbonophosphates family, J. Phys. Chem.
Solids, 115, 248–253, https://doi.org/10.1016/j.jpcs.2017.12.046, 2018.
Golovin, V. A., Sharygin, I. S., Kamenetsky, V. S., Korsakov, V. A., and
Yaxley, G. M.: Alkali-carbonate melts from the base of cratonic lithospheric
mantle: Links to kimberlites, Chem. Geol., 483, 261–274,
https://doi.org/10.1016/j.chemgeo.2018.02.016, 2018.
Hautier, G., Jain, A., Chen, H., Moore, C., Ong, S. P., and Ceder, G.: Novel
mixed polyanions lithium-ion battery cathode materials predicted by
high-throughput ab initio computations, J. Mater. Chem., 21, 17147,
https://doi.org/10.1039/c1jm12216a, 2011.
Huang, W., Zhou, J., Li, B., Ma, J., Tao, S., Xia, D., Chu, W., and Wu, Z.:
Detailed investigation of Na2.24FePO4CO3 as a cathode
material for Na-ion batteries, Sci. Rep.-UK, 4, 1–8,
https://doi.org/10.1038/srep04188, 2014.
Hurai, V., Huraiová, M., Slobodník, M., and Thomas, R.: Appendix V –
Raman Bands Sorted by Vibrations, in: Geofluids: Developments in
Microthermometry, Spectroscopy, Thermodynamics and Stable Isotopes,
Elsevier, 369–418, https://doi.org/10.1016/B978-0-12-803241-1.09973-1,
2015.
Kamenetsky, V. S., Grütter, H., Kamenetsky, M. B., and Gömann, K.:
Parental carbonatitic melt of the Koala kimberlite (Canada): Constraints
from melt inclusions in olivine and Cr-spinel, and groundmass carbonate,
Chem. Geol., 353, 96–111, https://doi.org/10.1016/j.chemgeo.2012.09.022,
2013.
Kamenetsky, V. S., Golovin, V. A., Maas, R., Giuliani, A., Kamenetsky, M. B.,
and Weiss, Y.: Towards a new model for kimberlite petrogenesis: Evidence
from unaltered kimberlites and mantle minerals, Earth-Sci. Rev., 139,
145–167, https://doi.org/10.1016/j.earscirev.2014.09.004, 2014.
Kampf, A. R., Rossman, G. R., Steele, I. M., Pluth, J. J., Dunning, G. E.,
and Walstrom, R. E.: Devitoite, a new heterophyllosilicate mineral with
astrophyllite-like layers from eastern Fresno County, California, Can.
Mineral., 48, 29–40, https://doi.org/10.3749/canmin.48.1.29, 2010.
Kharbish, S., Libowitzky, E., and Beran, A.: The effect of As-Sb substitution
in the Raman spectra of tetrahedrite-tennantite and pyrargyrite-proustite
solid solutions, Eur. J. Mineral., 19, 567–574,
https://doi.org/10.1127/0935-1221/2007/0019-1737, 2007.
Khomyakov, A. P.: Sidorenkite, Na3Mn(PO4)(CO3), a new
mineral, Int. Geol. Rev., 22, 811–814,
https://doi.org/10.1080/00206818209466941, 1980.
Khomyakov, A. P.: Bonshtedtite, Na3Fe(PO4)(CO3) – a new
mineral, Int. Geol. Rev., 25, 368–372,
https://doi.org/10.1080/00206818309466713, 1983.
Khomyakov, A. P., Semenov, E. I., Kazakova, M. E., and Shumyatskaya, N. G.:
Sidorenkite, Na3Mn(PO4)(CO3), a new mineral, Zap.
Vsesoyuznogo Mineral. Obshchestva, 108, 56–59, 1979 (in Russian).
Khomyakov, A. P., Aleksandrov, V. V, Krasnova, N. I., Ermilov, V. V., and
Smolyaninova, N. N.: Bonshtedtite, Na3Fe(PO4)(CO3), a new
mineral, Zap. Vsesoyuznogo Mineral. Obshchestva, 111, 486–490, 1982 (in
Russian).
Kolesov, B. A., Geiger, C. A., and Armbruster, T.: The dynamic properties of
zircon studied by single-crystal X-ray diffraction and Raman spectroscopy,
Eur. J. Mineral., 13, 939–948,
https://doi.org/10.1127/0935-1221/2001/0013-0939, 2001.
Kosova, V. N. and Shindrov, A. A.: Na3FePO4CO3 as a cathode
for hybrid-ion batteries – study of Na+/Li+ electrochemical exchange,
Ionics, 25, 5829–5838, https://doi.org/10.1007/s11581-019-03128-9,
2019.
Kramm, U., Kogarko, L. N., Kononova, V. A., and Vartiainen, H.: The Kola
Alkaline Province of the CIS and Finland: Precise Rb-Sr ages define 380–360 Ma age range for all magmatism, Lithos, 30, 33–44,
https://doi.org/10.1016/0024-4937(93)90004-V, 1993.
Krause, W., Effenberger, H., Bernhardt, H.-J., and Medenbach, O.:
Skorpionite, Ca3Zn2(PO4)2CO3(OH)2⚫H2O, a new mineral from Namibia: description and crystal structure,
Eur. J. Mineral., 20, 271–280,
https://doi.org/10.1127/0935-1221/2008/0020-1789, 2008.
Krivovichev, V. S., Chernyatieva, A. P., Britvin, S. N., Yakovenchuk, V. N.,
and Krivovichev, V. G.: Refinement of the crystal structure of bonshtedtite,
Na3Fe(PO4)(CO3), Geol. Ore Depos., 55, 669–675,
https://doi.org/10.1134/S1075701513080060, 2013.
Lafuente, B., Downs, R. T., Yang, H., and Stone, N.: The power of databases:
The RRUFF project, in: Highlights in Mineralogical Crystallography, edited by: Armbruster,
T. and Danisi, R. M., DE GRUYTER, Berlin, 1–30,
https://doi.org/10.1515/9783110417104-003, 2015.
Litasov, K. D. and Podgornykh, N. M.: Raman spectroscopy of various
phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite:
Raman spectroscopy of various phosphate minerals, J. Raman Spectrosc.,
48, 1518–1527, https://doi.org/10.1002/jrs.5119, 2017.
Loh, E.: Optical vibrations in sheet silicates, J. Phys. C Solid State
Phys., 6, 1091–1104, https://doi.org/10.1088/0022-3719/6/6/022, 1973.
McDonald, A. M., Back, M. E., Gault, R. A., and Horváth, L.: Peatite-(Y)
and ramikite-(Y), two new Na-Li-Y ± Zr phosphate-carbonate minerals
from the Poudrette pegmatite, Mont Saint-Hilaire, Quebec, Can. Mineral.,
51, 569–596, https://doi.org/10.3749/canmin.51.4.569, 2013.
Momma, K. and Izumi, F.: VESTA3 for three-dimensional visualization of
crystal, volumetric and morphology data, J. Appl. Crystallogr., 44,
1272–1276. https://doi.org/10.1107/s0021889811038970, 2011.
Piriou, B. and Poullen, J. F.: Raman study of vivianite, J. Raman
Spectrosc., 15, 343–346, https://doi.org/10.1002/jrs.1250150510, 1984.
Pye, C. C. and Rudolph, W. W.: An ab Initio, Infrared, and Raman
Investigation of Phosphate Ion Hydration, J. Phys. Chem. A, 107,
8746–8755, https://doi.org/10.1021/jp035594h, 2003.
Sharygin, V. V. and Doroshkevich, A. G.: Mineralogy of secondary
olivine-hosted inclusions in calcite carbonatites of the Belaya Zima
alkaline complex, Eastern Sayan, Russia: Evidence for late-magmatic
Na-Ca-rich carbonate composition, J. Geol. Soc. India, 90, 524–530,
https://doi.org/10.1007/s12594-017-0748-y, 2017.
Tkhy, L. C. T., Nadezhina, T. N., Pobedimskaya, Ye. A., and Khomyakov, A. P.:
The crystal-chemical characteristics of bradleyite, sidorenkite and
bonshtedtite, Mineral. Zhurnal, 6, 79–84, 1984 (in Russian).
Tlili, A., Smith, D. C., Beny, J.-M., and Boyer, H.: A Raman microprobe study
of natural micas, Mineral. Mag., 53, 165–179,
https://doi.org/10.1180/minmag.1989.053.370.04, 1989.
Zaitsev, A. N., Sitnikova, M. A., Subbotin, V. V., Fernández-Suárez,
J., and Jeffries, T. E.: Sallanlatvi Complex – a rare example of magnesite
and siderite carbonatites, in: Phoscorites and Carbonatites from Mantle to
Mine: the Key Example ofthe Kola Alkaline Province, edited by: Wall, F. and Zaitsev, A.
N., Mineralogical Society of Great Britain and
Ireland, London, UK, 201–245, https://doi.org/10.1180/MSS.10.07, 2004.
Short summary
Carbonophosphates (sidorenkite, bonshtedtite, and bradleyite) with the general formula Na3MCO3PO4 (M is Mn, Fe, and Mg) are often found in inclusions of carbonatite and kimberlite minerals. This article presents the results of Raman spectroscopic study and a simple algorithm for diagnosing mineral phases of the carbonophosphate group. This work may be of interest both to researchers of carbonatites and/or kimberlites and to a wide range of specialists in the field of Raman spectroscopy.
Carbonophosphates (sidorenkite, bonshtedtite, and bradleyite) with the general formula...