Articles | Volume 34, issue 5
https://doi.org/10.5194/ejm-34-411-2022
https://doi.org/10.5194/ejm-34-411-2022
Research article
 | 
06 Oct 2022
Research article |  | 06 Oct 2022

Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9 GPa – a proxy for melting of carbonated mantle lithologies

Melanie J. Sieber, Max Wilke, Oona Appelt, Marcus Oelze, and Monika Koch-Müller

Related authors

Confocal μ-XANES as a tool to analyze Fe oxidation state in heterogeneous samples: the case of melt inclusions in olivine from the Hekla volcano
Roman Botcharnikov, Max Wilke, Jan Garrevoet, Maxim Portnyagin, Kevin Klimm, Stephan Buhre, Stepan Krasheninnikov, Renat Almeev, Severine Moune, and Gerald Falkenberg
Eur. J. Mineral., 36, 195–208, https://doi.org/10.5194/ejm-36-195-2024,https://doi.org/10.5194/ejm-36-195-2024, 2024
Short summary
In situ study of the reaction phase A plus high-P clinoenstatite to forsterite plus water at reduced water activity
Christian Lathe, Monika Koch-Müller, Bernd Wunder, Oona Appelt, Melanie Sieber, Shrikant Bhat, and Robert Farla
Eur. J. Mineral., 35, 1149–1157, https://doi.org/10.5194/ejm-35-1149-2023,https://doi.org/10.5194/ejm-35-1149-2023, 2023
Short summary
In situ reinvestigation of reaction phase A plus high-pressure clinoenstatite to forsterite plus water in the system MgO-SiO2-H2O (MSH)
Christian Lathe, Monika Koch-Müller, Bernd Wunder, Oona Appelt, Shrikant Bhat, and Robert Farla
Eur. J. Mineral., 34, 201–213, https://doi.org/10.5194/ejm-34-201-2022,https://doi.org/10.5194/ejm-34-201-2022, 2022
Short summary
New insights in the mechanisms of the reaction 3.65 Å phase  =  clinoenstatite + water down to nanoscales
Monika Koch-Müller, Oona Appelt, Bernd Wunder, and Richard Wirth
Eur. J. Mineral., 33, 675–686, https://doi.org/10.5194/ejm-33-675-2021,https://doi.org/10.5194/ejm-33-675-2021, 2021
Short summary
Equation of state and high-pressure phase behaviour of SrCO3
Nicole Biedermann, Elena Bykova, Wolfgang Morgenroth, Ilias Efthimiopoulos, Jan Mueller, Georg Spiekermann, Konstantin Glazyrin, Anna Pakhomova, Karen Appel, and Max Wilke
Eur. J. Mineral., 32, 575–586, https://doi.org/10.5194/ejm-32-575-2020,https://doi.org/10.5194/ejm-32-575-2020, 2020
Short summary

Related subject area

Experimental petrology
Li–Na interdiffusion and diffusion-driven lithium isotope fractionation in pegmatitic melts
Christian R. Singer, Harald Behrens, Ingo Horn, Martin Oeser, Ralf Dohmen, and Stefan Weyer
Eur. J. Mineral., 35, 1009–1026, https://doi.org/10.5194/ejm-35-1009-2023,https://doi.org/10.5194/ejm-35-1009-2023, 2023
Short summary
Depth profile analyses by femtosecond laser ablation (multicollector) inductively coupled plasma mass spectrometry for resolving chemical and isotopic gradients in minerals
Martin Oeser, Ingo Horn, Ralf Dohmen, and Stefan Weyer
Eur. J. Mineral., 35, 813–830, https://doi.org/10.5194/ejm-35-813-2023,https://doi.org/10.5194/ejm-35-813-2023, 2023
Short summary
A revised model for activity–composition relations in solid and molten FePt alloys and a preliminary model for characterization of oxygen fugacity in high-pressure experiments
Marc M. Hirschmann and Hongluo L. Zhang
Eur. J. Mineral., 35, 789–803, https://doi.org/10.5194/ejm-35-789-2023,https://doi.org/10.5194/ejm-35-789-2023, 2023
Short summary
Elasticity of mixtures and implications for piezobarometry of mixed-phase inclusions
Ross J. Angel, Mattia L. Mazzucchelli, Kira A. Musiyachenko, Fabrizio Nestola, and Matteo Alvaro
Eur. J. Mineral., 35, 461–478, https://doi.org/10.5194/ejm-35-461-2023,https://doi.org/10.5194/ejm-35-461-2023, 2023
Short summary
In situ single-crystal X-ray diffraction of olivine inclusion in diamond from Shandong, China: implications for the depth of diamond formation
Yanjuan Wang, Fabrizio Nestola, Huaikun Li, Zengqian Hou, Martha G. Pamato, Davide Novella, Alessandra Lorenzetti, Pia Antonietta Antignani, Paolo Cornale, Jacopo Nava, Guochen Dong, and Kai Qu
Eur. J. Mineral., 35, 361–372, https://doi.org/10.5194/ejm-35-361-2023,https://doi.org/10.5194/ejm-35-361-2023, 2023
Short summary

Cited articles

Barker, D. S.: Calculated silica activities in carbonatite liquids, Contrib. Mineral. Petr., 141, 704–709, https://doi.org/10.1007/s004100100281, 2001. 
Beattie, P.: Systematics and energetics of trace-element partitioning between olivine and silicate melts: Implications for the nature of mineral/melt partitioning, Chem. Geol., 117, 57–71, https://doi.org/10.1016/0009-2541(94)90121-x, 1994. 
Becker, M. and Le Roex, A. P. L.: Geochemistry of South African on-and off-craton, Group I and Group II kimberlites: petrogenesis and source region evolution, J. Petrol., 47, 673–703, https://doi.org/10.1093/petrology/egi089, 2006. 
Biedermann, N.: Carbonate-silicate reactions at conditions of the Earth's mantle and the role of carbonates as possible trace-element carriers, PhD thesis, 2020. 
Blundy, J. and Wood, B.: Partitioning of trace elements between crystals and melts, Earth Planet. Sci. Lett., 210, 383–397, https://doi.org/10.1016/s0012-821x(03)00129-8, 2003. 
Download
Short summary
Carbonates reduce the melting point of the mantle, and carbonate melts produced in low-degree melting of a carbonated mantle are considered the precursor of CO2-rich magmas. We established experimentally the melting relations of carbonates up to 9 GPa, showing that Mg-carbonates melt incongruently to periclase and carbonate melt. The trace element signature of carbonate melts parental to kimberlites is approached by melting of Mg-rich carbonates.