Articles | Volume 36, issue 4
https://doi.org/10.5194/ejm-36-623-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/ejm-36-623-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Chemical interdiffusion between Na-series tephritic and phonolitic melts with different H2O content, temperature, and oxygen fugacity values
Institute of Earth System Sciences (Section of Mineralogy), Leibniz University Hannover, 30167 Hanover, Germany
Department of Mineralogy and Petrology, Universidad Complutense de Madrid, 28040 Madrid, Spain
Florian Pohl
Institute of Earth System Sciences (Section of Mineralogy), Leibniz University Hannover, 30167 Hanover, Germany
Felix Marxer
Institute of Earth System Sciences (Section of Mineralogy), Leibniz University Hannover, 30167 Hanover, Germany
Stepan Krasheninnikov
Institute of Earth System Sciences (Section of Mineralogy), Leibniz University Hannover, 30167 Hanover, Germany
Institute of Geosciences, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
Renat Almeev
Institute of Earth System Sciences (Section of Mineralogy), Leibniz University Hannover, 30167 Hanover, Germany
François Holtz
Institute of Earth System Sciences (Section of Mineralogy), Leibniz University Hannover, 30167 Hanover, Germany
Related authors
Noémie Taquet, Thomas Boulesteix, Omaira García, Robin Campion, Wolfgang Stremme, Sergio Rodríguez, Jessica López-Darias, Carlos Marrero, Diego González-García, Andreas Klügel, Frank Hase, M. Isabel García, Ramón Ramos, Pedro Rivas-Soriano, Sergio Léon-Luis, Virgilio Carreño, Antonio Alcántara, Eliezer Sépulveda, Celia Milford, Pablo González-Sicilia, and Carlos Torres
EGUsphere, https://doi.org/10.5194/egusphere-2025-1092, https://doi.org/10.5194/egusphere-2025-1092, 2025
Short summary
Short summary
Direct-sun solar absorption FTIR and DOAS measurements were performed during the 2021 La Palma eruption from distance up to 140 km. Using FTIR-DOAS gas-to-sulfur ratios and SO2 fluxes derived from TROPOMI, CO2, CO, HCl, HF volcanic emissions were estimated. Estimates of emission budget were found in good agreement with petrologic data. This study demonstrates the feasability of using existing atmospheric monitoring network to monitor volcanic eruptions.
Noémie Taquet, Thomas Boulesteix, Omaira García, Robin Campion, Wolfgang Stremme, Sergio Rodríguez, Jessica López-Darias, Carlos Marrero, Diego González-García, Andreas Klügel, Frank Hase, M. Isabel García, Ramón Ramos, Pedro Rivas-Soriano, Sergio Léon-Luis, Virgilio Carreño, Antonio Alcántara, Eliezer Sépulveda, Celia Milford, Pablo González-Sicilia, and Carlos Torres
EGUsphere, https://doi.org/10.5194/egusphere-2025-1092, https://doi.org/10.5194/egusphere-2025-1092, 2025
Short summary
Short summary
Direct-sun solar absorption FTIR and DOAS measurements were performed during the 2021 La Palma eruption from distance up to 140 km. Using FTIR-DOAS gas-to-sulfur ratios and SO2 fluxes derived from TROPOMI, CO2, CO, HCl, HF volcanic emissions were estimated. Estimates of emission budget were found in good agreement with petrologic data. This study demonstrates the feasability of using existing atmospheric monitoring network to monitor volcanic eruptions.
Florian Pohl, Harald Behrens, Martin Oeser, Felix Marxer, and Ralf Dohmen
Eur. J. Mineral., 36, 985–1003, https://doi.org/10.5194/ejm-36-985-2024, https://doi.org/10.5194/ejm-36-985-2024, 2024
Short summary
Short summary
The growing interest in lithium (Li) diffusion for the determination of timescales of magmatic events increases the necessity to better understand Li diffusion in common mineral phases. In this context we analyzed Li diffusion in plagioclase, one of the most common mineral phases. Our study is the first to confirm two diffusion mechanisms for Li in plagioclase, and our results indicate timescales derived from Li diffusion data in previous studies were underestimated by a factor of up to 100.
André Stechern, Magdalena Blum-Oeste, Roman E. Botcharnikov, François Holtz, and Gerhard Wörner
Eur. J. Mineral., 36, 721–748, https://doi.org/10.5194/ejm-36-721-2024, https://doi.org/10.5194/ejm-36-721-2024, 2024
Short summary
Short summary
Lascar volcano, located in northern Chile, is among the most active volcanoes of the Andes. Its activity culminated in the last major explosive eruption in April 1993. We carried out experiments at high temperatures (up to 1050 °C) and pressures (up to 5000 bar) in the lab, and we used a wide variety of geochemical methods to provide comprehensive constraints on the depth and temperature of the magma chamber beneath Lascar volcano.
Roman Botcharnikov, Max Wilke, Jan Garrevoet, Maxim Portnyagin, Kevin Klimm, Stephan Buhre, Stepan Krasheninnikov, Renat Almeev, Severine Moune, and Gerald Falkenberg
Eur. J. Mineral., 36, 195–208, https://doi.org/10.5194/ejm-36-195-2024, https://doi.org/10.5194/ejm-36-195-2024, 2024
Short summary
Short summary
The new spectroscopic method, based on the syncrotron radiation, allows for determination of Fe oxidation state in tiny objects or in heterogeneous samples. This technique is expected to be an important tool in geosciences unraveling redox conditions in rocks and magmas as well as in material sciences providing constraints on material properties.
Diao Luo, Marc K. Reichow, Tong Hou, M. Santosh, Zhaochong Zhang, Meng Wang, Jingyi Qin, Daoming Yang, Ronghao Pan, Xudong Wang, François Holtz, and Roman Botcharnikov
Eur. J. Mineral., 34, 469–491, https://doi.org/10.5194/ejm-34-469-2022, https://doi.org/10.5194/ejm-34-469-2022, 2022
Short summary
Short summary
Volcanoes on Earth are divided into monogenetic and composite volcanoes based on edifice shape. Currently the evolution from monogenetic to composite volcanoes is poorly understood. There are two distinct magma chambers, with a deeper region at the Moho and a shallow mid-crustal zone in the Wulanhada Volcanic Field. The crustal magma chamber represents a snapshot of transition from monogenetic to composite volcanoes, which experience more complex magma processes than magma stored in the Moho.
Xudong Wang, Tong Hou, Meng Wang, Chao Zhang, Zhaochong Zhang, Ronghao Pan, Felix Marxer, and Hongluo Zhang
Eur. J. Mineral., 33, 621–637, https://doi.org/10.5194/ejm-33-621-2021, https://doi.org/10.5194/ejm-33-621-2021, 2021
Short summary
Short summary
In this paper we calibrate a new empirical clinopyroxene-only thermobarometer based on new models. The new models show satisfying performance in both calibration and the test dataset compared with previous thermobarometers. Our new thermobarometer has been tested on natural clinopyroxenes in the Icelandic eruptions. The results show good agreement with experiments. Hence, it can be widely used to elucidate magma storage conditions.
Cited articles
Ablay, G. J., Carroll, M. R., Palmer, M. R., Marti, J., and Sparks, R. S. J.: Basanite–Phonolite Lineages of the Teide–Pico Viejo Volcanic Complex, Tenerife, Canary Islands, J. Petrol., 39, 905–936, 1998.
Andújar, J. and Scaillet, B.: Experimental Constraints on Parameters Controlling the Difference in the Eruptive Dynamics of Phonolitic Magmas: the Case of Tenerife (Canary Islands), J. Petrol., 53, 1777–1806, https://doi.org/10.1093/petrology/egs033, 2012.
Andújar, J., Costa, F., Martí, J., Wolff, J. A., and Carroll, M. R.: Experimental constraints on pre-eruptive conditions of phonolitic magma from the caldera-forming El Abrigo eruption, Tenerife (Canary Islands), Chem. Geol., 257, 173–191, https://doi.org/10.1016/j.chemgeo.2008.08.012, 2008.
Andújar, J., Costa, F., and Martí, J.: Magma storage conditions of the last eruption of Teide volcano (Canary Islands, Spain), B. Volcanol., 72, 381–395, https://doi.org/10.1007/s00445-009-0325-3, 2010.
Baker, D. R.: Tracer versus trace element diffusion: Diffusional decoupling of Sr concentration from Sr isotope composition, Geochim. Cosmochim. Ac., 53, 3015–3023, https://doi.org/10.1016/0016-7037(89)90177-4, 1989.
Baker, D. R.: Interdiffusion of hydrous dacitic and rhyolitic melts and the efficacy of rhyolite contamination of dacitic enclaves, Contrib. Mineral. Petr., 106, 462–473, https://doi.org/10.1007/BF00321988, 1991.
Baker, D. R. and Bossányi, H.: The combined effect of F and H2O on interdiffusion between peraikaline dacitic and rhyolitic melts, Contrib. Mineral. Petr., 117, 203–214, 1994.
Baker, D. R., Conte, A., Freda, C., and Ottolini, L.: The effect of halogens on Zr diffusion and zircon dissolution in hydrous metaluminous granitic melts, Contrib. Mineral. Petr., 142, 666–678, https://doi.org/10.1007/s00410-001-0328-3, 2002.
Behrens, H.: Determination of water solubilities in high-viscosity melts: An experimental study on NaAlSi3O8 and KAlSi3O8 melts, Eur. J. Mineral., 7, 905–320, 1995.
Behrens, H. and Zhang, Y.: Ar diffusion in hydrous silicic melts: implications for volatile diffusion mechanisms and fractionation, Earth Planet. Sc. Lett., 192, 363–376, https://doi.org/10.1016/S0012-821X(01)00458-7, 2001.
Behrens, H., Romano, C., Nowak, M., Holtz, F., and Dingwell, D. B.: Near-infrared spectroscopic determination of water species in glasses of the system MAlSi3O8 (M = Li, Na, K): an interlaboratory study, Chem. Geol., 128, 41–63, https://doi.org/10.1016/0009-2541(95)00162-X, 1996.
Berndt, J., Liebske, C., Holtz, F., Freise, M., Nowak, M., Ziegenbein, D., Hurkuck, W., and Koepke, J.: A combined rapid-quench and H2-membrane setup for internally heated pressure vessels: Description and application for water solubility in basaltic melts, Am. Mineral., 87, 1717–1726, https://doi.org/10.2138/am-2002-11-1222, 2002.
Berthod, C., Médard, E., Di Muro, A., Hassen Ali, T., Gurioli, L., Chauvel, C., Komorowski, J.-C., Bachèlery, P., Peltier, A., Benbakkar, M., Devidal, J.-L., Besson, P., Le Friant, A., Deplus, C., Nowak, S., Thinon, I., Burckel, P., Hidalgo, S., Feuillet, N., Jorry, S., and Fouquet, Y.: Mantle xenolith-bearing phonolites and basanites feed the active volcanic ridge of Mayotte (Comoros archipelago, SW Indian Ocean), Contrib. Mineral. Petr., 176, 75, https://doi.org/10.1007/s00410-021-01833-1, 2021.
Botcharnikov, R. E., Almeev, R. R., Koepke, J., and Holtz, F.: Phase Relations and Liquid Lines of Descent in Hydrous Ferrobasalt–Implications for the Skaergaard Intrusion and Columbia River Flood Basalts, J. Petrol., 49, 1687–1727, https://doi.org/10.1093/petrology/egn043, 2008.
Bouhifd, M. A., Whittington, A. G., and Richet, P.: Densities and volumes of hydrous silicate melts: New measurements and predictions, Chem. Geol., 418, 40–50, https://doi.org/10.1016/j.chemgeo.2015.01.012, 20115.
Bryan, S. E., Martí, J., and Leosson, M.: Petrology and Geochemistry of the Bandas del Sur Formation, Las Cañadas Edifice, Tenerife (Canary Islands), J. Petrol., 43, 1815–1856, https://doi.org/10.1093/petrology/43.10.1815, 2002.
Carroll, M. R. and Blank, J. G.: The solubility of H2O in phonolitic melts, Am. Mineral., 82, 549–556, https://doi.org/10.2138/am-1997-5-615, 1997.
Chakraborty, S., Dingwell, D. B., and Rubie, D. C.: Multicomponent diffusion in ternary silicate melts in the system K2O-Al2O3-SiO2: I. Experimental measurements, Geochim. Cosmochim. Ac., 59, 255–264, https://doi.org/10.1016/0016-7037(94)00283-R, 1995a.
Chakraborty, S., Dingwell, D. B., and Rubie, D. C.: Multicomponent diffusion in ternary silicate melts in the system K2O-Al2O3-SiO2: II. Mechanisms, systematics, and geological applications, Geochim. Cosmochim. Ac., 59, 265–277, 1995b.
Chen, Y. and Zhang, Y.: Olivine dissolution in basaltic melt, Geochim. Cosmochim. Ac., 72, 4756–4777, https://doi.org/10.1016/j.gca.2008.07.014, 2008.
Chen, Y. and Zhang, Y.: Clinopyroxene dissolution in basaltic melt, Geochim. Cosmochim. Ac., 73, 5730–5747, https://doi.org/10.1016/j.gca.2009.06.016, 2009.
De Campos, C. P., Perugini, D., Ertel-Ingrisch, W., Dingwell, D. B., and Poli, G.: Enhancement of magma mixing efficiency by chaotic dynamics: an experimental study, Contrib. Mineral. Petr., 161, 863–881, do:10.1007/s00410-010-0569-0, 2011.
DeVitre, C. L., Gazel, E., Allison, C. M., Soto, G., Madrigal, P., Alvarado, G. E., and Lücke, O. H.: Multi-stage chaotic magma mixing at Turrialba volcano, J. Volcanol. Geoth. Res., 381, 330–346, https://doi.org/10.1016/j.jvolgeores.2019.06.011, 2019.
Dingwell, D. B., Romano, C., and Hess, K.-U.: The effect of water on the viscosity of a haplogranitic melt under P-T-X conditions relevant to silicic volcanism, Contrib. Miner. Petrol., 124, 19–28, https://doi.org/10.1007/s004100050170, 1996.
Dorado, O., Andújar, J., Martí, J., and Geyer, A.: Pre-eruptive conditions at satellite vent eruptions at Teide-Pico Viejo complex (Tenerife, Canary Islands), Lithos, 396–397, 106193, https://doi.org/10.1016/j.lithos.2021.106193, 2021.
Fanara, S., Sengupta, P., Becker, H.-W., Rogalla, D., and Chakraborty, S.: Diffusion across the glass transition in silicate melts: Systematic correlations, new experimental data for Sr and Ba in calcium-aluminosilicate glasses and general mechanisms of ionic transport, J. Non-Cryst. Solids, 455, 6–16, https://doi.org/10.1016/j.jnoncrysol.2016.10.013, 2017.
Fuchs, P.: Petrogenesis of basanite-phonolite series of an oceanic intraplate volcano: combining experimental data and field observations, PhD thesis, Leibniz Universität Hannover, 182 pp., https://doi.org/10.15488/8253, 2014.
Ghiorso, M. S. and Gualda, G. A. R.: An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS, Contrib. Miner. Petrol., 169, 53, https://doi.org/10.1007/s00410-015-1141-8, 2015.
Giordano, D. and Dingwell, D.: Viscosity of hydrous Etna basalt: implications for Plinian-style basaltic eruptions, B. Volcanol., 65, 8–14, https://doi.org/10.1007/s00445-002-0233-2, 2003.
Giordano, D., Russell, J. K., and Dingwell, D. B.: Viscosity of magmatic liquids: A model, Earth Planet. Sc. Lett., 271, 123–134, https://doi.org/10.1016/j.epsl.2008.03.038, 2008.
Glasstone, S., Laider, K. J., and Eyring, H.: The Theory of Rate Processes, McGraw-Hill, New York, ISBN 978-0070233607, 1941.
González-García, D., Behrens, H., Petrelli, M., Vetere, F., Morgavi, D., Zhang, C., and Perugini, D.: Water-enhanced interdiffusion of major elements between natural shoshonite and high-K rhyolite melts, Chem. Geol., 466, 86–101, https://doi.org/10.1016/j.chemgeo.2017.05.023, 2017.
González-Garcia, D., Petrelli, M., Behrens, H., Vetere, F., Fischer, L. A., Morgavi, D., and Perugini, D.: Diffusive exchange of trace elements between alkaline melts: Implications for element fractionation and timescale estimations during magma mixing, Geochim. Cosmochim. Ac., 233, 95–114, https://doi.org/10.1016/j.gca.2018.05.003, 2018.
González-García, D., Vetere, F., Behrens, H., Petrelli, M., Morgavi, D., and Perugini, D.: Interdiffusion of major elements at 1 atmosphere between natural shoshonitic and rhyolitic melts, Am. Mineral., 104, 1444–1454, https://doi.org/10.2138/am-2019-6997, 2019.
González-García, D., Petrelli, M., Perugini, D., Giordano, D., Vasseur, J., Paredes-Mariño, J., Marti, J., and Dingwell, D. B.: Pre-eruptive conditions and dynamics recorded in banded pumices from the El Abrigo caldera-forming eruption (Tenerife, Canary Islands), J. Petrol., 63, egac009, https://doi.org/10.1093/petrology/egac009, 2022.
González-García, D., Boulesteix, T., Klügel, A., and Holtz, F.: Bubble-enhanced basanite–tephrite mixing in the early stages of the Cumbre Vieja 2021 eruption, La Palma, Canary Islands, Sci. Rep., 13, 14839, https://doi.org/10.1038/s41598-023-41595-3, 2023.
Guo, C. and Zhang, Y.: Multicomponent diffusion in silicate melts: SiO2–TiO2–Al2O3–MgO–CaO–Na2O–K2O System, Geochim. Cosmochim. Ac., 195, 126–141, https://doi.org/10.1016/j.gca.2016.09.003, 2016.
Guo, C. and Zhang, Y.: Multicomponent diffusion in basaltic melts at 1350 ° C, Geochim. Cosmochim. Ac., 228, 190–204, https://doi.org/10.1016/j.gca.2018.02.043, 2018.
Hart, S. R.: Diffusion compensation in natural silicates, Geochim. Cosmochim. Ac., 45, 279–291, https://doi.org/10.1016/0016-7037(81)90239-8, 1981.
Helz, R. T., Clague, D. A., Mastin, L. G., and Rose, T. R.: Electron Microprobe analyses of glasses from Kilauea tephra units, Kilauea volcano, Hawaii, USGS, https://doi.org/10.3133/ofr20141090, 2014.
Jarosewich, E., Nelen, J. A., and Norberg, J. A.: Reference Samples for Electron Microprobe Analysis, Geostandard. Newslett., 4, 43–47, https://doi.org/10.1111/j.1751-908X.1980.tb00273.x, 1980.
Johansen, T. S., Hauff, F., Hoernle, K., Klügel, A., and Kokfelt, T. F.: Basanite to phonolite differentiation within 1550–1750 yr: U-Th-Ra isotopic evidence from the A.D. 1585 eruption on La Palma, Canary Islands, Geology, 33, 897, https://doi.org/10.1130/G21663.1, 2005.
Kim, K.-H., Sukenaga, S., Tashiro, M., Kanehashi, K., Yoshida, S., and Shibata, H.: Variation in viscosity of aluminosilicate melts with MgO/CaO molar ratio: Influence of five-fold coordinated aluminum, J. Non-Cryst. Solids, 587, 121600, https://doi.org/10.1016/j.jnoncrysol.2022.121600, 2022.
Klügel, A., Hoernle, K. A., Schmincke, H.-U., and White, J. D. L.: The chemically zoned 1949 eruption on La Palma (Canary Islands): Petrologic evolution and magma supply dynamics of a rift zone eruption, J. Geophys. Res., 105, 5997–6016, https://doi.org/10.1029/1999JB900334, 2000.
Klügel, A., Hansteen, T. H., and Galipp, K.: Magma storage and underplating beneath Cumbre Vieja volcano, La Palma (Canary Islands), Earth Planet. Sc. Lett., 236, 211–226, https://doi.org/10.1016/j.epsl.2005.04.006, 2005.
Klügel, A., Albers, E., and Hansteen, T. H.: Mantle and Crustal Xenoliths in a Tephriphonolite From La Palma (Canary Islands): Implications for Phonolite Formation at Oceanic Island Volcanoes, Front. Earth Sci., 10, 761902, https://doi.org/10.3389/feart.2022.761902, 2022.
Koepke, J. and Behrens, H.: Trace element diffusion in andesitic melts: an application of synchrotron X-ray fluorescence analysis, Geochim. Cosmochim. Ac., 65, 1481–1498, https://doi.org/10.1016/S0016-7037(01)00550-6, 2001.
Koyaguchi, T.: Chemical gradient at diffusive interfaces in magma chambers, Contrib. Miner. Petrol., 103, 143–152, https://doi.org/10.1007/BF00378500, 1989.
Le Losq, C., Neuville, D., Florian, P., Henderson, G., and Massiot, D.: The role of Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts, Geochim. Cosmochim. Ac., 126, 495–517, https://doi.org/10.1016/j.gca.2013.11.010, 2014.
Le Losq, C., Neuville, D. R., Chen, W., Florian, P., Massiot, D., Zhou, Z., and Greaves, G. N.: Percolation channels: a universal idea to describe the atomic structure and dynamics of glasses and melts, Sci. Rep., 7, 16490, https://doi.org/10.1038/s41598-017-16741-3, 2017.
Le Losq, C., Cicconi, M. R., and Neuville, D. R.: Iron in Silicate Glasses and Melts, in: Magma Redox Geochemistry, American Geophysical Union (AGU), 233–253, https://doi.org/10.1002/9781119473206.ch12, 2021a.
Le Losq, C., Valentine, A. P., Mysen, B. O., and Neuville, D. R.: Structure and properties of alkali aluminosilicate glasses and melts: Insights from deep learning, Geochim. Cosmochim. Ac., 314, 27–54, https://doi.org/10.1016/j.gca.2021.08.023, 2021b.
Lesne, P., Scaillet, B., Pichavant, M., Iacono-Marziano, G., and Beny, J.-M.: The H2O solubility of alkali basaltic melts: an experimental study, Contrib. Miner. Petrol., 162, 133–151, https://doi.org/10.1007/s00410-010-0588-x, 2011.
Liang, Y.: Multicomponent Diffusion in Molten Silicates: Theory, Experiments, and Geological Applications, Rev. Mineral. Geochem., 72, 409–446, https://doi.org/10.2138/rmg.2010.72.9, 2010.
Lundstrom, C. C.: An experimental investigation of the diffusive infiltration of alkalis into partially molten peridotite: Implications for mantle melting processes, Geochem. Geophy. Geosy., 4, 8614, https://doi.org/10.1029/2001GC000224, 2003.
Mangler, M. F., Humphreys, M. C. S., Geifman, E., Iveson, A. A., Wadsworth, F. B., Brooker, R. A., Lindoo, A., and Hammond, K.: Melt Diffusion-Moderated Crystal Growth and its Effect on Euhedral Crystal Shapes, J. Petrol., 64, egad054, https://doi.org/10.1093/petrology/egad054, 2023.
Martí, J., Zafrilla, S., Andújar, J., Jiménez-Mejías, M., Scaillet, B., Pedrazzi, D., Doronzo, D., and Scaillet, S.: Controls of magma chamber zonation on eruption dynamics and deposits stratigraphy: The case of El Palomar fallout succession (Tenerife, Canary Islands), J. Volcanol. Geoth. Res., 399, 106908, https://doi.org/10.1016/j.jvolgeores.2020.106908, 2020.
Marxer, F. and Ulmer, P.: Crystallisation and zircon saturation of calc-alkaline tonalite from the Adamello Batholith at upper crustal conditions: an experimental study, Contrib. Miner. Petrol., 174, 84, https://doi.org/10.1007/s00410-019-1619-x, 2019.
Moretti, R. and Ottonello, G.: Silicate Melt Thermochemistry and the Redox State of Magmas, Rev. Mineral. Geochem., 87, 339–403, https://doi.org/10.1515/9781501510939-009, 2022.
Morgavi, D., Perugini, D., De Campos, C. P., Ertl-Ingrisch, W., Lavallée, Y., Morgan, L., and Dingwell, D. B.: Interactions between rhyolitic and basaltic melts unraveled by chaotic mixing experiments, Chem. Geol., 346, 199–212, https://doi.org/10.1016/j.chemgeo.2012.10.003, 2013.
Mysen, B. O., Virgo, D., and Kushiro, I.: The structural role of aluminum in silicate melts–a Raman spectroscopic study at 1 atmosphere, Am. Mineral., 66, 678–701, 1981.
Nowak, M. and Behrens, H.: An experimental investigation on diffusion of water in haplogranitic melts, Contrib. Mineral. Petrol., 126, 365–376, https://doi.org/10.1007/s004100050256, 1997.
Oliphant, T. E.: Python for Scientific Computing, Comput. Sci. Eng., 9, 10–20, https://doi.org/10.1109/MCSE.2007.58, 2007.
Pankhurst, M. J., Scarrow, J. H., Barbee, O. A., Hickey, J., Coldwell, B. C., Rollinson, G. K., Rodríguez-Losada, J. A., Lorenzo, A. M., Rodríguez, F., Hernández, W., Fernández, D. C., Hernández, P. A., and Pérez, N. M.: Rapid response petrology for the opening eruptive phase of the 2021 Cumbre Vieja eruption, La Palma, Canary Islands, Volcanica, 5, 1–10, https://doi.org/10.30909/vol.05.01.0110, 2022.
Perugini, D., Poli, G., Petrelli, M., De Campos, C. P., and Dingwell, D. B.: Time-scales of recent Phlegrean Fields eruptions inferred from the application of a “diffusive fractionation” model of trace elements, B. Volcanol., 72, 431–447, https://doi.org/10.1007/s00445-009-0329-z, 2010.
Perugini, D., De Campos, C. P., Dingwell, D. B., and Dorfman, A.: Relaxation of concentration variance: A new tool to measure chemical element mobility during mixing of magmas, Chem. Geol., 335, 8–23, https://doi.org/10.1016/j.chemgeo.2012.10.050, 2013.
Perugini, D., De Campos, C. P., Petrelli, M., and Dingwell, D. B.: Concentration variance decay during magma mixing: a volcanic chronometer, Sci. Rep., 5, 14225, https://doi.org/10.1038/srep14225, 2015.
Romano, C., Giordano, D., Papale, P., Mincione, V., Dingwell, D. B., and Rosi, M.: The dry and hydrous viscosities of alkaline melts from Vesuvius and Phlegrean Fields, Chem. Geol., 202, 23–38, https://doi.org/10.1016/S0009-2541(03)00208-0, 2003.
Sauer, F. and Freise, V.: Diffusion in binären Gemischen mit Volumenänderung, Z. Elektrochem., 66, 353–362, 1962.
Schuessler, J. A., Botcharnikov, R. E., Behrens, H., Misiti, V., and Freda, C.: Oxidation state of iron in hydrous phono-tephritic melts, Am. Mineral., 93, 1493–1504, https://doi.org/10.2138/am.2008.2795, 2008.
Shamloo, H. I. and Grunder, A. L.: Magma mingling and ascent in the minutes to hours before an explosive eruption as recorded by banded pumice, Geology, 51, 957–961, https://doi.org/10.1130/G51318.1, 2023.
Sliwinski, J. T., Bachmann, O., Ellis, B. S., Dávila-Harris, P., Nelson, B. K., and Dufek, J.: Eruption of Shallow Crystal Cumulates during Explosive Phonolitic Eruptions on Tenerife, Canary Islands, J. Petrol., 56, 2173–2194, https://doi.org/10.1093/petrology/egv068, 2015.
Spallanzani, R., Koga, K. T., Cichy, S. B., Wiedenbeck, M., Schmidt, B. C., Oelze, M., and Wilke, M.: Lithium and boron diffusivity and isotopic fractionation in hydrated rhyolitic melts, Contrib. Miner. Petrol., 177, 74, https://doi.org/10.1007/s00410-022-01937-2, 2022.
Stebbins, J. F., Dubinsky, E. V., Kanehashi, K., and Kelsey, K. E.: Temperature effects on non-bridging oxygen and aluminum coordination number in calcium aluminosilicate glasses and melts, Geochim. Cosmochim. Ac., 72, 910–925, https://doi.org/10.1016/j.gca.2007.11.018, 2008.
Stolper, E.: Water in silicate glasses: An infrared spectroscopic study, Contrib. Miner. Petrol., 81, 1–17, https://doi.org/10.1007/BF00371154, 1982.
Taylor, J. R., Wall, V. J., and Pownceby, M. I.: The calibration and application of accurate redox sensors, Am. Mineral., 77, 284–295, 1992.
Tomlinson, E. L., Smith, V. C., and Menzies, M. A.: Chemical zoning and open system processes in the Laacher See magmatic system, Contrib. Miner. Petrol., 175, 19, https://doi.org/10.1007/s00410-020-1657-4, 2020.
Vetere, F., Botcharnikov, R. E., Holtz, F., Behrens, H., and De Rosa, R.: Solubility of H2O and CO2 in shoshonitic melts at 1250 °C and pressures from 50 to 400 MPa: Implications for Campi Flegrei magmatic systems, J. Volcanol. Geoth. Res., 202, 251–261, https://doi.org/10.1016/j.jvolgeores.2011.03.002, 2011.
Watson, E. B.: Diffusion in magmas at depth in the Earth: The effects of pressure and dissolved H2O, Earth Planet. Sc. Lett., 52, 291–301, https://doi.org/10.1016/0012-821X(81)90184-9, 1981.
Watson, E. B.: Diffusion in Volatile-bearing Magmas, Rev. Mineral. Geochem., 30, 371-411, https://doi.org/10.1515/9781501509674-016, 1994.
Wolff, J. A.: Zonation, mixing and eruption of silica-undersaturated alkaline magma: a case study from Tenerife, Canary Islands, Geol. Mag., 122, 623–640, https://doi.org/10.1017/S0016756800032039, 1985.
Zhang, Y. and Behrens, H.: H2O diffusion in rhyolitic melts and glasses, Chem. Geol., 169, 243–262, https://doi.org/10.1016/S0009-2541(99)00231-4, 2000.
Zhang, Y. and Gan, T.: Diffusion in Melts and Magmas, Rev. Mineral. Geochem., 87, 283–337, https://doi.org/10.2138/rmg.2022.87.07, 2022.
Zhang, Y., Walker, D., and Lesher, C. E.: Diffusive crystal dissolution, Contr. Miner. Petrol., 102, 492–513, https://doi.org/10.1007/BF00371090, 1989.
Zhang, Y., Ni, H., and Chen, Y.: Diffusion Data in Silicate Melts, Rev. Mineral. Geochem., 72, 311–408, https://doi.org/10.2138/rmg.2010.72.8, 2010.
Short summary
We studied the exchange of chemical elements by diffusion between magmas of tephritic and phonolitic composition from the Canary Islands, performing experiments at high pressure and high temperature with different amounts of added water. Our results characterize the way water and temperature affect the diffusion process, and we also find unexpectedly high mobility of aluminium, which may be related to its variable chemical bonding in highly alkaline melts.
We studied the exchange of chemical elements by diffusion between magmas of tephritic and...
Special issue