Articles | Volume 37, issue 2
https://doi.org/10.5194/ejm-37-143-2025
https://doi.org/10.5194/ejm-37-143-2025
Letter
 | 
07 Mar 2025
Letter |  | 07 Mar 2025

Fe3+∕ΣFe variation in lawsonite and epidote in subducted oceanic crust

Donna L. Whitney, Max Wilke, Sara E. Hanel, Florian Heidelbach, Olivier Mathon, and Angelika D. Rosa

Related authors

Tungsten solubility and speciation in hydrothermal solutions revealed by in situ X-ray absorption spectroscopy
Manuela Borchert, Maria A. Kokh, Marion Louvel, Elena F. Bazarkina, Anselm Loges, Edmund Welter, Denis Testemale, Rami Al Abed, Stephan Klemme, and Max Wilke
Eur. J. Mineral., 37, 111–130, https://doi.org/10.5194/ejm-37-111-2025,https://doi.org/10.5194/ejm-37-111-2025, 2025
Short summary
Dauphiné twin in a deformed quartz: characterization by electron channelling contrast imaging and large-angle convergent-beam diffraction
Nobuyoshi Miyajima, Danielle Silva Souza, and Florian Heidelbach
Eur. J. Mineral., 36, 709–719, https://doi.org/10.5194/ejm-36-709-2024,https://doi.org/10.5194/ejm-36-709-2024, 2024
Short summary
Confocal μ-XANES as a tool to analyze Fe oxidation state in heterogeneous samples: the case of melt inclusions in olivine from the Hekla volcano
Roman Botcharnikov, Max Wilke, Jan Garrevoet, Maxim Portnyagin, Kevin Klimm, Stephan Buhre, Stepan Krasheninnikov, Renat Almeev, Severine Moune, and Gerald Falkenberg
Eur. J. Mineral., 36, 195–208, https://doi.org/10.5194/ejm-36-195-2024,https://doi.org/10.5194/ejm-36-195-2024, 2024
Short summary
Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9 GPa – a proxy for melting of carbonated mantle lithologies
Melanie J. Sieber, Max Wilke, Oona Appelt, Marcus Oelze, and Monika Koch-Müller
Eur. J. Mineral., 34, 411–424, https://doi.org/10.5194/ejm-34-411-2022,https://doi.org/10.5194/ejm-34-411-2022, 2022
Short summary
Equation of state and high-pressure phase behaviour of SrCO3
Nicole Biedermann, Elena Bykova, Wolfgang Morgenroth, Ilias Efthimiopoulos, Jan Mueller, Georg Spiekermann, Konstantin Glazyrin, Anna Pakhomova, Karen Appel, and Max Wilke
Eur. J. Mineral., 32, 575–586, https://doi.org/10.5194/ejm-32-575-2020,https://doi.org/10.5194/ejm-32-575-2020, 2020
Short summary

Related subject area

Spectroscopic methods applied to minerals
Incorporation of W6+ into hematite (α-Fe2O3) in the form of ferberite nanolamellae
Juraj Majzlan, Ralph Bolanz, Jörg Göttlicher, Martin Števko, Tomáš Mikuš, Mária Čaplovičová, Jan Filip, Jiří Tuček, Christiane Rößler, and Christian Matthes
Eur. J. Mineral., 37, 101–110, https://doi.org/10.5194/ejm-37-101-2025,https://doi.org/10.5194/ejm-37-101-2025, 2025
Short summary
Fingerprinting of ruby and sapphire gemstones through Fourier-transform infrared (FTIR) methodologies
António Soares de Sousa, Elsa Maria Carvalho Gomes, Laura Bayés-García, Alessandra Di Mariano, and Maite Garcia-Valles
Eur. J. Mineral., 37, 53–62, https://doi.org/10.5194/ejm-37-53-2025,https://doi.org/10.5194/ejm-37-53-2025, 2025
Short summary
Mineralogical characterization of magnesium-based nanoparticles recovered from a swirl-stabilized magnesium flame by analytical and scanning/transmission electron microscopy
Ruggero Vigliaturo, Giulia Pia Servetto, Erica Bittarello, Quentin Wehrung, Jean-François Brilhac, and Gwenaëlle Trouvé
Eur. J. Mineral., 36, 831–843, https://doi.org/10.5194/ejm-36-831-2024,https://doi.org/10.5194/ejm-36-831-2024, 2024
Short summary
Laser-induced breakdown spectroscopy analysis of tourmaline: protocols, procedures, and predicaments
Nancy J. McMillan and Barbara L. Dutrow
Eur. J. Mineral., 36, 369–379, https://doi.org/10.5194/ejm-36-369-2024,https://doi.org/10.5194/ejm-36-369-2024, 2024
Short summary
Near-infrared signature of hydrothermal opal: a case study of Icelandic silica sinters
Maxime Pineau, Boris Chauviré, and Benjamin Rondeau
Eur. J. Mineral., 35, 949–967, https://doi.org/10.5194/ejm-35-949-2023,https://doi.org/10.5194/ejm-35-949-2023, 2023
Short summary

Cited articles

Brown, E. H.: Phase equilibria among pumpellyite, lawsonite, epidote and associated minerals in low grade metamorphic rocks, Contrib. Mineral. Petrol., 64, 123–136, 1977. 
Botcharnikov, R., Wilke, M., Garrevoet, J., Portnyagin, M., Klimm, K., Buhre, S., Krasheninnikov, S., Almeev, R., Moune, S., and Falkenberg, G.: Confocal μ-XANES as a tool to analyze Fe oxidation state in heterogeneous samples: the case of melt inclusions in olivine from the Hekla volcano, Eur. J. Mineral., 36, 195–208, https://doi.org/10.5194/ejm-36-195-2024, 2024. 
Chantel, J., Mookherjee, M., and Frost, D. J.: The elasticity of lawsonite at high pressure and the origin of low velocity layers in subduction zones, Earth Planet. Sci. Lett., 349–350, 116–125, https://doi.org/10.1016/j.epsl.2012.06.034, 2012. 
Chapman, T. and Clarke, G. L.: Cryptic evidence for the former presence of lawsonite in blueschist and eclogite, J. Metamorph. Geol., 39, 343–362, https://doi.org/10.1111/jmg.12578, 2021. 
Dollase, W. A.: Mössbauer spectra and iron distribution in the epidote group minerals, Zeitschr. Kristall., 138, 41–63, 1973. 
Download
Short summary
The Earth recycles water and other elements in a vast system that involves the oceans, minerals, magma, and the atmosphere. We studied the part of the system that involves minerals, specifically, lawsonite and epidote because they contain both water and iron. Iron in these minerals is usually assumed to be Fe3+, but we discovered an unexpected amount of Fe2+. Reactions involving different states of Fe and water in minerals affect many processes related to element cycling in the Earth.
Share