Articles | Volume 34, issue 3
https://doi.org/10.5194/ejm-34-325-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-34-325-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-pressure homogenization of olivine-hosted CO2-rich melt inclusions in a piston cylinder: insight into the volatile content of primary mantle melts
Roxane Buso
CORRESPONDING AUTHOR
Laboratoire Magmas et Volcans, OPGC, Université Clermont-Auvergne, CNRS, IRD, 63000 Clermont-Ferrand, France
Didier Laporte
Laboratoire Magmas et Volcans, OPGC, Université Clermont-Auvergne, CNRS, IRD, 63000 Clermont-Ferrand, France
Federica Schiavi
Laboratoire Magmas et Volcans, OPGC, Université Clermont-Auvergne, CNRS, IRD, 63000 Clermont-Ferrand, France
Nicolas Cluzel
Laboratoire Magmas et Volcans, OPGC, Université Clermont-Auvergne, CNRS, IRD, 63000 Clermont-Ferrand, France
Claire Fonquernie
Laboratoire Magmas et Volcans, OPGC, Université Clermont-Auvergne, CNRS, IRD, 63000 Clermont-Ferrand, France
Related authors
No articles found.
Enrico Cannaò, Federica Schiavi, Giulia Casiraghi, Massimo Tiepolo, and Patrizia Fumagalli
Eur. J. Mineral., 34, 19–34, https://doi.org/10.5194/ejm-34-19-2022, https://doi.org/10.5194/ejm-34-19-2022, 2022
Short summary
Short summary
Detailed knowledge of the mechanisms ruling water incorporation in amphibole is essential to understand how much water can be fixed at upper-mantle conditions by this mineral. We provide the experimental evidence of the Cl effect on the oxo-substitution and the incorporation of water in amphibole. Finally, we highlight the versatility of confocal micro-Raman spectroscopy as an analytical tool to quantify water in amphibole.
Lucia Gurioli, Andrea Di Muro, Ivan Vlastélic, Séverine Moune, Simon Thivet, Marina Valer, Nicolas Villeneuve, Guillaume Boudoire, Aline Peltier, Patrick Bachèlery, Valérie Ferrazzini, Nicole Métrich, Mhammed Benbakkar, Nicolas Cluzel, Christophe Constantin, Jean-Luc Devidal, Claire Fonquernie, and Jean-Marc Hénot
Solid Earth, 9, 431–455, https://doi.org/10.5194/se-9-431-2018, https://doi.org/10.5194/se-9-431-2018, 2018
Short summary
Short summary
We prove here that macroscopic and microscopic studies of emitted pyroclastic and effusive products provide valuable information to track and understand small explosive eruptions for hazard and risk assessment. This is especially true for Piton de La Fournaise, La Réunion, whose activity has recently been characterized by effusive and mild explosive activity in highly visited areas. We confirm that petrological monitoring is essential to forecast changes in the magmatic system.
Related subject area
Experimental petrology
Re-equilibration of quartz inclusions in garnet
H2 mobility and redox control in open vs. closed hydrothermal oceanic systems – evidence from serpentinization experiments
A brief history of solid inclusion piezobarometry
Li–Na interdiffusion and diffusion-driven lithium isotope fractionation in pegmatitic melts
Depth profile analyses by femtosecond laser ablation (multicollector) inductively coupled plasma mass spectrometry for resolving chemical and isotopic gradients in minerals
A revised model for activity–composition relations in solid and molten FePt alloys and a preliminary model for characterization of oxygen fugacity in high-pressure experiments
Elasticity of mixtures and implications for piezobarometry of mixed-phase inclusions
In situ single-crystal X-ray diffraction of olivine inclusion in diamond from Shandong, China: implications for the depth of diamond formation
One-atmosphere high-temperature CO–CO2–SO2 gas-mixing furnace: design, operation, and applications
CO2 diffusion in dry and hydrous leucititic melt
Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9 GPa – a proxy for melting of carbonated mantle lithologies
Carbon-saturated COH fluids in the upper mantle: a review of high-pressure and high-temperature ex situ experiments
The influence of oxygen fugacity and chlorine on amphibole–liquid trace element partitioning at upper-mantle conditions
Effect of chlorine on water incorporation in magmatic amphibole: experimental constraints with a micro-Raman spectroscopy approach
A combined Fourier transform infrared and Cr K-edge X-ray absorption near-edge structure spectroscopy study of the substitution and diffusion of H in Cr-doped forsterite
Grain boundary diffusion and its relation to segregation of multiple elements in yttrium aluminum garnet
Melting relations of anhydrous olivine-free pyroxenite Px1 at 2 GPa
Breyite inclusions in diamond: experimental evidence for possible dual origin
Benjamin A. Pummell and Jay B. Thomas
Eur. J. Mineral., 36, 581–597, https://doi.org/10.5194/ejm-36-581-2024, https://doi.org/10.5194/ejm-36-581-2024, 2024
Short summary
Short summary
Mechanical interaction between quartz inclusions in garnet creates residual pressure in the inclusion used to calculate the pressure and temperature where the two minerals formed. We crystallised quartz and garnet at high pressure and temperature and then adjusted the experimental pressure to observe the interaction between the quartz inclusions and garnet host. The quartz and garnet adjust to the new experimental pressures, reset inclusion pressures, and no longer match entrapment conditions.
Colin Fauguerolles, Teddy Castelain, Johan Villeneuve, and Michel Pichavant
Eur. J. Mineral., 36, 555–579, https://doi.org/10.5194/ejm-36-555-2024, https://doi.org/10.5194/ejm-36-555-2024, 2024
Short summary
Short summary
To explore the influence of the redox state of the environment on the serpentinization reaction, we have developed an original experimental setup. Reducing conditions, leading to the formation of serpentine and magnetite, and oxidizing conditions, leading to the formation of serpentine and hematite, are discussed in terms of analogues of low- and high-permeability hydrothermal systems, respectively. The influence of the redox on brucite stability and hydrogen production is also established.
Ross J. Angel, Matteo Alvaro, and Silvio Ferrero
Eur. J. Mineral., 36, 411–415, https://doi.org/10.5194/ejm-36-411-2024, https://doi.org/10.5194/ejm-36-411-2024, 2024
Short summary
Short summary
Inclusions in natural rocks are an invaluable asset for geoscientists because they provide information about processes in the Earth's history that are otherwise hidden or subsequently overprinted. In this paper we review the development over the last 200 years of the concepts and methods to measure the remnant pressures in mineral inclusions and how they can be used to determine pressures and temperatures at which the inclusions were formed deep within the Earth.
Christian R. Singer, Harald Behrens, Ingo Horn, Martin Oeser, Ralf Dohmen, and Stefan Weyer
Eur. J. Mineral., 35, 1009–1026, https://doi.org/10.5194/ejm-35-1009-2023, https://doi.org/10.5194/ejm-35-1009-2023, 2023
Short summary
Short summary
Li is a critical element that is often enriched in pegmatites. To better understand the enrichment of Li in such systems, it is necessary to understand the underlying transport mechanisms. We performed experiments to investigate diffusion rates and exchange mechanisms of Li between a Li-rich and a Li-poor melt at high temperature and pressure. Our results indicate that fluxing elements do not increase the diffusivity of Li compared to a flux-free melt.
Martin Oeser, Ingo Horn, Ralf Dohmen, and Stefan Weyer
Eur. J. Mineral., 35, 813–830, https://doi.org/10.5194/ejm-35-813-2023, https://doi.org/10.5194/ejm-35-813-2023, 2023
Short summary
Short summary
This study presents a new method designed to analyze micrometer-scale chemical and isotopic profiles in minerals, glasses, and other solids. The employed technique combines plasma mass spectrometers and a state-of-the-art femtosecond laser equipped with open-source software (LinuxCNC) that controls the movement of the laser beam. It allows for equably drilling into the sample surface, e.g., in order to measure chemically or isotopically zoned or heterogeneous materials at micrometer scales.
Marc M. Hirschmann and Hongluo L. Zhang
Eur. J. Mineral., 35, 789–803, https://doi.org/10.5194/ejm-35-789-2023, https://doi.org/10.5194/ejm-35-789-2023, 2023
Short summary
Short summary
We calibrate new models for the properties of solid and liquid FePt alloy. FePt alloy is used in experiments investigating the origin, differentiation, and evolution of planets to characterize oxygen fugacity. The new models facilitate use of FePt for more extreme conditions than has been possible previously. We also describe shortcomings in the present knowledge of FePt alloy properties and highlight strategies that could improve such knowledge.
Ross J. Angel, Mattia L. Mazzucchelli, Kira A. Musiyachenko, Fabrizio Nestola, and Matteo Alvaro
Eur. J. Mineral., 35, 461–478, https://doi.org/10.5194/ejm-35-461-2023, https://doi.org/10.5194/ejm-35-461-2023, 2023
Short summary
Short summary
We have developed the thermodynamic theory of the properties of inclusions consisting of more than one phase, including inclusions containing solids plus a fluid. We present a software utility that enables for the first time the entrapment conditions of multiphase inclusions to be determined from the measurement of their internal pressure when that is measured in a laboratory.
Yanjuan Wang, Fabrizio Nestola, Huaikun Li, Zengqian Hou, Martha G. Pamato, Davide Novella, Alessandra Lorenzetti, Pia Antonietta Antignani, Paolo Cornale, Jacopo Nava, Guochen Dong, and Kai Qu
Eur. J. Mineral., 35, 361–372, https://doi.org/10.5194/ejm-35-361-2023, https://doi.org/10.5194/ejm-35-361-2023, 2023
Short summary
Short summary
In this work we have applied the elastic geobarometry approach to a Chinese diamond in order to determine the depth of formation of an olivine-bearing diamond. Together with the temperature of residence at which the diamond resided in the mantle, we were able to discover that the diamond was formed at about 190 km depth. Beyond the geological meaning of our results, this work could be a reference paper for future works on Chinese diamonds using elastic geobarometry.
Shashank Prabha-Mohan, Kenneth T. Koga, Antoine Mathieu, Franck Pointud, and Diego F. Narvaez
Eur. J. Mineral., 35, 321–331, https://doi.org/10.5194/ejm-35-321-2023, https://doi.org/10.5194/ejm-35-321-2023, 2023
Short summary
Short summary
This work presents an in-depth description of a new design for a high-temperature gas-mixing furnace using a mixture of CO–CO2–SO2. It has been designed and built with user safety in mind. The furnace can sustain temperatures of up to 1650 °C. This furnace sets itself apart with its size and unique quench mechanism. Crucially, the apparatus has the ability to change the gas mixture during an experiment. This feature allows the user to simulate natural environments, such as volcanoes.
Lennart Koch and Burkhard C. Schmidt
Eur. J. Mineral., 35, 117–132, https://doi.org/10.5194/ejm-35-117-2023, https://doi.org/10.5194/ejm-35-117-2023, 2023
Short summary
Short summary
Volatile diffusivities in silicate melts control the nucleation and growth of bubbles in ascending magma. We investigated the diffusion of CO2 in an anhydrous and hydrous leucititic melt at high temperatures and high pressure. CO2 diffusion profiles were measured via attenuated total reflection Fourier transform infrared spectroscopy. CO2 diffusion increases with increasing temperature and water content. The data can be used to understand the CO2 degassing behaviour of leucititic melts.
Melanie J. Sieber, Max Wilke, Oona Appelt, Marcus Oelze, and Monika Koch-Müller
Eur. J. Mineral., 34, 411–424, https://doi.org/10.5194/ejm-34-411-2022, https://doi.org/10.5194/ejm-34-411-2022, 2022
Short summary
Short summary
Carbonates reduce the melting point of the mantle, and carbonate melts produced in low-degree melting of a carbonated mantle are considered the precursor of CO2-rich magmas. We established experimentally the melting relations of carbonates up to 9 GPa, showing that Mg-carbonates melt incongruently to periclase and carbonate melt. The trace element signature of carbonate melts parental to kimberlites is approached by melting of Mg-rich carbonates.
Carla Tiraboschi, Francesca Miozzi, and Simone Tumiati
Eur. J. Mineral., 34, 59–75, https://doi.org/10.5194/ejm-34-59-2022, https://doi.org/10.5194/ejm-34-59-2022, 2022
Short summary
Short summary
This review provides an overview of ex situ carbon-saturated COH fluid experiments at upper-mantle conditions. Several authors experimentally investigated the effect of COH fluids. However, fluid composition is rarely tackled as a quantitative issue, and rather infrequently fluids are analyzed as the associated solid phases in the experimental assemblage. Recently, improved techniques have been proposed for analyses of COH fluids, leading to significant advancement in fluid characterization.
Enrico Cannaò, Massimo Tiepolo, Giulio Borghini, Antonio Langone, and Patrizia Fumagalli
Eur. J. Mineral., 34, 35–57, https://doi.org/10.5194/ejm-34-35-2022, https://doi.org/10.5194/ejm-34-35-2022, 2022
Short summary
Short summary
Amphibole–liquid partitioning of elements of geological relevance is experimentally derived at conditions compatible with those of the Earth's upper mantle. Experiments are carried out at different oxygen fugacity conditions and variable Cl content in order to investigate their influence on the amphibole–liquid partition coefficients. Our results point to the capability of amphibole to act as filter for trace elements at upper-mantle conditions, oxidized conditions, and Cl-rich environments.
Enrico Cannaò, Federica Schiavi, Giulia Casiraghi, Massimo Tiepolo, and Patrizia Fumagalli
Eur. J. Mineral., 34, 19–34, https://doi.org/10.5194/ejm-34-19-2022, https://doi.org/10.5194/ejm-34-19-2022, 2022
Short summary
Short summary
Detailed knowledge of the mechanisms ruling water incorporation in amphibole is essential to understand how much water can be fixed at upper-mantle conditions by this mineral. We provide the experimental evidence of the Cl effect on the oxo-substitution and the incorporation of water in amphibole. Finally, we highlight the versatility of confocal micro-Raman spectroscopy as an analytical tool to quantify water in amphibole.
Michael C. Jollands, Hugh St.C. O'Neill, Andrew J. Berry, Charles Le Losq, Camille Rivard, and Jörg Hermann
Eur. J. Mineral., 33, 113–138, https://doi.org/10.5194/ejm-33-113-2021, https://doi.org/10.5194/ejm-33-113-2021, 2021
Short summary
Short summary
How, and how fast, does hydrogen move through crystals? We consider this question by adding hydrogen, by diffusion, to synthetic crystals of olivine doped with trace amounts of chromium. Even in a highly simplified system, the behaviour of hydrogen is complex. Hydrogen can move into and through the crystal using various pathways (different defects within the crystal) and hop between these pathways too.
Joana Polednia, Ralf Dohmen, and Katharina Marquardt
Eur. J. Mineral., 32, 675–696, https://doi.org/10.5194/ejm-32-675-2020, https://doi.org/10.5194/ejm-32-675-2020, 2020
Short summary
Short summary
Grain boundary diffusion is orders of magnitude faster compared to volume diffusion. We studied this fast transport process in a well-defined garnet grain boundary. State-of-the-art microscopy was used for quantification. A dedicated numerical diffusion model shows that iron diffusion requires the operation of two diffusion modes, one fast, one slow. We conclude that impurity bulk diffusion in garnet aggregates is always dominated by grain boundary diffusion.
Giulio Borghini and Patrizia Fumagalli
Eur. J. Mineral., 32, 251–264, https://doi.org/10.5194/ejm-32-251-2020, https://doi.org/10.5194/ejm-32-251-2020, 2020
Alan B. Woodland, Andrei V. Girnis, Vadim K. Bulatov, Gerhard P. Brey, and Heidi E. Höfer
Eur. J. Mineral., 32, 171–185, https://doi.org/10.5194/ejm-32-171-2020, https://doi.org/10.5194/ejm-32-171-2020, 2020
Short summary
Short summary
We experimentally explored direct entrapment of breyite (CaSiO3) by diamond at upper-mantle conditions in a model subducted sediment rather than formation by retrogression of CaSiO3 perovskite, implying a deeper origin. Anhydrous low-T melting of CaCO3+SiO2 precludes breyite formation. Under hydrous conditions, reduction of melt results in graphite with breyite. Thus, breyite inclusions in natural diamond may form from aragonite + coesite or carbonate melt at 6–8 GPa via reduction with water.
Cited articles
Akella, J., Vaidya, S. N., and Kennedy, G. C.: Melting of sodium chloride at
pressures to 65 kbar, Phys. Rev., 185, 1135–1140,
https://doi.org/10.1103/PhysRev.185.1135, 1969.
Anderson, A. T. and Brown, G. G.: CO2 contents and formation pressures
of some Kilauean melt inclusions, Am. Mineral., 78, 794–803, 1993.
Anderson, A. T., Davis, A. M., and Lu, F.: Evolution of Bishop Tuff
rhyolitic magma based on melt and magnetite inclusions and zoned
phenocrysts, J. Petrol., 41, 449–473,
https://doi.org/10.1093/petrology/41.3.449, 2000.
Aster, E. M., Wallace, P. J., Moore, L. R., Watkins, J., Gazel, E., and
Bodnar, R. J.: Reconstructing CO2 concentrations in basaltic melt
inclusions using Raman analysis of vapor bubbles, J. Volcanol. Geoth. Res.,
323, 148–162, https://doi.org/10.1016/j.jvolgeores.2016.04.028, 2016.
Audétat, A. and Lowenstern, J. B.: Melt inclusions, in: Treatise on
Geochemistry, 2nd Edn., edited by: Holland, H. D. and Turekian, K. K.,
Elsevier, Oxford, 143–173,
https://doi.org/10.1016/B978-0-08-095975-7.01106-2, 2014.
Baker, D. R. and Moretti, R.: Modeling the solubility of sulfur in magmas: A
50-year old geochemical challenge, Rev. Mineral. Geochem., 73, 167–213,
https://doi.org/10.2138/rmg.2011.73.7, 2011.
Bartoli, O., Cesare, B., Poli, S., Acosta-Vigil, A., Esposito, R., Turina,
A., Bodnar, R. J., Angel, R. J., and Hunter, J.: Nanogranite inclusions in
migmatitic garnet: behavior during piston cylinder re-melting experiments,
Geofluids, 13, 405–420, https://doi.org/10.1111/gfl.12038, 2013.
Bartoli, O., Acosta-Vigil, A., Ferrero, S., and Cesare, B.: Granitoid magmas
preserved as melt inclusions in high-grade metamorphic rocks, Am. Mineral.,
101, 1543–1559, https://doi.org/10.2138/am-2016-5541CCBYNCND, 2016.
Bodnar, R. J. and Student, J. J.: Melt inclusions in plutonic rocks: petrography and microthermometry, in: Melt inclusions in plutonic rocks, edited by: Webster J. D., Mineralogical Association of Canada Short Course, 36, 1–25, https://doi.org/10.1111/j.1468-8123.2007.00192.x, 2006.
Brenna M., Ubide, T., Nichols, A. R. L., Mollo, S., and Pontesilli, A.:
Anatomy of Intraplate Monogenetic Alkaline Basaltic Magmatism: Clues From
Magma, Crystals, and Glass, in: Crustal Magmatic System Evolution: Anatomy,
Architecture, and Physico-Chemical Processes, edited by: Masotta, M., Beier,
C., and Mollo, S., American Geophysical Union, Geophys. Monogr., 264, 79–103,
https://doi.org/10.1002/9781119564485.ch4, 2021.
Brooker, R. A., Kohn, S. C., Holloway, J. R., and McMillan, P. F.:
Structural controls on the solubility of CO2 in silicate melts, Part I:
bulk solubility data, Chem. Geol., 174, 225–239,
https://doi.org/10.1016/S0009-2541(00)00353-3, 2001.
Cannatelli, C., Doherty, A. L., Esposito, R., Lima, A., and De Vivo, B.:
Understanding a volcano through a droplet: A melt inclusion approach, J.
Geochem. Explor., 171, 4–19, https://doi.org/10.1016/j.gexplo.2015.10.003,
2016.
Carlson, W. D.: Vanadium pentoxide as a high-temperature solvent for phase
equilibrium studies in CaO-MgO-AI203-SiO2, Contrib. Mineral.
Petr., 92, 89–92, https://doi.org/10.1007/BF00373966, 1986.
Cesare, B., Acosta-Vigil, A., Bartoli, O., and Ferrero, S.: What can we
learn from melt inclusions in migmatites and granulites?, Lithos, 239,
186–216, https://doi.org/10.1016/j.lithos.2015.09.028, 2015.
Chazot, G. and Mergoil-Daniel, J.: Co-eruption of carbonate and silicate
magmas during volcanism in the Limagne graben (French Massif Central),
Lithos, 154, 130–146, https://doi.org/10.1016/j.lithos.2012.06.032, 2012.
Chen, Y., Provost, A., Schiano, P., and Cluzel, N.: The rate of water loss from
olivine hosted melt inclusions, Contrib. Mineral. Petr., 162, 625–636,
https://doi.org/10.1007/s00410-011-0616-5, 2011.
Danyushevsky, L. V., McNeill, A. W., and Sobolev, A. V.: Experimental and
petrological studies of melt inclusions in phenocrysts from mantle-derived
magmas: an overview of techniques, advantages and complications, Chem.
Geol., 183, 5–24, https://doi.org/10.1016/S0009-2541(01)00369-2, 2002.
Dasgupta, R., Hirschmann, M. M., and Smith, N. D.: Partial melting
experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean
island basalts, J. Petrol., 48, 2093–2124,
https://doi.org/10.1093/petrology/egm053, 2007.
Drignon, M. J., Arbaret, L., Cluzel, N., Nielsen, R. L., and Bodnar, R. J.:
Experimentally induced volumetric re-equilibration of plagioclase-hosted
melt inclusions, Geochem. Geophy. Geosy., 22, 2020GC009357,
https://doi.org/10.1029/2020GC009357, 2021.
Duan, X.: A general model for predicting the solubility behaviour of
H2O-CO2 fluids in silicate melts over a wide range of pressure,
temperature and compositions, Geochim. Cosmochim. Ac., 125, 582–609,
https://doi.org/10.1016/j.gca.2013.10.018, 2014.
Eguchi, J. and Dasgupta, R.: A CO2 solubility model for silicate melts
from fluid saturation to graphite or diamond saturation, Chem. Geol., 487,
23–38, https://doi.org/10.1016/j.chemgeo.2018.04.012, 2018.
Esposito, R.: A protocol and review of methods to select, analyze
and interpret melt inclusions to determine pre-eruptive volatile
contents of magmas, in: Fluid and Melt Inclusions: Applications
to Geologic Processes, edited by: Lecumberri-Sanchez, P.,
Steele-MacInnis, M., and Kontak, D. J., Mineralogical Association of Canada Short Course, 49, 163–194, 2021.
Esposito, R., Bodnar, R. J., Danyushevsky, L. V., De Vivo, B., Fedele, L.,
Hunter, J., Lima, A., and Shimizu, N.: Volatile evolution of magma
associated with the Solchiaro eruption in the Phlegrean Volcanic District
(Italy), J. Petrol., 52, 2431–2460,
https://doi.org/10.1093/petrology/egr051, 2011.
Esposito, R., Hunter, J., Schiffbauer, J., Shimizu, N., Bodnar, R. J.: An
assessment of the reliability of melt inclusions as recorders of the
pre-eruptive volatile content of magmas, Am. Mineral., 99, 976–998,
https://doi.org/10.2138/am.2014.4574, 2014.
Esposito, R., Lamadrid, H. M., Redi, D., Steele-MacInnis, M., Bodnar, R. J.,
Manning, C. E., De Vivo, B., Cannatelli, C., and Lima, A.: Detection of
liquid H2O in vapor bubbles in reheated melt inclusions: Implications
for magmatic fluid composition and volatile budgets of magmas?, Am.
Mineral., 101, 1691–1695, https://doi.org/10.2138/am-2016-5689, 2016.
Ferrero, S. and Angel, R. J.: Micropetrology: Are Inclusions Grains of
Truth?, J. Petrol., 59, 1671–1700, https://doi.org/10.1093/petrology/egy075,
2018.
Ferrero, S., O'Brien, P. J., Borghini, A., Wunder, B., Wälle, M.,
Günter, C., and Ziemann, M. A.: A treasure chest full of nanogranitoids:
an archive to investigate crustal melting in the Bohemian Massif, in:
Metamorphic Geology: Microscale to Mountain Belts, edited by: Ferrero, S.,
Lanari, P., Goncalves, P., and Grosch, E. G., Geol. Soc. Spec. Publ., 478,
13–38, https://doi.org/10.1144/SP478.19, 2018.
Foley, S. F., Link, K., Tiberindwa, J. V., and Barifaijo, E.: Patterns and
origin of igneous activity around the Tanzanian craton, J. Afr. Earth Sci.,
62, 1–18, https://doi.org/10.1016/j.jafrearsci.2011.10.001, 2012.
Frezzotti, M. L.: Silicate-melt inclusions in magmatic rocks: applications
to petrology, Lithos, 55, 273–299,
https://doi.org/10.1016/S0024-4937(00)00048-7, 2001.
Gaborieau, M., Laubier, M., Bolfan-Casanova, N., McCammon, C. A., Vantelon,
D., Chumakov, A. I., Schiavi, F., Neuville, D. R., and Venugopal, S.:
Determination of Fe3+/ΣFe of olivine-hosted melt inclusions
using Mössbauer and XANES spectroscopy, Chem. Geol., 547, 119646,
https://doi.org/10.1016/j.chemgeo.2020.119646, 2020.
Gaetani, G. A., O'Leary, J. A., Shimizu, N., Bucholz, C. E., and Newville,
M.: Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted
melt inclusions, Geology, 40, 915–918, https://doi.org/10.1130/G32992.1,
2012.
Hammouda, T. and Keshav, S.: Melting in the mantle in presence of carbon:
review of experiments and discussion on the origin of carbonatites, Chem.
Geol., 418, 171–188, https://doi.org/10.1016/j.chemgeo.2015.05.018, 2015.
Hanyu, T., Yamamoto, J., Kimoto, K., Shimizu, K., and Ushikubo, T.:
Determination of total CO2 in melt inclusions with shrinkage bubbles,
Chem. Geol., 557, 119855, https://doi.org/10.1016/j.chemgeo.2020.119855,
2020.
Hartley, M. E., Maclennan, J., Edmonds, M., and Thordarson, T.:
Reconstructing the deep CO2 degassing behaviour of large basaltic
fissure eruptions, Earth Planet. Sc. Lett., 393, 120–131,
https://doi.org/10.1016/j.epsl.2014.02.031, 2014.
Helo, C., Longpré, M.-A., Shimizu, N., Clague, D. A., and Stix, J.:
Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas, Nat.
Geosci., 4, 260–263, https://doi.org/10.1038/ngeo1104, 2011.
Hudgins, T. R., Mukasa, S. B., Simon, A. C., Moore, G., and Barifaijo, E.:
Melt inclusion evidence for CO2-rich melts beneath the western branch
of the East African Rift: implications for long-term storage of volatiles in
the deep lithospheric mantle, Contrib. Mineral. Petr., 169, 46,
https://doi.org/10.1007/s00410-015-1140-9, 2015.
Ito, K., Sato, H., Kanazawa, H., Kawame, N., Tamada, O., Miyazaki, K.,
Uehara, S., Iio, Y., Takei, H., Kitazawa, T., Koike, M., Matsushita, Y., and
Ito, Y.: First synthesis of olivine single crystal as large as 250 carats,
J. Cryst. Growth, 253, 557–561,
https://doi.org/10.1016/S0022-0248(03)01029-7, 2003.
Jannot, S., Schiano, P., and Boivin, P.: Melt inclusions in scoria and
associated mantle xenoliths of Puy Beaunit Volcano, Chaîne des Puys,
Massif Central, France, Contrib. Mineral. Petr., 149, 600–612,
https://doi.org/10.1007/s00410-005-0670-y, 2005.
Kamenetsky, V. S. and Kamenetsky, M. B.: Magmatic fluids immiscible with
silicate melts: examples from inclusions in phenocrysts and glasses, and
implications for magma evolution and metal transport, Geofluids, 10,
293–311, https://doi.org/10.1111/j.1468-8123.2009.00272.x, 2010.
Kamenetsky, V. S., Davidson, P., Mernagh, T. P., Crawford, A. J., Gemmell,
J. B., Portnyagin, M. V., and Shinjo, R.: Fluid bubbles in melt inclusions and
pillow-rim glasses: high-temperature precursors to hydrothermal fluids?,
Chem. Geol., 183, 349–364, https://doi.org/10.1016/S0009-2541(01)00383-7,
2002.
Kent, A. J. R.: Melt inclusions in basaltic and related volcanic rocks, Rev.
Mineral. Geochem., 69, 273–331, https://doi.org/10.2138/rmg.2008.69.8, 2008.
Kimura, T.: Molten Salt Synthesis of Ceramic Powders, in: Advances in Ceramics – Synthesis and Characterization, Processing and Specific Applications, chap. 4, edited by: Sikalidis, C., IntechOpen, 75–100, https://doi.org/10.1002/chin.201326193, 2011.
Lewis, K. R., Ustunisik, G. K., and Nielsen, R. L.: Experimental constraints
on homogenization of plagioclase-hosted melt inclusions from plagioclase
ultraphyric basalts, Front. Earth Sci., 8, 584371,
https://doi.org/10.3389/feart.2020.584371, 2021.
Li, J. and Li, S.: Application of hydrothermal diamond anvil cell to
homogenization experiments of silicate melt inclusions, Acta Geol.
Sin.-Engl., 88, 854–864, https://doi.org/10.1111/1755-6724.12242, 2014.
Long, D. A.: Raman Spectroscopy, in: The Characterization of Chemical Purity:
Organic Compounds, edited by: Staveley, L. A. K., Elsevier, New-York, 276
pp., 1977.
Lowenstern, J. B.: Applications of silicate melt inclusions to the study of
magmatic volatiles, in: Magmas, Fluids and Ore Deposits, Volume #23,
edited by: Thompson J. F. H., Mineralogical Association of Canada Short
Course, 71–99, 1995.
Maclennan, J.: Bubble formation and decrepitation control the CO2
content of olivine-hosted melt inclusions, Geochem. Geophy. Geosy., 18,
597–616, https://doi.org/10.1002/2016GC006633, 2017.
Malaspina, N., Hermann, J., Scambelluri, M., and Compagnoni, R.: Polyphase
inclusions in garnet-orthopyroxenite (Dabie Shan, China) as monitors for
metasomatism and fluid-related trace element transfer in subduction zone
peridotite, Earth Planet. Sc. Lett., 249, 173–187,
https://doi.org/10.1016/j.epsl.2006.07.017, 2006.
Mallik, A. and Dasgupta, R.: Effect of variable CO2 on eclogite-derived
andesite and lherzolite reaction at 3 GPa – Implications for mantle source
characteristics of alkalic ocean island basalts, Geochem. Geophy. Geosy.,
15, 1533–1557, https://doi.org/10.1002/2014GC005251, 2014.
Massare, D., Métrich, N., and Clocchiatti, R.: High-temperature
experiments on silicate melt inclusions in olivine at 1 atm: Inference on
temperatures of homogenization and H2O concentrations, Chem. Geol.,
183, 87–98, https://doi.org/10.1016/S0009-2541(01)00373-4, 2002.
Métrich, N. and Wallace, P. J.: Volatile abundances in basaltic magmas
and their degassing paths tracked by melt inclusions, Rev. Mineral.
Geochem., 69, 363–402, https://doi.org/10.2138/rmg.2008.69.10, 2008.
Mironov, N., Portnyagin, M., Botcharnikov, R., Gurenko, A., Hoernle, K., and
Holtz, F.: Quantification of the CO2 budget and H2O-CO2
systematics in subduction-zone magmas through the experimental hydration of
melt inclusions in olivine at high H2O pressure, Earth Planet. Sc.
Lett., 425, 1–11, https://doi.org/10.1016/j.epsl.2015.05.043, 2015.
Moore, L. R., Gazel, E., Tuohy, R., Lloyd, A., Esposito, R.,
Steele-MacInnis, M., Hauri, E. H., Wallace, P. J., Plank, T., and Bodnar, R.
J.: Bubbles matter: An assessment of the contribution of vapor bubbles to
melt inclusion volatile budgets, Am. Mineral., 100, 806–823,
https://doi.org/10.2138/am-2015-5036, 2015.
Morizet, Y., Brooker, R. A., Iacono-Marziano, G., and Kjarsgaard, B. A.:
Quantification of dissolved CO2 in silicate glasses using micro-Raman
spectroscopy, Am. Mineral., 98, 1788–1802,
https://doi.org/10.2138/am.2013.4516, 2013.
Naumov, V. B., Portnyagin, M. V., Tolstykh, M. L., and Yarmolyuk, V. V.:
Composition of magmatic melts from the Southern Baikal volcanic region: A
study of inclusions in olivine from trachybasalts, Geochem. Int., 41,
213–223, 2003.
Nomade, S., Genty, D., Sasco, R., Scao, V., Féruglio, V., Baffier, D.,
Guillou, H., Bourdier, C., Valladas, H., Reigner, E., Debard, E., Pastre,
J.-F., and Geneste, J.-M.: A 36,000-year-old volcanic eruption depicted in the
Chauvet-Pont d'Arc Cave (Ardèche, France)?, PLoS ONE, 11, e0146621,
https://doi.org/10.1371/journal.pone.0146621, 2016.
Perchuk, A. L., Burchard, M., Maresch, W. V., and Schertl, H. P.: Melting of
hydrous and carbonate mineral inclusions in garnet host during ultrahigh
pressure experiments, Lithos, 103, 25–45,
https://doi.org/10.1016/j.lithos.2007.09.008, 2008.
Perrin, J., Vielzeuf, D., Laporte, D., Ricolleau, A., Rossman, G. R., and
Floquet, N.: Raman characterization of synthetic magnesian calcites, Am.
Mineral., 101, 2525–2538, https://doi.org/10.2138/am-2016-5714, 2016.
Pilet, S.: Generation of low-silica alkaline lavas: Petrological
constraints, models, and thermal implications, in: The Interdisciplinary
Earth: A Volume in Honor of Don L. Anderson, edited by: Foulger, G. R.,
Lustrino, M., and King, S. D., Geol. S. Am. S. 514 and American Geophysical
Union Special Publication 71, 281–304,
https://doi.org/10.1130/2015.2514(17), 2015.
Portnyagin, M., Almeev, R., Matveev, S., and Holtz, F.: Experimental
evidence for rapid water exchange between melt inclusions in olivine and
host magma, Earth Planet. Sc. Lett., 272, 541–552,
https://doi.org/10.1016/j.epsl.2008.05.020, 2008.
Portnyagin, M., Mironov, N., Botcharnikov, R., Gurenko, A., Almeev, R. R.,
Luft, C., and Holtz, F.: Dehydration of melt inclusions in olivine and
implications for the origin of silica-undersaturated island-arc melts, Earth
Planet. Sc. Lett., 517, 95–105, https://doi.org/10.1016/j.epsl.2019.04.021,
2019.
Putirka, K. D., Perfit, M., Ryerson, F. J., and Jackson, M. G.: Ambient and
excess mantle temperatures, olivine thermometry, and active vs. passive
upwelling, Chem. Geol., 241, 177–206,
https://doi.org/10.1016/j.chemgeo.2007.01.014, 2007.
Puziewicz, J., Matusiak-Małek, M., Ntaflos, T., Grégoire, M.,
Kaczmarek, M.-A., Aulbach, S., Ziobro, M., and Kukuła, A.: Three major
types of subcontinental lithospheric mantle beneath the Variscan orogen in
Europe, Lithos, 362–363, 105467,
https://doi.org/10.1016/j.lithos.2020.105467, 2020.
Rasmussen, D. J., Kyle, P. R., Wallace, P. J., Sims, K. W. W., Gaetani, G.
A., and Phillips, E. H.: Understanding degassing and transport of
CO2-rich alkalic magmas at Ross Island, Antarctica using olivine-hosted
melt inclusions, J. Petrol., 58, 841–862,
https://doi.org/10.1093/petrology/egx036, 2017.
Rasmussen, D. J., Plank, T. A., Wallace, P. J., Newcombe, M. E., and
Lowenstern, J. B.: Vapor-bubble growth in olivine-hosted melt inclusions,
Am. Mineral., 105, 1898–1919, https://doi.org/10.2138/am-2020-7377, 2020.
Robidoux, P., Frezzotti, M. L., Hauri, E. H., and Aiuppa, A.: Shrinkage
bubbles: the C-O-H-S magmatic fluid system at San Cristobal volcano, J.
Petrol., 59, 2093–2122, https://doi.org/10.1093/petrology/egy092, 2018.
Rochette, P., Bertrand, H., Braun, C., and Berger, E.: La province
volcanique Pléistocène Supérieur du Bas-Vivarais (Ardèche,
France): propagation de fentes crustales en échelons?, CR Acad. Sci.,
316, 913–920, 1993.
Roedder, E.: Origin and significance of magmatic inclusions, B. Mineral.,
102, 487–510, 1979.
Roedder, E.: Fluid inclusion evidence for immiscibility in magmatic
differentiation, Geochim. Cosmochim. Ac., 56, 5–20,
https://doi.org/10.1016/0016-7037(92)90113-W, 1992.
Rose-Koga, E. F., Koga, K. T., Devidal, J-L., Shimizu, N., Le Voyer, M.,
Dalou, C., and Döbeli, M.: In-situ measurements of magmatic volatile
elements, F, S, and Cl, by electron microprobe, secondary ion mass
spectrometry, and heavy ion elastic recoil detection analysis, Am. Mineral.,
105, 616–626, https://doi.org/10.2138/am-2020-7221, 2020.
Schiano, P.: Primitive mantle magmas recorded as silicate melt inclusions in
igneous minerals, Earth Sci. Rev., 63, 121–144,
https://doi.org/10.1016/S0012-8252(03)00034-5, 2003.
Schiavi, F., Provost, A., Schiano, P., and Cluzel, N.: P–V–T–X evolution
of olivine-hosted melt inclusions during high-temperature homogenization
treatment, Geochim. Cosmochim. Ac., 172, 1–21,
https://doi.org/10.1016/j.gca.2015.09.025, 2016.
Schiavi, F., Bolfan-Casanova, N., Withers, A. C., Médard, E., Laumonier,
M., Laporte, D., Flaherty, T., and Gómez-Ulla, A.: Water quantification
in silicate glasses by Raman spectroscopy: Correcting for the effects of
confocality, density and ferric iron, Chem. Geol., 483, 312–331,
https://doi.org/10.1016/j.chemgeo.2018.02.036, 2018.
Schiavi, F., Bolfan-Casanova, N., Buso, R., Laumonier, M., Laporte, D.,
Medjoubi, K., Venugopal, S., Gómez-Ulla, A., Cluzel, N., and Hardiagon,
M.: Quantifying magmatic volatiles by Raman microtomography of glass
inclusion-hosted bubbles, Geochem. Perspect. Lett., European Association of
Geochemistry, 16, 17–24, https://doi.org/10.7185/geochemlet.2038, 2020.
Shaw, A. M., Behn, M. D., Humphris, S. E., Sohn, R. A., and Gregg, P. M.:
Deep pooling of low degree melts and volatile fluxes at the 85∘ E
segment of the Gakkel Ridge: Evidence from olivine-hosted melt inclusions
and glasses, Earth Planet. Sc. Lett., 289, 311–322,
https://doi.org/10.1016/j.epsl.2009.11.018, 2010.
Sheikh, R. A.: The synthesis of cementitious compounds in molten salts,
Doctoral dissertation, University College London, 2016.
Skirius, C. M., Peterson, J. W., and Anderson, A. T.: Homogenizing rhyolitic
glass inclusions from the Bishop Tuff, Am. Mineral., 75, 1381–1398, 1990.
Skogby, H.: Mineral synthesis by flux-growth methods, in: Microscopic
properties and processes in minerals, edited by: Wright, K. and Catlow, R.,
Kluwer academic Publishers, the Netherlands, 189–199, 1999.
Sobolev, A. V.: Melt inclusions in minerals as a source of principle
petrological information, Petrology, 4, 228–239, 1996.
Song, Y., Chou, I.-M., Hu, W., Burruss, R., and Lu, W.: CO2 density-Raman
shift relation derived from synthetic inclusions in fused silica capillaries
and its application, Acta Geol. Sin.-Eng., 83, 932–938,
https://doi.org/10.1111/j.1755-6724.2009.00090.x, 2009.
Sparks, H. A. and Mavrogenes, J. A.: Sulfide melt inclusions as evidence for
the existence of a sulfide partial melt at Broken Hill, Australia, Econ.
Geol., 100, 773–779, https://doi.org/10.2113/gsecongeo.100.4.773, 2005.
Steele-MacInnis, M., Esposito, R., and Bodnar, R. J.: Thermodynamic model
for the effect of post-entrapment crystallization on the H2O-CO2
systematics of vapor-saturated, silicate melt inclusions, J. Petrol., 52,
2461–2482, https://doi.org/10.1093/petrology/egr052, 2011.
Steele-MacInnis, M., Esposito, R., Moore, L. R., and Hartley, M. E.: Heterogeneously entrapped, vapor-rich melt inclusions record pre-eruptive magmatic volatile contents, Contrib. Mineral. Petr., 172, 18, https://doi.org/10.1007/s00410-017-1343-3, 2017.
Student, J. J. and Bodnar, R. J.: Silicate melt inclusions in porphyry
copper deposits: identification and homogenization behavior, Can. Mineral.,
42, 1583–1599, https://doi.org/10.2113/gscanmin.42.5.1583, 2004.
Thibault, Y. and Holloway, J. R.: Solubility of CO2 in a Ca-rich
leucitite: effects of pressure, temperature, and oxygen fugacity, Contrib.
Mineral. Petr., 116, 216–224, 1994.
Thomas, R., Webster, J. D., and Davidson, P.: Understanding pegmatite
formation: the melt and fluid inclusion approach, Mineralogical Association
of Canada, Short Course, Montreal, Quebec, 36, 189–210, 2006.
Toplis, M. J.: The thermodynamics of iron and magnesium partitioning between
olivine and liquid: Criteria for assessing and predicting equilibrium in
natural and experimental systems, Contrib. Mineral. Petr., 149, 22–39,
https://doi.org/10.1007/s00410-004-0629-4, 2005.
Tucker, J. M., Hauri, E. H., Pietruszka, A. J., Garcia, M. O., Marske, J.
P., and Trusdell, F. A.: A high carbon content of the Hawaiian mantle from
olivine-hosted melt inclusions, Geochim. Cosmochim. Ac., 254, 156–172,
https://doi.org/10.1016/j.gca.2019.04.001, 2019.
Uenver-Thiele, L., Woodland, A. B., Seitz, H.-M., Downes, H., and Altherr,
R.: Metasomatic processes revealed by trace element and redox signatures of
the lithospheric mantle beneath the Massif Central, France, J. Petrol., 58,
395–422, https://doi.org/10.1093/petrology/egx020, 2017.
Venugopal, S., Schiavi, F., Moune, S., Bolfan-Casanova, N., Druitt, T.,
Williams-Jones, G.: Melt inclusion vapour bubbles: the hidden reservoir for
major and volatile elements, Sci. Rep.-UK, 10, 9034,
https://doi.org/10.1038/s41598-020-65226-3, 2020.
Wallace, P. J. and Edmonds, M.: The sulfur budget in magmas: Evidence from
melt inclusions, submarine glasses, and volcanic gas emissions, Rev.
Mineral. Geochem., 73, 215–246, https://doi.org/10.2138/rmg.2011.73.8, 2011.
Wallace, P. J., Kamenetsky, V. S., and Cervantes, P.: Melt inclusion CO2
contents, pressures of olivine crystallization, and the problem of shrinkage
bubbles, Am. Mineral., 100, 787–794, https://doi.org/10.2138/am-2015-5029,
2015.
Xu, R., Liu, Y., Wang, X-C., Foley, S. F., Zhang, Y., and Yuan, H.: Generation
of continental intraplate alkali basalts and implications for deep carbon
cycle, Earth Sci. Rev., 201, 103073,
https://doi.org/10.1016/j.earscirev.2019.103073, 2020.
Zeng, G., Chen, L. H., Xu, X. S., Jiang, S. Y., and Hofmann, A. W.: Carbonated
mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North
China, Chem. Geol., 273, 35–45,
https://doi.org/10.1016/j.chemgeo.2010.02.009, 2010.
Short summary
Magmas transport large amounts of CO2 from Earth's mantle into the atmosphere and thus contribute significantly to the global carbon cycle. We have developed an experimental method to homogenize at high pressure small liquid droplets trapped in magmatic crystals to gain access to the initial composition of the parental magma (major and volatile elements). With this technique, we show that magmas produced by melting of the subcontinental mantle contain several weight percent of CO2.
Magmas transport large amounts of CO2 from Earth's mantle into the atmosphere and thus...