Articles | Volume 35, issue 6
https://doi.org/10.5194/ejm-35-949-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-35-949-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Near-infrared signature of hydrothermal opal: a case study of Icelandic silica sinters
Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, 44000 Nantes, France
Laboratoire d'Astrophysique de Marseille, Aix-Marseille Université, UMR CNRS 7326, CNES, 13388 Marseille, France
Boris Chauviré
Université Grenoble-Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
GeoGems, 44350 Guérande, France
Benjamin Rondeau
Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, 44000 Nantes, France
Related subject area
Spectroscopic methods applied to minerals
Laser-induced breakdown spectroscopy analysis of tourmaline: protocols, procedures, and predicaments
Vibrational properties of OH groups associated with divalent cations in corundum (α-Al2O3)
The effect of chemical variability and weathering on Raman spectra of enargite and fahlore
OH incorporation and retention in eclogite-facies garnets from the Zermatt–Saas area (Switzerland) and their contribution to the deep water cycle
Optimal Raman-scattering signal for estimating the Fe3+ content on the clinozoisite–epidote join
A framework for quantitative in situ evaluation of coupled substitutions between H+ and trace elements in natural rutile
Effect of Fe–Fe interactions and X-site vacancy ordering on the OH-stretching spectrum of foitite
Molecular overtones and two-phonon combination bands in the near-infrared spectra of talc, brucite and lizardite
Non-destructive determination of the biotite crystal chemistry using Raman spectroscopy: how far we can go?
Crystallographic orientation mapping of lizardite serpentinite by Raman spectroscopy
The effect of Co substitution on the Raman spectra of pyrite: potential as an assaying tool
Theoretical OH stretching vibrations in dravite
First-principles modeling of the infrared spectrum of Fe- and Al-bearing lizardite
Structural, textural, and chemical controls on the OH stretching vibrations in serpentine-group minerals
The intracrystalline microstructure of Monte Fico lizardite, by optics, μ-Raman spectroscopy and TEM
First-principles modeling of the infrared spectrum of antigorite
A Raman spectroscopic study of the natural carbonophosphates Na3MCO3PO4 (M is Mn, Fe, and Mg)
Local mode interpretation of the OH overtone spectrum of 1:1 phyllosilicates
Low-temperature infrared spectrum and atomic-scale structure of hydrous defects in diopside
In situ micro-FTIR spectroscopic investigations of synthetic ammonium phengite under pressure and temperature
Theoretical infrared spectra of OH defects in corundum (α-Al2O3)
Nancy J. McMillan and Barbara L. Dutrow
Eur. J. Mineral., 36, 369–379, https://doi.org/10.5194/ejm-36-369-2024, https://doi.org/10.5194/ejm-36-369-2024, 2024
Short summary
Short summary
The mineral tourmaline records the geologic environment in which it crystallizes. Methods were developed for laser-induced breakdown spectroscopy analysis of tourmaline. Problems that were solved include the spacing between analysis locations to avoid the recast layer from previous analyses, the efficacy of using cleaning shots prior to data acquisition, the number of analyses needed to obtain a representative average analysis, and the effect of spectrometer drift on multivariate analysis.
Michael C. Jollands, Shiyun Jin, Martial Curti, Maxime Guillaumet, Keevin Béneut, Paola Giura, and Etienne Balan
Eur. J. Mineral., 35, 873–890, https://doi.org/10.5194/ejm-35-873-2023, https://doi.org/10.5194/ejm-35-873-2023, 2023
Short summary
Short summary
The infrared spectrum of hydrous defects in corundum is routinely used in gemology, but the assignment of absorption bands to specific defects remains elusive. Here, we theoretically study selected defects and compare the results with available experimental data. The main results are the assignment of the
3161 cm−1 seriesto OH groups associated with Fe2+ ions and the interpretation of bands below 2700 cm−1 in corundum containing divalent cations in terms of overtones of OH bending modes.
Khulan Berkh, Juraj Majzlan, Jeannet A. Meima, Jakub Plášil, and Dieter Rammlmair
Eur. J. Mineral., 35, 737–754, https://doi.org/10.5194/ejm-35-737-2023, https://doi.org/10.5194/ejm-35-737-2023, 2023
Short summary
Short summary
Since As is detrimental to the environment, the As content of ores should be reduced before it is released into the atmosphere through a smelting process. Thus, Raman spectra of typical As minerals were investigated, and these can be used in the industrial removal of As-rich ores prior to the ore beneficiation. An additional objective of our study was an investigation of the secondary products of enargite weathering. They play a decisive role in the release or retainment of As in the waste form.
Julien Reynes, Jörg Hermann, Pierre Lanari, and Thomas Bovay
Eur. J. Mineral., 35, 679–701, https://doi.org/10.5194/ejm-35-679-2023, https://doi.org/10.5194/ejm-35-679-2023, 2023
Short summary
Short summary
Garnet is a high-pressure mineral that may incorporate very small amounts of water in its structure (tens to hundreds of micrograms per gram H2O). In this study, we show, based on analysis and modelling, that it can transport up to several hundred micrograms per gram of H2O at depths over 80 km in a subduction zone. The analysis of garnet from the various rock types present in a subducted slab allowed us to estimate the contribution of garnet in the deep cycling of water in the earth.
Mariko Nagashima and Boriana Mihailova
Eur. J. Mineral., 35, 267–283, https://doi.org/10.5194/ejm-35-267-2023, https://doi.org/10.5194/ejm-35-267-2023, 2023
Short summary
Short summary
We provide a tool for fast preparation-free estimation of the Fe3+ content in Al–Fe3+ series epidotes by Raman spectroscopy. The peaks near 570, 600, and 1090 cm−1, originating from Si2O7 vibrations, strongly correlated with Fe content, and all three signals are well resolved in a random orientation. Among them, the 570 cm−1 peak is the sharpest and easily recognized. Hence, the linear trend, ω570 = 577.1(3) − 12.7(4)x, gives highly reliable Fe content, x, with accuracy ± 0.04 Fe3+ apfu.
Mona Lueder, Renée Tamblyn, and Jörg Hermann
Eur. J. Mineral., 35, 243–265, https://doi.org/10.5194/ejm-35-243-2023, https://doi.org/10.5194/ejm-35-243-2023, 2023
Short summary
Short summary
Although rutile does not have water in its chemical formula, it can contain trace amounts. We applied a new measurement protocol to study water incorporation into rutile from eight geological environments. H2O in natural rutile can be linked to six crystal defects, most importantly to Ti3+ and Fe3+. Quantifying the H2O in the individual defects can help us understand relationships of trace elements in rutile and might give us valuable information on the conditions under which the rock formed.
Etienne Balan, Guillaume Radtke, Chloé Fourdrin, Lorenzo Paulatto, Heinrich A. Horn, and Yves Fuchs
Eur. J. Mineral., 35, 105–116, https://doi.org/10.5194/ejm-35-105-2023, https://doi.org/10.5194/ejm-35-105-2023, 2023
Short summary
Short summary
Assignment of OH-stretching bands to specific atomic-scale environments in tourmaline is still debated, which motivates detailed theoretical studies of their vibrational properties. We have theoretically investigated the OH-stretching spectrum of foitite, showing that specific OH bands observed in the vibrational spectra of iron-rich and Na-deficient tourmalines are affected by the magnetic configuration of iron ions and X-site vacancy ordering.
Etienne Balan, Lorenzo Paulatto, Qianyu Deng, Keevin Béneut, Maxime Guillaumet, and Benoît Baptiste
Eur. J. Mineral., 34, 627–643, https://doi.org/10.5194/ejm-34-627-2022, https://doi.org/10.5194/ejm-34-627-2022, 2022
Short summary
Short summary
The near-infrared spectra of hydrous minerals involve OH stretching vibrations, but their interpretation is not straightforward due to anharmonicity and vibrational coupling. We analyze the spectra of well-ordered samples of talc, brucite and lizardite to better assess the various factors contributing to the absorption bands. The results clarify the relations between the overtone spectra and their fundamental counterparts and provide a sound interpretation of the two-phonon combination bands.
Stylianos Aspiotis, Jochen Schlüter, Günther J. Redhammer, and Boriana Mihailova
Eur. J. Mineral., 34, 573–590, https://doi.org/10.5194/ejm-34-573-2022, https://doi.org/10.5194/ejm-34-573-2022, 2022
Short summary
Short summary
Combined Raman-scattering and wavelength-dispersive electron microprobe (WD-EMP) analyses of natural biotites expanding over the whole biotite solid-solution series demonstrate that the chemical composition of the MO6 octahedra, TO4 tetrahedra, and interlayer space can be non-destructively determined by Raman spectroscopy with relative uncertainties below 8 %. The content of critical minor elements such as Ti at the octahedral site can be quantified as well with a relative error of ~ 20 %.
Matthew S. Tarling, Matteo Demurtas, Steven A. F. Smith, Jeremy S. Rooney, Marianne Negrini, Cecilia Viti, Jasmine R. Petriglieri, and Keith C. Gordon
Eur. J. Mineral., 34, 285–300, https://doi.org/10.5194/ejm-34-285-2022, https://doi.org/10.5194/ejm-34-285-2022, 2022
Short summary
Short summary
Rocks containing the serpentine mineral lizardite occur in many tectonic settings. Knowing the crystal orientation of lizardite in these rocks tells us how they deform and gives insights into their physical properties. The crystal orientation of lizardite is challenging to obtain using standard techniques. To overcome this challenge, we developed a method using Raman spectroscopy to map the crystal orientation of lizardite with minimal preparation on standard thin sections.
Khulan Berkh and Dieter Rammlmair
Eur. J. Mineral., 34, 259–274, https://doi.org/10.5194/ejm-34-259-2022, https://doi.org/10.5194/ejm-34-259-2022, 2022
Short summary
Short summary
Common energy dispersive methods cannot accurately analyze low concentrations of cobalt in pyrite due to the overlapping of cobalt and iron peaks. The Raman method, on the other hand, has been shown to be very sensitive to a trace amount of cobalt. In addition, it can be applied on a rough surface, does not require a vacuum chamber, and operates with a laser instead of X-rays. Thus, Raman has the potential to be used as an assaying tool for Co-bearing pyrite.
Yves Fuchs, Chloé Fourdrin, and Etienne Balan
Eur. J. Mineral., 34, 239–251, https://doi.org/10.5194/ejm-34-239-2022, https://doi.org/10.5194/ejm-34-239-2022, 2022
Short summary
Short summary
Information about the local structure of tourmaline-group minerals can be obtained from the characteristic OH stretching bands in their vibrational spectra. However, their assignment to specific atomic-scale environments is debated. We address this question theoretically by investigating a series of dravite models. Our results support a local role of cationic occupancies in determining the OH stretching frequencies and bring constraints for the interpretation of the vibrational spectra.
Etienne Balan, Emmanuel Fritsch, Guillaume Radtke, Lorenzo Paulatto, Farid Juillot, Fabien Baron, and Sabine Petit
Eur. J. Mineral., 33, 647–657, https://doi.org/10.5194/ejm-33-647-2021, https://doi.org/10.5194/ejm-33-647-2021, 2021
Short summary
Short summary
Interpretation of vibrational spectra of serpentines is complexified by the common occurrence of divalent and trivalent cationic impurities at tetrahedral and octahedral sites. We theoretically investigate the effect of Fe and Al on the vibrational properties of lizardite, focusing on the OH stretching modes. The results allow us to disentangle the specific effects related to the valence and coordination states of the impurities, supporting a detailed interpretation of the experimental spectra.
Emmanuel Fritsch, Etienne Balan, Sabine Petit, and Farid Juillot
Eur. J. Mineral., 33, 447–462, https://doi.org/10.5194/ejm-33-447-2021, https://doi.org/10.5194/ejm-33-447-2021, 2021
Short summary
Short summary
The study provides new insights into the OH stretching vibrations of serpentine species (lizardite, chrysotile, antigorite) encountered in veins of peridotite. A combination of infrared spectroscopy in the mid-infrared and near-infrared ranges and Raman spectroscopy enabled us to interpret most of the observed bands in the fundamental and first overtone regions of the spectra and to propose consistent spectral decomposition and assignment of the OH stretching bands for the serpentine species.
Giancarlo Capitani, Roberto Compagnoni, Roberto Cossio, Serena Botta, and Marcello Mellini
Eur. J. Mineral., 33, 425–432, https://doi.org/10.5194/ejm-33-425-2021, https://doi.org/10.5194/ejm-33-425-2021, 2021
Short summary
Short summary
Unusually large lizardite (Lz) crystals from Monte Fico serpentinites, Elba (Mellini and Viti, 1994), have allowed several subsequent studies. During a µ-Raman study of serpentine minerals (Compagnoni et al., 2021), the careful microscopic examination of this Lz showed
spongymicrostructure. TEM observations confirmed that the Lz hosts voids, filled with chrysotile and polygonal serpentine; their mutual relationships indicate that Lz grew up with a skeletal habit and fibres epitactically.
Etienne Balan, Emmanuel Fritsch, Guillaume Radtke, Lorenzo Paulatto, Farid Juillot, and Sabine Petit
Eur. J. Mineral., 33, 389–400, https://doi.org/10.5194/ejm-33-389-2021, https://doi.org/10.5194/ejm-33-389-2021, 2021
Short summary
Short summary
The infrared absorption spectrum of an antigorite sample, an important serpentine-group mineral, is compared to its theoretical counterpart computed at the density functional level. The model reproduces most of the observed bands, supporting their assignment to specific vibrational modes. The results provide robust interpretations of the significant differences observed between the antigorite spectrum and that of lizardite, the more symmetric serpentine variety.
Evgeniy Nikolaevich Kozlov, Ekaterina Nikolaevna Fomina, Vladimir Nikolaevich Bocharov, Mikhail Yurievich Sidorov, Natalia Sergeevna Vlasenko, and Vladimir Vladimirovich Shilovskikh
Eur. J. Mineral., 33, 283–297, https://doi.org/10.5194/ejm-33-283-2021, https://doi.org/10.5194/ejm-33-283-2021, 2021
Short summary
Short summary
Carbonophosphates (sidorenkite, bonshtedtite, and bradleyite) with the general formula Na3MCO3PO4 (M is Mn, Fe, and Mg) are often found in inclusions of carbonatite and kimberlite minerals. This article presents the results of Raman spectroscopic study and a simple algorithm for diagnosing mineral phases of the carbonophosphate group. This work may be of interest both to researchers of carbonatites and/or kimberlites and to a wide range of specialists in the field of Raman spectroscopy.
Etienne Balan, Emmanuel Fritsch, Farid Juillot, Thierry Allard, and Sabine Petit
Eur. J. Mineral., 33, 209–220, https://doi.org/10.5194/ejm-33-209-2021, https://doi.org/10.5194/ejm-33-209-2021, 2021
Short summary
Short summary
The OH overtone bands of kaolinite- and serpentine-group minerals observed in their near-infrared (NIR) spectra are widely used but their relation to stretching modes involving coupled OH groups is uncertain. Here, we map a molecular model of harmonically coupled anharmonic oscillators on the spectroscopic properties of 1:1 phyllosilicates. This makes it possible to interpret most of the observed bands and support the assignment of some of them to cationic substitutions in serpentines.
Etienne Balan, Lorenzo Paulatto, Jia Liu, and Jannick Ingrin
Eur. J. Mineral., 32, 505–520, https://doi.org/10.5194/ejm-32-505-2020, https://doi.org/10.5194/ejm-32-505-2020, 2020
Short summary
Short summary
The atomic-scale geometry of hydrous defects in diopside is still imperfectly known despite their contribution to the Earth's water cycle. Their OH-stretching vibrations lead to a variety of infrared absorption bands. Low-temperature infrared spectroscopy makes it possible to resolve additional bands in the spectra of gem-quality natural samples. Theoretical results obtained at the density functional theory level support the assignment of the observed bands to specific atomic-scale models.
Nada Abdel-Hak, Bernd Wunder, Ilias Efthimiopoulos, and Monika Koch-Müller
Eur. J. Mineral., 32, 469–482, https://doi.org/10.5194/ejm-32-469-2020, https://doi.org/10.5194/ejm-32-469-2020, 2020
Short summary
Short summary
The structural response of the NH4+ molecule to temperature and pressure changes is studied in ammonium phengite. The symmetry of the molecule is lowered by increasing P or decreasing T; the type and mechanism of this lowered symmetry is different in both cases. Devolatilisation (NH4+ and OH loss) of ammonium phengite is studied as well. This study confirms the wide stability range of phengite and its volatiles and thus has important implications for N and H recycling into the deep Earth.
Etienne Balan
Eur. J. Mineral., 32, 457–467, https://doi.org/10.5194/ejm-32-457-2020, https://doi.org/10.5194/ejm-32-457-2020, 2020
Short summary
Short summary
Corundum is an important oxide mineral which can contain low amounts of hydrogen-bearing structural defects. These defects are observed by infrared spectroscopy, but their atomic-scale geometry is still uncertain. Here, a theoretical approach makes it possible to relate most of the observed infrared bands to specific atomic configurations, highlighting the key role of other chemical impurities and defect clustering in the high-temperature incorporation of hydrogen in corundum.
Cited articles
Anderson, J. H. and Wickersheim, K. A.: Near infrared characterization of water and hydroxyl groups on silica surfaces, Surf. Sci., 2, 252–260, https://doi.org/10.1016/0039-6028(64)90064-0, 1964.
Barghoorn, E. S. and Tyler, S. A.: Microorganisms from the Gunflint Chert, Science, 147, 563–575, https://doi.org/10.1126/science.147.3658.563, 1965.
Bell, P. R., Fanti, F., Hart, L. J., Milan, L. A., Craven, S. J., Brougham, T., and Smith, E.: Revised geology, age, and vertebrate diversity of the dinosaur-bearing Griman Creek Formation (Cenomanian), Lightning Ridge, New South Wales, Australia, Palaeogeogr. Palaeocl., 514, 655–671, https://doi.org/10.1016/j.palaeo.2018.11.020, 2019.
Boboň, M., Christy, A. A., Kluvanec, D., and Illášová, L.: State of water molecules and silanol groups in opal minerals: A near infrared spectroscopic study of opals from Slovakia, Phys. Chem. Miner., 38, 809–818, https://doi.org/10.1007/s00269-011-0453-0, 2011.
Boudreau, A. E. and Lynne, B. Y.: The growth of siliceous sinter deposits around high-temperature eruptive hot springs, J. Volcanol. Geoth. Res., 247/248, 1–8, https://doi.org/10.1016/j.jvolgeores.2012.07.008, 2012.
Cady, S. L., Skok, J. R., Gulick, V. G., Berger, J. A., and Hinman, N. W.: Siliceous Hot Spring Deposits: Why They Remain Key Astrobiological Targets, Elsevier Inc., 179–210, https://doi.org/10.1016/b978-0-12-809935-3.00007-4, 2018.
Campbell, K. A., Guido, D. M., Gautret, P., Foucher, F., Ramboz, C., and Westall, F.: Geyserite in hot-spring siliceous sinter: Window on Earth's hottest terrestrial (paleo)environment and its extreme life, Earth Sci. Rev., 148, 44–64, https://doi.org/10.1016/j.earscirev.2015.05.009, 2015.
Carter, J., Riu, L., Poulet, F., Bibring, J.-P., Langevin, Y., and Gondet, B.: A Mars orbital catalog of aqueous alteration signatures (MOCAAS), Icarus, 389, 115164, https://doi.org/10.1016/j.icarus.2022.115164, 2023.
Channing, A. and Butler, I. B.: Cryogenic opal-A deposition from Yellowstone hot springs, Earth Planet. Sc. Lett., 257, 121–131, https://doi.org/10.1016/j.epsl.2007.02.026, 2007.
Chauviré, B. and Thomas, P. S.: DSC of natural opal: insights into the incorporation of crystallisable water in the opal microstructure, J. Therm. Anal. Calorim., 140, 2077–2085, https://doi.org/10.1007/s10973-019-08949-4, 2020.
Chauviré, B., Rondeau, B., and Mangold, N.: Near infrared signature of opal and chalcedony as a proxy for their structure and formation conditions, Europ. J. Mineral., 29, 409–421, https://doi.org/10.1127/ejm/2017/0029-2614, 2017a.
Chauviré, B., Rondeau, B., Mazzero, F., and Ayalew, D.: The precious opal deposit at Wegel Tena, Ethiopia: Formation via successive pedogenesis events, Can. Mineral., 55, 701–723, https://doi.org/10.3749/canmin.1700010, 2017b.
Chauviré, B., Houadria, M., Donini, A., Berger, B. T., Rondeau, B., Kritsky, G., and Lhuissier, P.: Arthropod entombment in weathering-formed opal: new horizons for recording life in rocks, Sci. Rep., 10, 10575, https://doi.org/10.1038/s41598-020-67412-9, 2020.
Chauviré, B., Pineau, M., Quirico, E., and Beck, P.: Near infrared signature of opaline silica at Mars-relevant pressure and temperature, Earth Planet. Sc. Lett., 576, 117239, https://doi.org/10.1016/j.epsl.2021.117239, 2021.
Choblet, G., Tobie, G., Buch, A., Čadek, O., Barge, L. M., Bēhounková, M., Camprubi, E., Freissinet, C., Hedman, M., Jones, G., Lainey, V., Le Gall, A., Lucchetti, A., MacKenzie, S., Mitri, G., Neveu, M., Nimmo, F., Olsson-Francis, K., Panning, M., Postberg, F., Saur, J., Schmidt, J., Sekine, Y., Shibuya, T., Sotin, C., Soucek, O., Szopa, C., Usui, T., Vance, S., and Van Hoolst, T.: Enceladus as a potential oasis for life: Science goals and investigations for future explorations, Exp. Astron., 54, 809–847, https://doi.org/10.1007/s10686-021-09808-7, 2021.
Christy, A. A.: Quantitative determination of surface area of silica gel particles by near infrared spectroscopy and chemometrics, Colloid Surface A, 322, 248–252, https://doi.org/10.1016/j.colsurfa.2008.03.021, 2008.
Christy, A. A.: Near infrared spectroscopic characterisation of surface hydroxyl groups on hydrothermally treated silica gel, Int. J. Chem. Environ. Eng., 2, 27–32, 2011.
Damer, B. and Deamer, D.: The hot spring hypothesis for an origin of life, Astrobiology, 20, 429–452, https://doi.org/10.1089/ast.2019.2045, 2020.
Day, R. and Jones, B.: Variations in Water Content in Opal-A and Opal-CT from Geyser Discharge Aprons, J. Sediment. Res., 78, 301–315, https://doi.org/10.2110/jsr.2008.030, 2008.
Djokic, T., Van Kranendonk, M. J., Campbell, K. A., Walter, M. R., and Ward, C. R.: Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits, Nat. Commun., 8, 16149, https://doi.org/10.1038/ncomms16149, 2017.
Fox-Powell, M. G., Channing, A., Applin, D., Cloutis, E., Preston, L. J., and Cousins, C. R.: Cryogenic silicification of microorganisms in hydrothermal fluids, Earth Planet. Sc. Lett., 498, 1–8, https://doi.org/10.1016/j.epsl.2018.06.026, 2018.
Gaillou, E., Fritsch, E., Aguilar-Reyes, B., Rondeau, B., Post, J., Barreau, A., and Ostroumov, M.: Common gem opal: An investigation of micro- to nano-structure, Am. Mineral., 93, 1865–1873, https://doi.org/10.2138/am.2008.2518, 2008.
Galeener, F. L.: Planar rings in glasses, Solid State Commun., 44, 1037–1040, https://doi.org/10.1016/0038-1098(82)90329-5, 1982a.
Galeener, F. L.: Planar rings in vitreous silica, J. Non. Cryst. Solids, 49, 53–62, https://doi.org/10.1016/0022-3093(82)90108-9, 1982b.
Geptner, A. R., Ivanovskaya, T. A., and Pokrovskaya, E. V.: Hydrothermal fossilization of microorganisms at the Earth's Surface in Iceland, Lithol. Mineral Res., 40, 505–520, https://doi.org/10.1007/s10987-005-0048-2, 2005.
Gong, J., Myers, K. D., Munoz-Saez, C., Homann, M., Rouillard, J., Wirth, R., Schreiber, A., and Van Zuilen, M. A.: Formation and preservation of microbial palisade fabric in silica deposits from El tatio, Chile, Astrobiology, 20, 500–524, https://doi.org/10.1089/ast.2019.2025, 2020.
Guido, D. M. and Campbell, K. A.: A large and complete Jurassic geothermal field at Claudia, Deseado Massif, Santa Cruz, Argentina, J. Volcanol. Geotherm. Res., 275, 61–70, https://doi.org/10.1016/j.jvolgeores.2014.02.013, 2014.
Guido, D. M., Campbell, K. A., Foucher, F., and Westall, F.: Life is everywhere in sinters: Examples from jurassic hot-spring environments of argentine patagonia, Geol. Mag., 156, 1631–1638, https://doi.org/10.1017/S0016756819000815, 2019.
Guidry, S. A. and Chafetz, H. S.: Anatomy of siliceous hot springs: Examples from Yellowstone National Park, Wyoming, USA, Sediment Geol., 157, 71–106, https://doi.org/10.1016/S0037-0738(02)00195-1, 2003.
Hamilton, A. R., Campbell, K. A., and Guido, D. M.: Atlas of Siliceous Hot Spring Deposits (Sinter) and other Silicified Surface Manifestations in Epithermal Environments, edited by: Lower Hutt, N. Z., GNS Science, GNS Science report 2019/06, 56 pp., https://doi.org/10.21420/BQDR-XQ16, 2019.
Handley, K. M., Campbell, K. A., Mountain, B. W., and Browne, P. R. L.: Abiotic-biotic controls on the origin and development of spicular sinter: In situ growth experiments, Champagne Pool, Waiotapu, New Zealand, Geobiology, 3, 93–114, https://doi.org/10.1111/j.1472-4669.2005.00046.x, 2005.
Herdianita, N. R., Browne, P. R. L., Rodgers, K. A., and Campbell, K. A.: Mineralogical and textural changes accompanying ageing of silica sinter, Miner Depos, 35, 48–62, https://doi.org/10.1007/s001260050005, 2000.
Herrmann, J. R., Maas, R., Rey, P. F., and Best, S. P.: The nature and origin of pigments in black opal from Lightning Ridge, New South Wales, Australia, Aust. J. Earth Sci., 66, 1027–1039, https://doi.org/10.1080/08120099.2019.1587643, 2019.
Hogancamp, J. V., Lapen, T. J., Chafetz, H. S., and Elsenousy, A.: The effect of solution chemistries and freezing temperatures on the morphology of cryogenic opal-A (COA): Implications for past climates on Mars, Chem. Geol., 519, 56–67, https://doi.org/10.1016/j.chemgeo.2019.04.017, 2019.
Hsu, H.-W., Postberg, F., Sekine, Y., Shibuya, T., Kempf, S., Horányi, M., Juhász, A., Altobelli, N., Suzuki, K., Masaki, Y., Kuwatani, T., Tachibana, S., Sirono, S., Moragas-Klostermeyer, G., and Srama, R.: Ongoing hydrothermal activities within Enceladus, Nature, 519, 207–210, https://doi.org/10.1038/nature14262, 2015.
Jones, B.: Siliceous sinters in thermal spring systems: Review of their mineralogy, diagenesis, and fabrics, Sediment Geol., 413, 105820, https://doi.org/10.1016/j.sedgeo.2020.105820, 2021.
Jones, B. and Peng, X.: Laminae development in opal-A precipitates associated with seasonal growth of the form-genus Calothrix (Cyanobacteria), Rehai geothermal area, Tengchong, Yunnan Province, China, Sediment Geol., 319, 52–68, https://doi.org/10.1016/j.sedgeo.2015.01.004, 2015.
Jones, B. and Renaut, R. W.: Hot spring and geyser sinters: the integrated product of precipitation, replacement, and deposition, Can. J. Earth Sci., 40, 1549–1569, https://doi.org/10.1139/e03-078, 2003a.
Jones, B. and Renaut, R. W.: Petrography and genesis of spicular and columnar geyserite from the Whakarewarewa and Orakeikorako geothermal areas, North Island, New Zealand, Can. J. Earth Sci., 40, 1585–1610, https://doi.org/10.1139/e03-062, 2003b.
Jones, B. and Renaut, R. W.: Microstructural changes accompanying the opal-A to opal-CT transition: New evidence from the siliceous sinters of Geysir, Haukadalur, Iceland, Sedimentology, 54, 921–948, https://doi.org/10.1111/j.1365-3091.2007.00866.x, 2007.
Jones, B. and Renaut, R. W.: Impact of seasonal changes on the formation and accumulation of soft siliceous sediments on the discharge apron of geysir, Iceland, J. Sediment. Res., 80, 17–35, https://doi.org/10.2110/jsr.2010.008, 2010.
Jones, B. and Renaut, R. W.: Multifaceted incremental growth of a geyser discharge apron – Evidence from Geysir, Haukadalur, Iceland, Sediment Geol., 419, 105905, https://doi.org/10.1016/j.sedgeo.2021.105905, 2021.
Jones, B., Renaut, R. W., and Rosen, M. R.: Biogenicity of silica precipitation around geysers and hot-spring vents, North Island, New Zealand, J. Sediment. Res., 67, 88–104, https://doi.org/10.1306/d42684ff-2b26-11d7-8648000102c1865d, 1997.
Jones, B., Renaut, R. W., and Rosen, M. R.: Taphonomy of Silicified Filamentous Microbes in Modern Geothermal Sinters: Implications for Identification, Palaios, 16, 580–592, https://doi.org/10.2307/3515630, 2001.
Jones, J. B. and Segnit, E. R.: The nature of opal I. nomenclature and constituent phases, J. Geol. Soc. Austr., 18, 57–67, https://doi.org/10.1080/00167617108728743, 1971.
Kastner, M., Keene, J. B., and Gieskes, J. M.: Diagenesis of siliceous oozes – I. Chemical controls on the rate of opal-A to opal-CT transformation – an experimental study, Geochim. Cosmochim. Ac., 41, 1041–1059, https://doi.org/10.1016/0016-7037(77)90099-0, 1977.
Kelley, D. S., Baross, J. A., and Delaney, J. R.: Volcanoes, fluids, and life at mid-ocean ridge spreading centers, Annu. Rev. Earth Planet. Sci., 30, 385–491, https://doi.org/10.1146/annurev.earth.30.091201.141331, 2002.
Konhauser, K. O., Jones, B., Phoenix, V. R., Ferris, G., and Renaut, R. W.: The microbial role in hot spring silicification, Ambio, 33, 552–558, https://doi.org/10.1579/0044-7447-33.8.552, 2004.
Langer, K. and Florke, O. W.: Near infrared absorption spectra (4000–9000 cm−1) of opals and the role of “water” in these SiO2 ⋅ nH2O minerals, Fortschritte der Mineralogie, 52, 17–51, 1974.
Liesegang, M. and Gee, C. T.: Silica entry and accumulation in standing trees in a hot-spring environment: cellular pathways, rapid pace and fossilization potential, Palaeontology, 63, 651–660, https://doi.org/10.1111/pala.12480, 2020.
Lynne, B. Y., Campbell, K. A., Moore, J. N., and Browne, P. R. L.: Diagenesis of 1900-year-old siliceous sinter (opal-A to quartz) at Opal Mound, Roosevelt Hot Springs, Utah, USA, Sediment Geol., 179, 249–278, https://doi.org/10.1016/j.sedgeo.2005.05.012, 2005.
Lynne, B. Y., Campbell, K. A., James, B. J., Browne, P. R. J., and Moore, J.: Tracking crystallinity in siliceous hot-spring deposits, Am. J. Sci., 307, 612–641, https://doi.org/10.2475/03.2007.03, 2007.
Des Marais, D. J. and Walter, M. R.: Terrestrial Hot Spring Systems: Introduction, Astrobiology, 19, 1419–1432, https://doi.org/10.1089/ast.2018.1976, 2019.
Milliken, R. E., Swayze, G. A., Arvidson, R. E., Bishop, J. L., Clark, R. N., Ehlmann, B. L., Green, R. O., Grotzinger, J. P., Morris, R. V., Murchie, S. L., Mustard, J. F., and Weitz, C.: Opaline silica in young deposits on Mars, Geology, 36, 847–850, https://doi.org/10.1130/G24967A.1, 2008.
Morris, R. V, Vaniman, D. T., Blake, D. F., Gellert, R., Chipera, S. J., Rampe, E. B., Ming, D. W., Morrison, S. M., Downs, R. T., Treiman, A. H., Yen, A. S., Grotzinger, J. P., Achilles, C. N., Bristow, T. F., Crisp, J. A., Des Marais, D. J., Farmer, J. D., Fendrich, K. V, Frydenvang, J., Graff, T. G., Morookian, J.-M., Stolper, E. M., and Schwenzer, S. P.: Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater, P. Natl. Acad. Sci. USA, 113, 7071–7076, https://doi.org/10.1073/pnas.1607098113, 2016.
Orange, F., Lalonde, S. V., and Konhauser, K. O.: Experimental simulation of evaporation-driven silica sinter formation and microbial silicification in hot spring systems, Astrobiology, 13, 163–176, https://doi.org/10.1089/ast.2012.0887, 2013.
Ostrooumov, M., Fritsch, E., Lasnier, B., and Lefrant, S.: Spectres Raman des opales: aspect diagnostique et aide à la classification, European J. Mineral., 11, 899–908, 1999.
Pan, L., Carter, J., Quantin-Nataf, C., Pineau, M., Chauviré, B., Mangold, N., Le Deit, L., Rondeau, B., and Chevrier, V.: Voluminous Silica Precipitated from Martian Waters during Late-stage Aqueous Alteration, Planet Sci. J., 2, 23 pp., https://doi.org/10.3847/PSJ/abe541, 2021.
Phillips, J. C.: Microscopic origin of anomalously narrow Raman lines in network glasses, J. Non. Cryst. Solids, 63, 347–355, https://doi.org/10.1016/0022-3093(84)90102-9, 1984.
Pineau, M., Le Deit, L., Chauviré, B., Carter, J., Rondeau, B., and Mangold, N.: Toward the geological significance of hydrated silica detected by near infrared spectroscopy on Mars based on terrestrial reference samples, Icarus, 347, 113706, https://doi.org/10.1016/j.icarus.2020.113706, 2020.
Pirajno, F.: Hydrothermal processes and Mineral Systems, Springer N., Springer Netherlands, 1250 pp., https://doi.org/10.1007/978-1-4020-8613-7, 2009.
Preston, L. J., Benedix, G. K., Genge, M. J., and Sephton, M. A.: A multidisciplinary study of silica sinter deposits with applications to silica identification and detection of fossil life on Mars, Icarus, 198, 331–350, https://doi.org/10.1016/j.icarus.2008.08.006, 2008.
Rice, M. S., Cloutis, E. A., Bell, J. F., Bish, D. L., Horgan, B. H., Mertzman, S. A., Craig, M. A., Renaut, R. W., Gautason, B., and Mountain, B.: Reflectance spectra diversity of silica-rich materials: Sensitivity to environment and implications for detections on Mars, Icarus, 223, 499–533, https://doi.org/10.1016/j.icarus.2012.09.021, 2013.
Rodgers, K. A., Browne, P. R. L., Buddle, T. F., Cook, K. L., Greatrex, R. A., Hampton, W. A., Herdianita, N. R., Holland, G. R., Lynne, B. Y., Martin, R., Newton, Z., Pastars, D., Sannazarro, K. L., and Teece, C. I. A.: Silica phases in sinters and residues from geothermal fields of New Zealand, Earth Sci. Rev., 66, 1–61, https://doi.org/10.1016/j.earscirev.2003.10.001, 2004.
Rondeau, B., Cenki-Tok, B., Fritsch, E., Mazzero, F., Gauthier, J.-P. J.-P., Bodeur, Y., Bekele, E., Gaillou, E., and Ayalew, D.: Geochemical and petrological characterization of gem opals from Wegel Tena, Wollo, Ethiopia: opal formation in an Oligocene soil, Geochemistry: Exploration, Environ., Anal., 12, 93–104, https://doi.org/10.1144/1467-7873/10-MINDEP-058, 2012.
Ruff, S. W., Farmer, J. D., Calvin, W. M., Herkenhoff, K. E., Johnson, J. R., Morris, R. V., Rice, M. S., Arvidson, R. E., Bell, J. F., Christensen, P. R., and Squyres, S. W.: Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars, J. Geophys. Res. E, 116, E00F23, https://doi.org/10.1029/2010JE003767, 2011.
Ruff, S. W., Campbell, K. A., Van Kranendonk, M. J., Rice, M. S., and Farmer, J. D.: The case for ancient hot springs in gusev crater, mars, Astrobiology, 20, 475–499, https://doi.org/10.1089/ast.2019.2044, 2019.
Skok, J. R., Mustard, J. F., Ehlmann, B. L., Milliken, R. E., and Murchie, S. L.: Silica deposits in the Nili Patera caldera on the Syrtis Major volcanic complex on Mars, Nat. Geosci., 3, 838–841, https://doi.org/10.1038/ngeo990, 2010.
Smallwood, A. G., Thomas, P. S., and Ray, A. S.: Characterisation of sedimentary opals by Fourier transform Raman spectroscopy, Spectrochim. Acta A, 53, 2341–2345, https://doi.org/10.1016/S1386-1425(97)00174-1, 1997.
Smythe, W. F., McAllister, S. M., Hager, K. W., Hager, K. R., Tebo, B. M., and Moyer, C. L.: Silica biomineralization of Calothrix-dominated biofacies from Queen's Laundry hot-spring, Yellowstone National Park, USA, Front. Environ. Sci., 4, 1–11, https://doi.org/10.3389/fenvs.2016.00040, 2016.
Squyres, S. W., Arvidson, R. E., Ruff, S., Gellert, R., Morris, R. V., Ming, D. W., Crumpler, L., Farmer, J. D., Marais, D. J. D., Yen, A., McLennan, S. M., Calvin, W., Bell, J. F., Clark, B. C., Wang, A., McCoy, T. J., Schmidt, M. E., and de Souza, P. A.: Detection of Silica-Rich Deposits on Mars, Science, 320, 1063–1067, https://doi.org/10.1126/science.1155429, 2008.
Sriaporn, C., Campbell, K. A., Millan, M., Ruff, S. W., Van Kranendonk, M. J., and Handley, K. M.: Stromatolitic digitate sinters form under wide-ranging physicochemical conditions with diverse hot spring microbial communities, Geobiology, 18, 619–640, https://doi.org/10.1111/gbi.12395, 2020.
Sun, V. Z. and Milliken, R. E.: Distinct Geologic Settings of Opal-A and More Crystalline Hydrated Silica on Mars, Geophys. Res. Lett., 45, 10221–10228, https://doi.org/10.1029/2018GL078494, 2018.
Teece, B. L., George, S. C., Djokic, T., Campbell, K. A., Ruff, S. W., and Van Kranendonk, M. J.: Biomolecules from fossilized hot spring sinters: Implications for the search for life on mars, Astrobiology, 20, 537–551, https://doi.org/10.1089/ast.2018.2018, 2020.
Thomas, P. S., Guerbois, J.-P., and Smallwood, A. G.: Low temperature DSC characterisation of water in opal, J. Therm. Anal. Calorim., 113, 1255–1260, https://doi.org/10.1007/s10973-012-2911-4, 2013.
Thorolfsdottir, B. O. T. and Marteinsson, V. T.: Microbiological analysis in three diverse natural geothermal bathing pools in Iceland, Int. J. Environ. Res. Publ. Hlth., 10, 1085–1099, https://doi.org/10.3390/ijerph10031085, 2013.
Tobler, D. J., Stefánsson, A., and Benning, L. G.: In-situ grown silica sinters in Icelandic geothermal areas, Geobiology, 6, 481–502, https://doi.org/10.1111/j.1472-4669.2008.00179.x, 2008.
Torfason, H.: Jarðhitarannsóknir á Hveravöllum 1996, Geothermal research at Hveravellir, Orkustofnun, ISBN: 9979827947, http://www.os.is/gogn/Skyrslur/OS-1997/OS-97025.pdf (last access: 10 March 2023), 1997.
van den Heuvel, D. B., Gunnlaugsson, E., and Benning, L. G.: Surface roughness affects early stages of silica scale formation more strongly than chemical and structural properties of the substrate, Geothermics, 87, 101835, https://doi.org/10.1016/j.geothermics.2020.101835, 2020.
Walter, M. R.: Chapter 3.3 Geyserites of Yellowstone National Park: An Example of Abiogenic “Stromatolites”, Develop. Sediment., 20, 87–112, https://doi.org/10.1016/S0070-4571(08)71131-2, 1976.
Walter, M. R. and Des Marais, D. J.: Preservation of biological information in thermal spring deposits: developing a strategy for the search for fossil life on Mars, Icarus, 101, 129–143, https://doi.org/10.1006/icar.1993.1011, 1993.
Short summary
We study Icelandic silica sinter samples formed in hot-spring environments to evaluate the effect of both temperature and microstructure on the spectral properties of hydrothermal opal. We show that spectral changes can be related to different parameters such as fluid temperatures, hydrodynamics, microbial activity, and silica micro-textures, which are specific to their environment of formation within hot-spring geothermal contexts.
We study Icelandic silica sinter samples formed in hot-spring environments to evaluate the...