Articles | Volume 35, issue 4
https://doi.org/10.5194/ejm-35-679-2023
https://doi.org/10.5194/ejm-35-679-2023
Research article
 | 
24 Aug 2023
Research article |  | 24 Aug 2023

OH incorporation and retention in eclogite-facies garnets from the Zermatt–Saas area (Switzerland) and their contribution to the deep water cycle

Julien Reynes, Jörg Hermann, Pierre Lanari, and Thomas Bovay

Related authors

High-pressure Ca metasomatism of metabasites (Mont Avic, Western Alps): insights into fluid–rock interaction during subduction
Kilian Lecacheur, Olivier Fabbri, Francesca Piccoli, Pierre Lanari, Philippe Goncalves, and Henri Leclère
Eur. J. Mineral., 36, 767–795, https://doi.org/10.5194/ejm-36-767-2024,https://doi.org/10.5194/ejm-36-767-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
A framework for quantitative in situ evaluation of coupled substitutions between H+ and trace elements in natural rutile
Mona Lueder, Renée Tamblyn, and Jörg Hermann
Eur. J. Mineral., 35, 243–265, https://doi.org/10.5194/ejm-35-243-2023,https://doi.org/10.5194/ejm-35-243-2023, 2023
Short summary
Epidote dissolution–precipitation during viscous granular flow: a micro-chemical and isotope study
Veronica Peverelli, Alfons Berger, Martin Wille, Thomas Pettke, Pierre Lanari, Igor Maria Villa, and Marco Herwegh
Solid Earth, 13, 1803–1821, https://doi.org/10.5194/se-13-1803-2022,https://doi.org/10.5194/se-13-1803-2022, 2022
Short summary
U − Pb geochronology of epidote by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a tool for dating hydrothermal-vein formation
Veronica Peverelli, Tanya Ewing, Daniela Rubatto, Martin Wille, Alfons Berger, Igor Maria Villa, Pierre Lanari, Thomas Pettke, and Marco Herwegh
Geochronology, 3, 123–147, https://doi.org/10.5194/gchron-3-123-2021,https://doi.org/10.5194/gchron-3-123-2021, 2021
Short summary

Related subject area

Spectroscopic methods applied to minerals
Non-conventional pressure estimates by using transmission electron microscopy coupled with energy-dispersive spectroscopy (TEM-EDS): testing on submicrometer white mica from low-grade metapelites
Edoardo Sanità, Maria Di Rosa, and Enrico Mugnaioli
Eur. J. Mineral., 37, 343–352, https://doi.org/10.5194/ejm-37-343-2025,https://doi.org/10.5194/ejm-37-343-2025, 2025
Short summary
Fe3+∕ΣFe variation in lawsonite and epidote in subducted oceanic crust
Donna L. Whitney, Max Wilke, Sara E. Hanel, Florian Heidelbach, Olivier Mathon, and Angelika D. Rosa
Eur. J. Mineral., 37, 143–149, https://doi.org/10.5194/ejm-37-143-2025,https://doi.org/10.5194/ejm-37-143-2025, 2025
Short summary
Incorporation of W6+ into hematite (α-Fe2O3) in the form of ferberite nanolamellae
Juraj Majzlan, Ralph Bolanz, Jörg Göttlicher, Martin Števko, Tomáš Mikuš, Mária Čaplovičová, Jan Filip, Jiří Tuček, Christiane Rößler, and Christian Matthes
Eur. J. Mineral., 37, 101–110, https://doi.org/10.5194/ejm-37-101-2025,https://doi.org/10.5194/ejm-37-101-2025, 2025
Short summary
Fingerprinting of ruby and sapphire gemstones through Fourier-transform infrared (FTIR) methodologies
António Soares de Sousa, Elsa Maria Carvalho Gomes, Laura Bayés-García, Alessandra Di Mariano, and Maite Garcia-Valles
Eur. J. Mineral., 37, 53–62, https://doi.org/10.5194/ejm-37-53-2025,https://doi.org/10.5194/ejm-37-53-2025, 2025
Short summary
Mineralogical characterization of magnesium-based nanoparticles recovered from a swirl-stabilized magnesium flame by analytical and scanning/transmission electron microscopy
Ruggero Vigliaturo, Giulia Pia Servetto, Erica Bittarello, Quentin Wehrung, Jean-François Brilhac, and Gwenaëlle Trouvé
Eur. J. Mineral., 36, 831–843, https://doi.org/10.5194/ejm-36-831-2024,https://doi.org/10.5194/ejm-36-831-2024, 2024
Short summary

Cited articles

Agard, P., Monié, P., Jolivet, L., and Goffé, B.: Exhumation of the Schistes Lustrés complex: in situ laser probe 40Ar /39Ar constraints and implications for the Western Alps, J. Metamorph. Geol., 20, 599–618, https://doi.org/10.1046/j.1525-1314.2002.00391.x, 2002. 
Aines, R. D. and Rossman, G. R.: The hydrous component in garnets: pyralspites, Am. Mineral., 69, 1116–1126, 1984. 
Amato, J. M., Johnson, C. M., Baumgartner, L. P., and Beard, B. L.: Rapid exhumation of the Zermatt-Saas ophiolite deduced from high-precision SmNd and RbSr geochronology, Earth Planet. Sc. Lett., 171, 425–438, https://doi.org/10.1016/S0012-821X(99)00161-2, 1999. 
Amthauer, G. and Rossman, G. R.: The hydrous component in andradite garnet, Am. Mineral., 83, 835–840, https://doi.org/10.2138/am-1998-7-815, 1998. 
Andrut, M., Wildner, M., and Beran, A.: The crystal chemistry of birefringent natural uvarovites, Part IV. OH defect incorporation mechanisms in non-cubic garnets derived from polarized IR spectroscopy, Eur. J. Mineral., 14, 1019–1026, https://doi.org/10.1127/0935-1221/2002/0014-1019, 2002. 
Download
Short summary
Garnet is a high-pressure mineral that may incorporate very small amounts of water in its structure (tens to hundreds of micrograms per gram H2O). In this study, we show, based on analysis and modelling, that it can transport up to several hundred micrograms per gram of H2O at depths over 80 km in a subduction zone. The analysis of garnet from the various rock types present in a subducted slab allowed us to estimate the contribution of garnet in the deep cycling of water in the earth.
Share