Articles | Volume 35, issue 3
https://doi.org/10.5194/ejm-35-361-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/ejm-35-361-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
In situ single-crystal X-ray diffraction of olivine inclusion in diamond from Shandong, China: implications for the depth of diamond formation
Yanjuan Wang
Department of Geosciences, University of Padua, Padua, 35131, Italy
School of Earth Sciences and Resources, China University of
Geosciences, Beijing, 100083, China
Fabrizio Nestola
CORRESPONDING AUTHOR
Department of Geosciences, University of Padua, Padua, 35131, Italy
Huaikun Li
Tianjin Center, China Geological Survey, Tianjin, 300171, China
Zengqian Hou
School of Earth Sciences and Resources, China University of
Geosciences, Beijing, 100083, China
Martha G. Pamato
Department of Geosciences, University of Padua, Padua, 35131, Italy
Davide Novella
Department of Geosciences, University of Padua, Padua, 35131, Italy
Alessandra Lorenzetti
Department of Industrial Engineering, University of Padua, Padua,
35131, Italy
Pia Antonietta Antignani
Italian Gemmology Laboratory, LabiGem, Vicenza, 36100, Italy
Paolo Cornale
Italian Gemmology Laboratory, LabiGem, Vicenza, 36100, Italy
Jacopo Nava
Department of Geosciences, University of Padua, Padua, 35131, Italy
Guochen Dong
School of Earth Sciences and Resources, China University of
Geosciences, Beijing, 100083, China
Tianjin Center, China Geological Survey, Tianjin, 300171, China
School of Earth Sciences and Engineering, Nanjing University, Nanjing,
210023, China
Related authors
Kai Qu, Xianzhang Sima, Xiangping Gu, Weizhi Sun, Guang Fan, Zeqiang Yang, and Yanjuan Wang
Eur. J. Mineral., 36, 397–409, https://doi.org/10.5194/ejm-36-397-2024, https://doi.org/10.5194/ejm-36-397-2024, 2024
Short summary
Short summary
In this paper, the full description of the extremely rare [Ag6]4+-cluster-containing new tetrahedrite-group mineral kenoargentotetrahedrite-(Zn) is reported. The structure refinement result confirms the coupling between the site occupancy factor of subvalent hexasilver clusters at the M(2) site and that of the vacancy at the S(2) site. This relationship further substantiates the charge balance substitution mechanism of S-deficiency tetrahedrites: 6M(2)Ag+ + S(2)S2– = M(2)[Ag6]4+ + S(2)□.
Yanjuan Wang, Fabrizio Nestola, Zengqian Hou, Xiangping Gu, Guochen Dong, Zhusen Yang, Guang Fan, Zhibin Xiao, and Kai Qu
Eur. J. Mineral., 35, 65–74, https://doi.org/10.5194/ejm-35-65-2023, https://doi.org/10.5194/ejm-35-65-2023, 2023
Short summary
Short summary
Bobtraillite is an extremely rare cyclosilicate with a unique composition and complex structure. In this paper, we describe the second occurrence of the extremely rare complex zirconium silicate. The results suggest that the ideal formula of bobtraillite could be written as (Na, □)12(□, Na)12Sr12Zr14(Si3O9)10[Si2BO7(OH)2]6·12H2O.
Tonči Balić-Žunić, Anna Garavelli, Donatella Mitolo, Fabrizio Nestola, Martha Giovanna Pamato, Maja Bar Rasmussen, and Morten Bjerkvig Jølnæs
Eur. J. Mineral., 37, 79–89, https://doi.org/10.5194/ejm-37-79-2025, https://doi.org/10.5194/ejm-37-79-2025, 2025
Short summary
Short summary
Heimaeyite (Na3Al(SO4)3) has been found in fumaroles on Eldfell volcano, which lies on the island of Heimaey, Iceland. Its crystal structure contains Al–sulfate chains and belongs to a known structure type that also comprises K–Nb, K–Ta, Na–V, and Na–Fe representatives. We registered small Fe–Al substitution in heimaeyite, which might indicate a solid solution between Na–Al and Na–Fe compounds. We investigated the specimen with electron microscopy, an electron microprobe, and X-ray diffraction.
Cristian Biagioni, Anatoly V. Kasatkin, Fabrizio Nestola, Radek Škoda, Vladislav V. Gurzhiy, Atali A. Agakhanov, and Natalia N. Koshlyakova
Eur. J. Mineral., 36, 529–540, https://doi.org/10.5194/ejm-36-529-2024, https://doi.org/10.5194/ejm-36-529-2024, 2024
Short summary
Short summary
Zvěstovite-(Fe) is a new, Ag-rich, member of the tetrahedrite group, the most widespread sulfosalts in ore deposits. Its discovery stresses the chemical variability of this mineral group, allowing for a better understanding of the structural plasticity of these compounds, which are able to host a plethora of different elements typical of hydrothermal environments.
Kai Qu, Xianzhang Sima, Xiangping Gu, Weizhi Sun, Guang Fan, Zeqiang Yang, and Yanjuan Wang
Eur. J. Mineral., 36, 397–409, https://doi.org/10.5194/ejm-36-397-2024, https://doi.org/10.5194/ejm-36-397-2024, 2024
Short summary
Short summary
In this paper, the full description of the extremely rare [Ag6]4+-cluster-containing new tetrahedrite-group mineral kenoargentotetrahedrite-(Zn) is reported. The structure refinement result confirms the coupling between the site occupancy factor of subvalent hexasilver clusters at the M(2) site and that of the vacancy at the S(2) site. This relationship further substantiates the charge balance substitution mechanism of S-deficiency tetrahedrites: 6M(2)Ag+ + S(2)S2– = M(2)[Ag6]4+ + S(2)□.
Daniel Atencio, Andrezza A. Azzi, Kai Qu, Ritsuro Miyawaki, Ferdinando Bosi, and Koichi Momma
Eur. J. Mineral., 35, 1027–1030, https://doi.org/10.5194/ejm-35-1027-2023, https://doi.org/10.5194/ejm-35-1027-2023, 2023
Short summary
Short summary
This article introduces a new nomenclature system for the cerite group minerals. This system was necessary to allow the nomenclature of new species of minerals that are currently being described.
Jiří Sejkora, Cristian Biagioni, Pavel Škácha, Silvia Musetti, Anatoly V. Kasatkin, and Fabrizio Nestola
Eur. J. Mineral., 35, 897–907, https://doi.org/10.5194/ejm-35-897-2023, https://doi.org/10.5194/ejm-35-897-2023, 2023
Short summary
Short summary
We present the description of new mineral – a Cd-dominant member of the tetrahedrite group, tetrahedrite-(Cd), from the Radětice deposit near Příbram, Czech Republic. All necessary data including crystal structure were successfully determined, and the mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (number 2022-115).
Ross J. Angel, Mattia L. Mazzucchelli, Kira A. Musiyachenko, Fabrizio Nestola, and Matteo Alvaro
Eur. J. Mineral., 35, 461–478, https://doi.org/10.5194/ejm-35-461-2023, https://doi.org/10.5194/ejm-35-461-2023, 2023
Short summary
Short summary
We have developed the thermodynamic theory of the properties of inclusions consisting of more than one phase, including inclusions containing solids plus a fluid. We present a software utility that enables for the first time the entrapment conditions of multiphase inclusions to be determined from the measurement of their internal pressure when that is measured in a laboratory.
Yanjuan Wang, Fabrizio Nestola, Zengqian Hou, Xiangping Gu, Guochen Dong, Zhusen Yang, Guang Fan, Zhibin Xiao, and Kai Qu
Eur. J. Mineral., 35, 65–74, https://doi.org/10.5194/ejm-35-65-2023, https://doi.org/10.5194/ejm-35-65-2023, 2023
Short summary
Short summary
Bobtraillite is an extremely rare cyclosilicate with a unique composition and complex structure. In this paper, we describe the second occurrence of the extremely rare complex zirconium silicate. The results suggest that the ideal formula of bobtraillite could be written as (Na, □)12(□, Na)12Sr12Zr14(Si3O9)10[Si2BO7(OH)2]6·12H2O.
Luca Faccincani, Valerio Cerantola, Fabrizio Nestola, Paolo Nimis, Luca Ziberna, Leonardo Pasqualetto, Aleksandr I. Chumakov, Jeffrey W. Harris, and Massimo Coltorti
Eur. J. Mineral., 34, 549–561, https://doi.org/10.5194/ejm-34-549-2022, https://doi.org/10.5194/ejm-34-549-2022, 2022
Short summary
Short summary
We determined the physical conditions at the time of its entrapment for an inclusion pair hosted in a Siberian diamond (Udachnaya kimberlite) and found that it equilibrated under relatively oxidized conditions, near the enstatite–magnesite–olivine–diamond (EMOD) buffer, similarly to Udachnaya xenoliths originating from comparable depths. These results can be reconciled with models suggesting relatively oxidized, water-rich CHO fluids as the most likely parents for lithospheric diamonds.
Cited articles
Angel, R. J. and Nestola, F.: A century of mineral structures: How well do
we know them?, Am. Mineral., 101, 1036–1045, 2016.
Angel, R. J., Mazzucchelli, M. L., Alvaro, M., Nimis, P., and Nestola, F.:
Geobarometry from host-inclusion systems: The role of elastic relaxation,
Am. Mineral., 99, 2146–2149, 2014.
Angel, R. J., Alvaro, M., Nestola, F., and Mazzucchelli, M. L.: Diamond
thermoelastic properties and implications for determining the pressure of
formation of diamond-inclusion systems, Russ. Geol. Geophys., 56, 211–220,
2015.
Angel, R. J., Mazzucchelli, M. L., Alvaro, M., and Nestola, F.: EosFit-Pinc:
A simple GUI for host–inclusion elastic thermobarometry, Am. Mineral., 102,
1957–1960, 2017.
Angel, R. J., Alvaro, M., and Nestola, F.: 40 years of mineral elasticity: a
critical review and a new parameterisation of equations of state for mantle
olivines and diamond inclusions, Phys. Chem. Miner., 45, 95–113, 2018a.
Angel, R. J., Murri, M., Mihailova, B., and Alvaro, M.: Stress, strain and
Raman shifts, Z. Kristallogr. Cryst. Mater., 234, 129–140, 2018b.
Angel, R. J., Alvaro, M., and Nestola, F.: Crystallographic methods for
non-destructive characterization of mineral inclusions in diamonds, Rev.
Mineral. Geochem., 88, 257–305, 2022.
Angel, R. J., Mazzucchelli, M., Kira, A. Musiyachenko, K. A., Nestola, F.,
and Alvaro, M.: Elasticity of mixtures and implications for piezobarometry
of mixed-phase inclusions, Eur. J. Mineral., in press, 2023.
Boyd, S. R., Kiflawi, I., and Woods, G. S.: The relationship between
infrared absorption and the A defect concentration in diamond, Philos. Mag.,
69, 1149–1153, 1994.
Boyd, S. R., Kiflawi, I., and Woods, G. S.: Infrared absorption by the B
nitrogen aggregate in diamond, Philos. Mag., 72, 351–361, 1995.
Breeding, C. M. and Shigley, J. E.: The “type” classification system of
diamonds and its importance in gemology, Gems. Gemol., 45, 96–111, 2009.
Bussweiler, Y., Brey, G. P., Pearson, D. G., Stachel, T., Stern, R. A.,
Hardman, M. F., Kjarsgaard B. A., and Jackson, S. E.: The
aluminum-in-olivine thermometer for mantle peridotites – Experimental versus
empirical calibration and potential applications, Lithos, 272, 301–314,
2017.
Chi, J. S. and Lu, F. X.: Kimberlite and Palaeozoic Lithospheric mantle in
North China Platform, Beijing, Science Press, ISBN: 7-03-005189-0, 1996.
Chrenko, R. M., Tuft, R. E., and Strong, H. M.: Transformation of the state
of nitrogen in diamond, Nature, 270, 141–144, 1977.
Day, H. W.: A revised diamond-graphite transition curve, Am. Mineral., 97,
52–62, 2012.
Faccincani, L., Cerantola, V., Nestola, F., Nimis, P., Ziberna, L., Pasqualetto, L., Chumakov, A. I., Harris, J. W., and Coltorti, M.: Relatively oxidized conditions for diamond formation at Udachnaya (Siberia), Eur. J. Mineral., 34, 549–561, https://doi.org/10.5194/ejm-34-549-2022, 2022.
Farrugia, L. J.: WinGX and ORTEP for Windows: an update, J. Appl.
Crystallogr., 45, 849–854, 2012.
Gonzalez-Platas, J., Alvaro, M., Nestola, F., and Angel, R. J.: EosFit7-GUI:
A new GUI tool for equation of state calculations, analyses and teaching, J.
Appl. Crystallogr., 49, 1377–1382, 2016.
Griffin, W. L., Zhang, A., O'Reilly, S. Y., and Ryan, C. G.: Phanerozoic
evolution of the lithosphere beneath the Sino-Korean craton, in: Mantle dynamics and plate
interactions in eastern Asia, edited by: Flower, M.,
Chung, S. L., Lo, C. H., and Lee, Y. Y., Washington, DC, American Geophysical Union,
Geodynamics Series, 27, 107–126, ISBN: 0875905293, 1998.
Hasterok, D. and Chapman, D. S.: Heat production and geotherms for the
continental lithosphere, Earth Planet. Sc. Lett., 307, 59–70, 2011.
Howell, D., Wood, I. G., Nestola, F., Nimis, P., and Nasdala, L.: Inclusions
under remnant pressure in diamond: a multi-technique approach, Eur. J.
Mineral., 24, 563–573, 2012.
Izraeli, E. S., Harris, J. W., and Navon, O.: Raman barometry of diamond
formation, Earth Planet. Sc. Lett., 173, 351–360, 1999.
Karaevangelou, M., Kopylova, M. G., Luo, Y., Pearson, D. G., Reutsky, V. N.,
and Loudon, P.: Mineral inclusions in Lace diamonds and the mantle beneath
the Kroonstad kimberlite cluster in South Africa, Contrib. Mineral. Petrol.,
177, 20, https://doi.org/10.1007/s00410-021-01880-8, 2022.
Korolev, N., Kopylova, M., Gurney, J. J., Moore, A. E., and Davidson, J.:
The origin of Type II diamonds as inferred from Cullinan mineral inclusions,
Miner. Petrol., 112, 275–289, 2018.
Leahy, K. and Taylor, W. R.: The influence of the Glennie domain deep structure on the diamonds in Saskatchewan kimberlites, Geol. Geofiz., 38, 451–460, 1997.
Li, Q. L., Wu, F. Y., Li, X. H., Qiu, Z. L., Liu, Y., Yang, Y. H., and Tang,
G. Q.: Precisely dating Paleozoic kimberlites in the North China Craton and
Hf isotopic constraints on the evolution of the subcontinental lithospheric
mantle, Lithos, 126, 127–134, 2011.
Liu, D. Y., Nutman, A. P., Compston, W., Wu, J. S., and Shen, Q. H.:
Remnants of ≥ 3800 Ma crust in the Chinese part of the Sino-Korean
Craton, Geology, 20, 339–342, 1992.
Mazzucchelli, M. L., Burnley, P., Angel, R. J., Morganti, S., Domeneghetti,
M. C., Nestola, F., and Alvaro, M.: Elastic geothermobarometry: Corrections
for the geometry of the host-inclusion system, Geology, 46, 231–234, 2018.
Mazzucchelli, M. L., Angel, R. J., and Alvaro, M.: EntraPT: an online
platform for elastic geothermobarometry, Am. Mineral., 106, 830–837, 2021.
Nestola, F., Nimis, P., Ziberna, L., Longo, M., Marzoli, A., Harris, J. W.,
Manghnani, M. H., and Fedortchouk, Y.: First crystal-structure determination
of olivine in diamond: Composition and implications for provenance in the
Earth's mantle, Earth Planet. Sc. Lett., 305, 249–255, 2011a.
Nestola, F., Pasqual, D., Smyth, J. R., Novella, D., Secco, L., Manghnani,
M. H., and Dal Negro, A.: New accurate elastic parameters for the
forsterite-fayalite solid solution, Am. Mineral., 96, 1742–1747, 2011b.
Nestola, F., Prencipe, M., Nimis, P., Sgreva, N., Perritt, S. H., Chinn, I.
L., and Zaffiro, G.: Toward a robust elastic geobarometry of kyanite
inclusions in eclogitic diamonds, J. Geophys. Res.-Sol. Ea., 123,
6411–6423, 2018.
Nestola, F., Zaffiro, G., Mazzucchelli, M. L., Nimis, P., Andreozzi, G. B.,
Periotto, B., Princivalle, F., Lenaz, D., Secco, L., Pasqualetto, L.,
Logvinova, A. M., Sobolev, N. V., Lorenzetti, A., and Harris, J. W.:
Diamond-inclusion system recording old deep lithosphere conditions at
Udachnaya (Siberia), Sci. Rep., 9, 1–8, 2019.
Ni, P. and Zhu, R. Z.: Evaluating the diamond potential of kimberlite-hosted
diamond deposits from the North China Craton, Acta Geol. Sin., 94,
2557–2573, 2020.
Nimis, P.: Pressure and temperature data for diamonds, in: Reviews in
Mineralogy and Geochemistry, edited by: Smit, K., Shirey, S., Pearson, G., Stachel,
T., Nestola, F., and Moses, T., Min. Soc. Am. And Geochem. Soc.,
Washington, 88, 533–566, 2022.
Nimis, P. and Taylor, W. R.: Single clinopyroxene thermobarometry for garnet
peridotites, Part I. Calibration and testing of a Cr-in-Cpx barometer and an
enstatite-in-Cpx thermometer, Contrib. Mineral. Petrol., 139, 541–554,
2000.
Nimis, P., Alvaro, M., Nestola, F., Angel, R. J., Marquardt, K., Rustioni,
G., and Harris, J. W.: First evidence of hydrous silicic fluid films around
solid inclusions in gem-quality diamonds, Lithos, 260, 384–389, 2016.
Nimis, P., Perritt S. H., and Ingrid C.: Diamond's depth distribution
systematics, Lithos, 376/377, 105729, https://doi.org/10.1016/j.lithos.2020.105729, 2020.
Poe, B. T., Romano, C., Nestola, F., and Smyth, J. R.: Electrical
conductivity anisotropy of dry and hydrous olivine at 8 GPa, Phys. Earth
Planet. Inter., 181, 103–111, 2010.
Rigaku Oxford Diffraction.: CrysAlisPro Software system, version 42.23a,
Rigaku Corporation, https://www.rigaku.com/products/crystallography/crysalis (last access: 30 May 2023), 2021.
Sheldrick, G. M.: SHELXT–Integrated space-group and crystal structure
determination, Ac. Crystallogr. C, 71, 3–8, 2015.
Smit, K. V., Timmerman, S., Aulbach, S., Shirey, S. B., Richardson, S. H.,
Phillips, D., and Pearson, D. G.: Geochronology of diamonds, Rev. Mineral.
Geochem., 88, 567–636, 2022.
Stachel, T., Harris, J. W.: The origin of cratonic diamonds-Constraints from
mineral inclusions, Ore Geol. Rev., 34, 5–32, 2008.
Stachel, T., Aulbach, S., and Harris, J. W.: Mineral inclusions in
lithospheric diamonds, Rev. Mineral. Geochem., 88, 307–392, 2022.
Taylor, W. R., Jaques, A. L., and Ridd, M.: Nitrogen-defect aggregation
characteristics of some Australasian diamonds; time-temperature constraints
on the source regions of pipe and alluvial diamonds, Am. Mineral., 75,
1290–1310, 1990.
Wilson, A. J. C.: International Tables for
Crystallography, edited by: Wilson, A. J. C., Kluwer Academic Publishers, Dordrecht, Vol. C, ISBN: 0792329503, 1995.
Wu, F. Y., Walker, R. J., Ren, X. W., Sun, D. Y., and Zhou, X. H.: Osmium
isotopic constraints on the age of lithospheric mantle beneath northeastern
China, Chem. Geol., 197, 107–129, 2003.
Wu, F. Y., Zhao, G. C., Wilde, S. A., and Sun, D. Y.: Nd Isotopic
constraints on the crustal formation of the North China Craton, Asian J.
Earth Sci., 24, 523–545, 2005.
Wu, F. Y., Zhang, Y. B., Yang, J. H., Xie, L. W., and Yang, Y. H.: Zircon
U–Pb and Hf isotopic constraints on the Early Archean crustal evolution of
the North China Craton, Precambrian Res., 167, 339–362, 2008.
Wu, G. C., Yu, X. Y., Liu, F., Li, H. B., Long, Z. Y., and Wang, H.: Color
Genesis of Brown Diamond from the Mengyin Kimberlite, China, Crystals, 12,
449, https://doi.org/10.3390/cryst12040449, 2022.
Yang, Y. H., Wu, F. Y., Wilde, S. A., Liu, X. M., Zhang, Y. B., Xie, L. W.,
and Yang, J. H.: In situ perovskite Sr–Nd isotopic constraints on the
petrogenesis of the Ordovician Mengyin kimberlites in the North China
Craton, Chem. Geol., 264, 24–42, 2009.
Yin, L., Zhang, R. S., and Zheng, J. P.: Mineral chemistry characters of
diamond inclusions and the nature of the lithospheric mantle beneath the
eastern North China Craton, Geo. Sci. Tech. Info., 25, 21–28, 2008 (in
Chinese with English abstract).
Yin, Z. W., Lu, F. X., Chen, M. H., and Xu, H. Y.: Ages and environments of
formation of diamonds in Mengyin County, Shandong Province, Earth Sci.
Front., 12, 614–621, 2005 (in Chinese with English abstract).
Yin, Z. W., Jiang, C., Chen, M. H., Lu, F. X., and Chen, Q.: Inclusions of
α-quartz, albite and olivine in a mantle diamond, Gondwana Res., 44,
228–235, 2017.
Zhang, H. F., Goldstein, S. L., Zhou, X. H., Sun, M., Zheng, J. P., and Cai,
Y.: Evolution of subcontinental lithospheric mantle beneath eastern China:
Re–Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and
Mesozoic basalts, Contrib. Mineral. Petrol., 155, 271–293, 2008.
Zhao, G. C., Sun, M., Wilde, S. A., and Li, S. Z.: Late Archean to
Paleoproterozoic evolution of the North China Craton: key issues revisited,
Precambrian Res., 136, 177–202, 2005.
Zheng, J., Griffin, W. L., O'Reilly, S. Y., Liou, J. G., Zhang, R. Y., and
Fengxiang, L.: Late Mesozoic-Eocene mantle replacement beneath the Eastern
North China craton: evidence from the Paleozoic and Cenozoic peridotite
xenoliths, Int. Geol. Rev., 47, 457–472, 2005.
Zheng, J., Griffin, W. L., O'Reilly, S. Y., Yang, J. S, Li, T. F, Zhang, M.,
Zhang, R. Y., and Liou, J. G.: Mineral chemistry of peridotites from
Paleozoic, Mesozoic and Cenozoic lithosphere: constraints on mantle
evolution beneath eastern China, J. Petrol., 47, 2233–2256, 2006.
Zhu, R. Z., Ni, P., Wang, G. G., Ding, J. Y., and Kang, N.: Temperature and
oxygen state of kimberlite magma from the North China Craton and their
implication for diamond survival, Miner. Deposita, 57, 301–318, 2022.
Short summary
In this work we have applied the elastic geobarometry approach to a Chinese diamond in order to determine the depth of formation of an olivine-bearing diamond. Together with the temperature of residence at which the diamond resided in the mantle, we were able to discover that the diamond was formed at about 190 km depth. Beyond the geological meaning of our results, this work could be a reference paper for future works on Chinese diamonds using elastic geobarometry.
In this work we have applied the elastic geobarometry approach to a Chinese diamond in order to...