Articles | Volume 36, issue 2
https://doi.org/10.5194/ejm-36-369-2024
https://doi.org/10.5194/ejm-36-369-2024
Research article
 | 
29 Apr 2024
Research article |  | 29 Apr 2024

Laser-induced breakdown spectroscopy analysis of tourmaline: protocols, procedures, and predicaments

Nancy J. McMillan and Barbara L. Dutrow

Related subject area

Spectroscopic methods applied to minerals
Near-infrared signature of hydrothermal opal: a case study of Icelandic silica sinters
Maxime Pineau, Boris Chauviré, and Benjamin Rondeau
Eur. J. Mineral., 35, 949–967, https://doi.org/10.5194/ejm-35-949-2023,https://doi.org/10.5194/ejm-35-949-2023, 2023
Short summary
Vibrational properties of OH groups associated with divalent cations in corundum (α-Al2O3)
Michael C. Jollands, Shiyun Jin, Martial Curti, Maxime Guillaumet, Keevin Béneut, Paola Giura, and Etienne Balan
Eur. J. Mineral., 35, 873–890, https://doi.org/10.5194/ejm-35-873-2023,https://doi.org/10.5194/ejm-35-873-2023, 2023
Short summary
The effect of chemical variability and weathering on Raman spectra of enargite and fahlore
Khulan Berkh, Juraj Majzlan, Jeannet A. Meima, Jakub Plášil, and Dieter Rammlmair
Eur. J. Mineral., 35, 737–754, https://doi.org/10.5194/ejm-35-737-2023,https://doi.org/10.5194/ejm-35-737-2023, 2023
Short summary
OH incorporation and retention in eclogite-facies garnets from the Zermatt–Saas area (Switzerland) and their contribution to the deep water cycle
Julien Reynes, Jörg Hermann, Pierre Lanari, and Thomas Bovay
Eur. J. Mineral., 35, 679–701, https://doi.org/10.5194/ejm-35-679-2023,https://doi.org/10.5194/ejm-35-679-2023, 2023
Short summary
Optimal Raman-scattering signal for estimating the Fe3+ content on the clinozoisite–epidote join
Mariko Nagashima and Boriana Mihailova
Eur. J. Mineral., 35, 267–283, https://doi.org/10.5194/ejm-35-267-2023,https://doi.org/10.5194/ejm-35-267-2023, 2023
Short summary

Cited articles

Alvey, D. C., Morton, K., Harmon, R. S., Gottfried, J. L., Remus, J. J., Collins, L. M., and Wise, M. A.: Laser-induced breakdown spectroscopy-based geochemical fingerprinting for the rapid analysis and discrimination of minerals: the example of garnet, Appl. Opt., 49, C168–C180, https://doi.org/10.1364/AO.49.00C168, 2010. 
Bruder, R., L'Hermite, D., Semerok, A., Salmon, L., and Detalle, V.: Near-crater discoloration of a white lead in wall paintings during laser induced breakdown spectroscopy analysis, Spectrochim. Acta B, 62, 1590–1596, 2007. 
Colao, F., Fantoni, R., Lazic, V., Paolini, A., Fabbri, F., Ori, G. G., Marinangeli, L., and Baliva, A.: Investigation of LIBS feasibility for in situ planetary exploration: An analysis on Martian rock analogues, Planet. Space Sci., 52, 117–123, 2004. 
Cremers, D. A. and Radziemski, L. J.: Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley & Sons Ltd. Chichester UK, 283 pp., https://doi.org/10.1002/9781118567371, 2013. 
Díaz Pace, D. M., Gabriele, N. A., Garcimuño, M., D'Angelo, C. A., Bertuccelli, G., and Bertucelli, D.: Analysis of minerals and rocks by laser-induced breakdown spectroscopy, Spectrosc. Lett., 44, 399–411, 2011. 
Download
Short summary
The mineral tourmaline records the geologic environment in which it crystallizes. Methods were developed for laser-induced breakdown spectroscopy analysis of tourmaline. Problems that were solved include the spacing between analysis locations to avoid the recast layer from previous analyses, the efficacy of using cleaning shots prior to data acquisition, the number of analyses needed to obtain a representative average analysis, and the effect of spectrometer drift on multivariate analysis.