Articles | Volume 35, issue 2
https://doi.org/10.5194/ejm-35-267-2023
https://doi.org/10.5194/ejm-35-267-2023
Research article
 | 
06 Apr 2023
Research article |  | 06 Apr 2023

Optimal Raman-scattering signal for estimating the Fe3+ content on the clinozoisite–epidote join

Mariko Nagashima and Boriana Mihailova

Related authors

Ferro-ferri-holmquistite, Li2(Fe2+3Fe3+2)Si8O22(OH)2, Fe2+Fe3+ analogue of holmquistite, from the Iwagi islet, Ehime, Japan
Mariko Nagashima, Teruyoshi Imaoka, Takashi Kano, Jun-ichi Kimura, Qing Chang, and Takashi Matsumoto
Eur. J. Mineral., 34, 425–438, https://doi.org/10.5194/ejm-34-425-2022,https://doi.org/10.5194/ejm-34-425-2022, 2022
Short summary
Aluminosugilite, KNa2Al2Li3Si12O30, an Al analogue of sugilite, from the Cerchiara mine, Liguria, Italy
Mariko Nagashima, Chihiro Fukuda, Takashi Matsumoto, Teruyoshi Imaoka, Gianluca Odicino, and Gianluca Armellino
Eur. J. Mineral., 32, 57–66, https://doi.org/10.5194/ejm-32-57-2020,https://doi.org/10.5194/ejm-32-57-2020, 2020

Related subject area

Spectroscopic methods applied to minerals
Fe3+∕ΣFe variation in lawsonite and epidote in subducted oceanic crust
Donna L. Whitney, Max Wilke, Sara E. Hanel, Florian Heidelbach, Olivier Mathon, and Angelika D. Rosa
Eur. J. Mineral., 37, 143–149, https://doi.org/10.5194/ejm-37-143-2025,https://doi.org/10.5194/ejm-37-143-2025, 2025
Short summary
Incorporation of W6+ into hematite (α-Fe2O3) in the form of ferberite nanolamellae
Juraj Majzlan, Ralph Bolanz, Jörg Göttlicher, Martin Števko, Tomáš Mikuš, Mária Čaplovičová, Jan Filip, Jiří Tuček, Christiane Rößler, and Christian Matthes
Eur. J. Mineral., 37, 101–110, https://doi.org/10.5194/ejm-37-101-2025,https://doi.org/10.5194/ejm-37-101-2025, 2025
Short summary
Fingerprinting of ruby and sapphire gemstones through Fourier-transform infrared (FTIR) methodologies
António Soares de Sousa, Elsa Maria Carvalho Gomes, Laura Bayés-García, Alessandra Di Mariano, and Maite Garcia-Valles
Eur. J. Mineral., 37, 53–62, https://doi.org/10.5194/ejm-37-53-2025,https://doi.org/10.5194/ejm-37-53-2025, 2025
Short summary
Mineralogical characterization of magnesium-based nanoparticles recovered from a swirl-stabilized magnesium flame by analytical and scanning/transmission electron microscopy
Ruggero Vigliaturo, Giulia Pia Servetto, Erica Bittarello, Quentin Wehrung, Jean-François Brilhac, and Gwenaëlle Trouvé
Eur. J. Mineral., 36, 831–843, https://doi.org/10.5194/ejm-36-831-2024,https://doi.org/10.5194/ejm-36-831-2024, 2024
Short summary
Laser-induced breakdown spectroscopy analysis of tourmaline: protocols, procedures, and predicaments
Nancy J. McMillan and Barbara L. Dutrow
Eur. J. Mineral., 36, 369–379, https://doi.org/10.5194/ejm-36-369-2024,https://doi.org/10.5194/ejm-36-369-2024, 2024
Short summary

Cited articles

Akasaka, M., Zheng, Y., and Suzuki, Y.: Maximum strontium content of piemontite formed by hydrothermal synthesis, J. Miner. Petrol. Sci., 95, 84–94, https://doi.org/10.2465/jmps.95.84, 2000. 
Andò, S. and Garzanti, E.: Raman spectroscopy in heavy-mineral studies, in: Sediment provenance studies in hydrocarbon exploration and production, edited by: Scott, R. A., Morton, A. C., and Richardson, N., Geol. Soc. London, Spec. Publ., 386, 395–412, https://doi.org/10.1144/SP386.2, 2014. 
Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Heuss-Assbischler, S., Liebscher, A., Menchetti. S., Pan, Y., and Pasero, M.: Recommended nomenclature of epidote-group minerals, Eur. J. Miner., 18, 551–567, https://doi.org/10.1127/0935-1221/2006/0018-0551, 2006. 
Armbruster, T., Gnos, E., Dixon, R., Gurzmer, J., Hejny, C., Döbelin, N., and Medenbach, O.: Manganvesuvianite and tweddillite, two new minerals from the Kalahari manganese fields, South Africa. Miner. Mag., 66, 137–150, https://doi.org/10.1180/0026461026610018, 2002. 
Aspiotis, S., Schlüter, J., and Mihailova, B., Non-destructive determination of the biotite crystal chemistry using Raman spectroscopy: how far we can go?, Eur. J. Miner., 34, 573–590, https://doi.org/10.5194/ejm-34-573-2022, 2022. 
Download
Short summary
We provide a tool for fast preparation-free estimation of the Fe3+ content in Al–Fe3+ series epidotes by Raman spectroscopy. The peaks near 570, 600, and 1090 cm−1, originating from Si2O7 vibrations, strongly correlated with Fe content, and all three signals are well resolved in a random orientation. Among them, the 570 cm−1 peak is the sharpest and easily recognized. Hence, the linear trend, ω570 = 577.1(3) − 12.7(4)x, gives highly reliable Fe content, x, with accuracy ± 0.04 Fe3+ apfu.
Share