Articles | Volume 34, issue 5
https://doi.org/10.5194/ejm-34-411-2022
https://doi.org/10.5194/ejm-34-411-2022
Research article
 | 
06 Oct 2022
Research article |  | 06 Oct 2022

Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9 GPa – a proxy for melting of carbonated mantle lithologies

Melanie J. Sieber, Max Wilke, Oona Appelt, Marcus Oelze, and Monika Koch-Müller

Related authors

Fe3+∕ΣFe variation in lawsonite and epidote in subducted oceanic crust
Donna L. Whitney, Max Wilke, Sara E. Hanel, Florian Heidelbach, Olivier Mathon, and Angelika D. Rosa
Eur. J. Mineral., 37, 143–149, https://doi.org/10.5194/ejm-37-143-2025,https://doi.org/10.5194/ejm-37-143-2025, 2025
Short summary
Tungsten solubility and speciation in hydrothermal solutions revealed by in situ X-ray absorption spectroscopy
Manuela Borchert, Maria A. Kokh, Marion Louvel, Elena F. Bazarkina, Anselm Loges, Edmund Welter, Denis Testemale, Rami Al Abed, Stephan Klemme, and Max Wilke
Eur. J. Mineral., 37, 111–130, https://doi.org/10.5194/ejm-37-111-2025,https://doi.org/10.5194/ejm-37-111-2025, 2025
Short summary
The coesite–stishovite transition of hydrous, Al-bearing SiO2: an in situ synchrotron X-ray study
Monika Koch-Müller, Christian Lathe, Bernd Wunder, Oona Appelt, Shrikant Bhat, Andreas Ebert, Robert Farla, Vladimir Roddatis, Anja Schreiber, and Richard Wirth
Eur. J. Mineral., 36, 1023–1036, https://doi.org/10.5194/ejm-36-1023-2024,https://doi.org/10.5194/ejm-36-1023-2024, 2024
Short summary
Hydroxyl in eclogitic garnet, orthopyroxene and oriented inclusion-bearing clinopyroxene, W Norway
Dirk Spengler, Monika Koch-Müller, Adam Włodek, Simon J. Cuthbert, and Jarosław Majka
EGUsphere, https://doi.org/10.5194/egusphere-2024-2734,https://doi.org/10.5194/egusphere-2024-2734, 2024
Short summary
Confocal μ-XANES as a tool to analyze Fe oxidation state in heterogeneous samples: the case of melt inclusions in olivine from the Hekla volcano
Roman Botcharnikov, Max Wilke, Jan Garrevoet, Maxim Portnyagin, Kevin Klimm, Stephan Buhre, Stepan Krasheninnikov, Renat Almeev, Severine Moune, and Gerald Falkenberg
Eur. J. Mineral., 36, 195–208, https://doi.org/10.5194/ejm-36-195-2024,https://doi.org/10.5194/ejm-36-195-2024, 2024
Short summary

Related subject area

Experimental petrology
A reliable analytical procedure to determine the carbon isotopic signature of CO2-bearing COH fluids generated in petrological experiments
Luca Toffolo, Luca Minopoli, Elena Ferrari, and Simone Tumiati
Eur. J. Mineral., 37, 25–37, https://doi.org/10.5194/ejm-37-25-2025,https://doi.org/10.5194/ejm-37-25-2025, 2025
Short summary
Crystal structure and elastic properties of parabreyite: a new high-pressure ring silicate in the CaSiO3 system
Benedetta Chrappan Soldavini, Marco Merlini, Mauro Gemmi, Paola Parlanti, Patrizia Fumagalli, Sula Milani, Boby Joseph, Giorgio Bais, Maurizio Polentarutti, Alexander Kurnosov, and Stefano Poli
Eur. J. Mineral., 37, 13–24, https://doi.org/10.5194/ejm-37-13-2025,https://doi.org/10.5194/ejm-37-13-2025, 2025
Short summary
Li diffusion in plagioclase crystals and glasses – implications for timescales of geological processes
Florian Pohl, Harald Behrens, Martin Oeser, Felix Marxer, and Ralf Dohmen
Eur. J. Mineral., 36, 985–1003, https://doi.org/10.5194/ejm-36-985-2024,https://doi.org/10.5194/ejm-36-985-2024, 2024
Short summary
Experimental petrology constraints on kamafugitic magmas
Francesca Innocenzi, Isra S. Ezad, Sara Ronca, Samuele Agostini, Michele Lustrino, and Stephen F. Foley
Eur. J. Mineral., 36, 899–916, https://doi.org/10.5194/ejm-36-899-2024,https://doi.org/10.5194/ejm-36-899-2024, 2024
Short summary
Chrome incorporation in high-pressure Fe–Mg oxides
Alan B. Woodland, Katrin Schumann, Laura Uenver-Thiele, Kevin Rosbach, Tiziana Boffa Ballaran, Caterina Melai, and Elena Bykova
Eur. J. Mineral., 36, 845–862, https://doi.org/10.5194/ejm-36-845-2024,https://doi.org/10.5194/ejm-36-845-2024, 2024
Short summary

Cited articles

Barker, D. S.: Calculated silica activities in carbonatite liquids, Contrib. Mineral. Petr., 141, 704–709, https://doi.org/10.1007/s004100100281, 2001. 
Beattie, P.: Systematics and energetics of trace-element partitioning between olivine and silicate melts: Implications for the nature of mineral/melt partitioning, Chem. Geol., 117, 57–71, https://doi.org/10.1016/0009-2541(94)90121-x, 1994. 
Becker, M. and Le Roex, A. P. L.: Geochemistry of South African on-and off-craton, Group I and Group II kimberlites: petrogenesis and source region evolution, J. Petrol., 47, 673–703, https://doi.org/10.1093/petrology/egi089, 2006. 
Biedermann, N.: Carbonate-silicate reactions at conditions of the Earth's mantle and the role of carbonates as possible trace-element carriers, PhD thesis, 2020. 
Blundy, J. and Wood, B.: Partitioning of trace elements between crystals and melts, Earth Planet. Sci. Lett., 210, 383–397, https://doi.org/10.1016/s0012-821x(03)00129-8, 2003. 
Download
Short summary
Carbonates reduce the melting point of the mantle, and carbonate melts produced in low-degree melting of a carbonated mantle are considered the precursor of CO2-rich magmas. We established experimentally the melting relations of carbonates up to 9 GPa, showing that Mg-carbonates melt incongruently to periclase and carbonate melt. The trace element signature of carbonate melts parental to kimberlites is approached by melting of Mg-rich carbonates.
Share