Articles | Volume 34, issue 2
https://doi.org/10.5194/ejm-34-223-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-34-223-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Redefinition of beraunite, Fe3+6(PO4)4O(OH)4 ⋅ 6H2O, and discreditation of the name eleonorite: a re-investigation of type material from the Hrbek Mine (Czech Republic)
Department of Mineralogy and Petrology, National Museum, Cirkusová
1740, 19300 Prague 9, Czech Republic
Department of Geological Sciences, Faculty of Science, Masaryk
University, Kotlářská 2, 61137 Brno, Czech Republic
Jaromír Tvrdý
Department of Geological Sciences, Faculty of Science, Masaryk
University, Kotlářská 2, 61137 Brno, Czech Republic
Jakub Plášil
Institute of Physics ASCR, v.v.i., Na Slovance 2, 18221 Prague 8,
Czech Republic
Jiří Sejkora
Department of Mineralogy and Petrology, National Museum, Cirkusová
1740, 19300 Prague 9, Czech Republic
Radek Škoda
Department of Geological Sciences, Faculty of Science, Masaryk
University, Kotlářská 2, 61137 Brno, Czech Republic
Nikita V. Chukanov
Institute of Problems of Chemical Physics, Russian Academy of
Sciences, Chernogolovka, Moscow region, 142432, Russia
Andreas Massanek
Geoscientific Collections, Technische Universität Bergakademie
Freiberg, A.-G.-Werner-Bau, Brennhausgasse 14, 09596 Freiberg, Germany
Jan Filip
Regional Centre of Advanced Technologies and Materials, Czech Advanced
Technology and Research Institute, Palacký University,
Šlechtitelů 27, 78371 Olomouc, Czech Republic
Zdeněk Dolníček
Department of Mineralogy and Petrology, National Museum, Cirkusová
1740, 19300 Prague 9, Czech Republic
František Veselovský
Czech Geological Survey, Klárov 131/3, 118 21 Prague 1, Czech
Republic
Related authors
No articles found.
Ferdinando Bosi, Federico Pezzotta, Henrik Skobgy, Riccardo Luppi, Paolo Ballirano, Ulf Hålenius, Gioacchino Tempesta, Giovanna Agrosì, and Jiří Sejkora
Eur. J. Mineral., 37, 505–516, https://doi.org/10.5194/ejm-37-505-2025, https://doi.org/10.5194/ejm-37-505-2025, 2025
Short summary
Short summary
This study describes the elbaite neotype, found in crystals from a site on Elba island, Italy. Researchers analyzed these nearly colorless crystals and found that their formation was influenced by earlier changes in the surrounding rock. As different minerals formed first, they set the stage for elbaite to develop later in deeper spaces. This work helps us understand how changes in the local environment affect how and when certain minerals grow.
Cristian Biagioni, Jiří Sejkora, Yves Moëlo, Georges Favreau, Vincent Bourgoin, Jean-Claude Boulliard, Elena Bonaccorsi, Daniela Mauro, Silvia Musetti, Marco Pasero, Natale Perchiazzi, and Jana Ulmanová
Eur. J. Mineral., 37, 319–335, https://doi.org/10.5194/ejm-37-319-2025, https://doi.org/10.5194/ejm-37-319-2025, 2025
Short summary
Short summary
Ginelfite is a new Ag–Fe–Tl–Pb sulfosalt described from the hydrothermal deposit of Jas Roux (France). It belongs to the so-called boxwork sulfosalts, a group of species showing the highest structural complexity among this group of chalcogenides. This very complex structure is probably stabilized by the occurrence of minor chemical constituents (Tl, Fe) occupying specific structural positions.
Nikita V. Chukanov, Vasilisa M. Gridchina, Ramiza K. Rastsvetaeva, Natalia V. Zubkova, and Igor V. Pekov
Eur. J. Mineral., 37, 133–142, https://doi.org/10.5194/ejm-37-133-2025, https://doi.org/10.5194/ejm-37-133-2025, 2025
Short summary
Short summary
The nolanite supergroup has been established and approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association. It contains eight mineral species with the nolanite-type structure. The nolanite supergroup is subdivided into three groups (nolanite, kamiokite, and rinmanite groups). After significant changes, the classification of the nolanite supergroup was approved again.
Juraj Majzlan, Ralph Bolanz, Jörg Göttlicher, Martin Števko, Tomáš Mikuš, Mária Čaplovičová, Jan Filip, Jiří Tuček, Christiane Rößler, and Christian Matthes
Eur. J. Mineral., 37, 101–110, https://doi.org/10.5194/ejm-37-101-2025, https://doi.org/10.5194/ejm-37-101-2025, 2025
Short summary
Short summary
Many chemical elements occur in rocks, in ore deposits, and in the environment in trace amounts. One of them is the element tungsten. It is not clear, however, where the trace amounts of tungsten reside and how they move around. In this work, we found that the element tungsten can be carried by a common iron oxide mineral, hematite. It can be transported in hematite and released under appropriate conditions, for example in reducing environments.
Cristian Biagioni, Daniela Mauro, Jiří Sejkora, Zdeněk Dolníček, Andrea Dini, and Radek Škoda
Eur. J. Mineral., 37, 39–52, https://doi.org/10.5194/ejm-37-39-2025, https://doi.org/10.5194/ejm-37-39-2025, 2025
Short summary
Short summary
Dacostaite is a new fluoride–arsenate mineral found in the Sb(Au) deposit of the Cetine di Cotorniano Mine (Tuscany, Italy). It shows a novel crystal structure formed by heteropolyhedral layers and isolated Mg(H2O)6 groups connected by H bonds. The heteropolyhedral layers are similar to those occurring in alunite-supergroup minerals, and this is a further example of the ability of nature to use similar modules in forming the large number of currently known structural arrangements.
Cristian Biagioni, Enrico Mugnaioli, Sofia Lorenzon, Daniela Mauro, Silvia Musetti, Jiří Sejkora, Donato Belmonte, Nicola Demitri, and Zdeněk Dolníček
Eur. J. Mineral., 36, 1011–1022, https://doi.org/10.5194/ejm-36-1011-2024, https://doi.org/10.5194/ejm-36-1011-2024, 2024
Short summary
Short summary
Nannoniite, Al2(OH)5F, is a new mineral species discovered in the Cetine di Cotorniano mine (Tuscany, Italy). Its description was possible through a multi-technique approach, and its crystal structure was solved through three-dimensional electron diffraction, revealing close relations with gibbsite. The partial replacement of (OH) by F induces subtle by detectable structural changes. This study reveals that Al hydroxides could be a source of F in geological environments.
Richard Pažout, Michal Dušek, Jiří Sejkora, Jakub Plášil, Gheorghe Ilinca, and Zdeněk Dolníček
Eur. J. Mineral., 36, 641–656, https://doi.org/10.5194/ejm-36-641-2024, https://doi.org/10.5194/ejm-36-641-2024, 2024
Short summary
Short summary
A new sulfosalt mineral species, lazerckerite, Ag3.7Pb4.6(Sb7.9Bi3.8)Σ11.7S24, has been found, identified, structurally solved, and approved by the IMA. The mineral belongs to the Sb–Bi mixed members of the andorite branch of the lillianite homologous series. The description and characterization of the mineral are presented, and the ways of distinguishing the mineral from other similar members of the group on the basis of chemical results are explained.
Cristian Biagioni, Anatoly V. Kasatkin, Fabrizio Nestola, Radek Škoda, Vladislav V. Gurzhiy, Atali A. Agakhanov, and Natalia N. Koshlyakova
Eur. J. Mineral., 36, 529–540, https://doi.org/10.5194/ejm-36-529-2024, https://doi.org/10.5194/ejm-36-529-2024, 2024
Short summary
Short summary
Zvěstovite-(Fe) is a new, Ag-rich, member of the tetrahedrite group, the most widespread sulfosalts in ore deposits. Its discovery stresses the chemical variability of this mineral group, allowing for a better understanding of the structural plasticity of these compounds, which are able to host a plethora of different elements typical of hydrothermal environments.
Marketa Stepanova, Martin Novak, Bohuslava Cejkova, Ivana Jackova, Frantisek Buzek, Frantisek Veselovsky, Jan Curik, Eva Prechova, Arnost Komarek, and Leona Bohdalkova
SOIL, 9, 623–640, https://doi.org/10.5194/soil-9-623-2023, https://doi.org/10.5194/soil-9-623-2023, 2023
Short summary
Short summary
Biological N2 fixation helps to sustain carbon accumulation in peatlands and to remove CO2 from the atmosphere. Changes in N2 fixation may affect the dynamics of global change. Increasing inputs of reactive N from air pollution should lead to downregulation of N2 fixation. Data from three N-polluted peat bogs show an interplay of N2-fixation rates with 10 potential drivers of this process. N2 fixation was measurable only at one site characterized by high phosphorus and low sulfate availability.
Jiří Sejkora, Cristian Biagioni, Pavel Škácha, Silvia Musetti, Anatoly V. Kasatkin, and Fabrizio Nestola
Eur. J. Mineral., 35, 897–907, https://doi.org/10.5194/ejm-35-897-2023, https://doi.org/10.5194/ejm-35-897-2023, 2023
Short summary
Short summary
We present the description of new mineral – a Cd-dominant member of the tetrahedrite group, tetrahedrite-(Cd), from the Radětice deposit near Příbram, Czech Republic. All necessary data including crystal structure were successfully determined, and the mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (number 2022-115).
Khulan Berkh, Juraj Majzlan, Jeannet A. Meima, Jakub Plášil, and Dieter Rammlmair
Eur. J. Mineral., 35, 737–754, https://doi.org/10.5194/ejm-35-737-2023, https://doi.org/10.5194/ejm-35-737-2023, 2023
Short summary
Short summary
Since As is detrimental to the environment, the As content of ores should be reduced before it is released into the atmosphere through a smelting process. Thus, Raman spectra of typical As minerals were investigated, and these can be used in the industrial removal of As-rich ores prior to the ore beneficiation. An additional objective of our study was an investigation of the secondary products of enargite weathering. They play a decisive role in the release or retainment of As in the waste form.
Daniela Mauro, Cristian Biagioni, Jiří Sejkora, Zdeněk Dolníček, and Radek Škoda
Eur. J. Mineral., 35, 703–714, https://doi.org/10.5194/ejm-35-703-2023, https://doi.org/10.5194/ejm-35-703-2023, 2023
Short summary
Short summary
Batoniite is a new mineral species belonging to the Al2O3–SO3–H2O ternary system, first found in the Cetine di Cotorniano Mine (Tuscany, Italy). This hydrated Al sulfate shows a novel crystal structure, characterized by Al octamers, so far reported in only synthetic compounds.
Juraj Majzlan, Alexandra Plumhoff, Martin Števko, Gwladys Steciuk, Jakub Plášil, Edgar Dachs, and Artur Benisek
Eur. J. Mineral., 35, 157–169, https://doi.org/10.5194/ejm-35-157-2023, https://doi.org/10.5194/ejm-35-157-2023, 2023
Short summary
Short summary
This research was done to understand how toxic elements, such as copper or arsenic, move through the environment. The data presented here can be used to model mobility of such elements and to improve remediation strategies at sites contaminated by mining.
Marko Bermanec, Nikita V. Chukanov, Ivan Boev, Božidar Darko Šturman, Vladimir Zebec, and Vladimir Bermanec
Eur. J. Mineral., 33, 433–445, https://doi.org/10.5194/ejm-33-433-2021, https://doi.org/10.5194/ejm-33-433-2021, 2021
Short summary
Short summary
A new locality of ardennite-(As) is described in Nežilovo, North Macedonia. This mineral grows in specific conditions, which makes it useful to reconstructing the conditions of rock formation. Phengite mica that was found also supports this investigation. This explanation results in a new proposal for mineral formula calculation of ardennite-group minerals and reviews the current ardennite-group end-members. This occurrence has developed through three metamorphic stages which are also described.
Pavel Škácha, Jiří Sejkora, Jakub Plášil, Zdeněk Dolníček, and Jana Ulmanová
Eur. J. Mineral., 33, 175–187, https://doi.org/10.5194/ejm-33-175-2021, https://doi.org/10.5194/ejm-33-175-2021, 2021
Short summary
Short summary
Grimmite, sulfide of cobalt and nickel, is the new mineral for the mineralogical system.
Cited articles
Aksenov, S. M., Chukanov, N. V., Göttlicher, J., Hochleitner, R.,
Zarubina, E. S., and Rastsvetaeva R. K.: Mn-bearing eleonorite from Hagendorf
South pegmatite, Germany, Crystal structure and crystal-chemical
relationships with other beraunite-type phosphates, Z.
Kristallogr., 233, 469–477, 2018.
Anthony, J. W., Bideaux, R. A., Bladh, K. W., and Nichols, M. C. (Eds.): Handbook
of Mineralogy, Vol. IV, Mineral Data Publishing Tucson, Arizona, ISBN 0-9622097-0-8,
2000.
Bořický, E.: Zur Entwicklungsgeschichte der in dem Schichtencomplex
der silurischen Eisensteinlager Böhmen's vorkommenden Minerale,
Sitzungsberichte der Akademie der Wissenschaften,
Mathematisch-naturwissenschaftliche Klasse, 59, 589–620, 1867.
Breithaupt, A.: Beraunit, ein neues Glied der Phyllit-Ordnung, J. Prakt. Chem., Barth Verlag, Leipzig, 20, 66–67, 1840.
Breithaupt, A.: Vollständiges Handbuch der Mineralogie, Zweiter Band, I.
Phyllites, Anhang 5, Beraunit, Arnoldische Buchhandlung, Dresden
und Leipzig, 156 pp., 1841.
Brown, I. D.: The Chemical Bond in Inorganic Chemistry. The Bond Valence
Model, Oxford University Press, Oxford, ISBN 0-19-850870-0, 2002.
Brown, I. D. and Shannon, R. D.: Empirical bond-strength–bond-length curves
for oxides, Acta Crystallogr., 29, 266–282, 1973.
Burnham, C. W.: Lattice constant refinement, Carnegie Inst Washington Year
Book, 61, 132–135, 1962.
Chukanov, N. V.: Infrared spectra of mineral species: Extended library,
Springer-Verlag GmbH, Dordrecht Heidelberg New York London, 1716
pp., https://doi.org/10.1007/978-94-007-7128-4, 2014.
Chukanov, N. V. and Chervonnyi, A. D.: Infrared Spectroscopy of Minerals and
Related Compounds, Springer, Cham Heidelberg Dordrecht New York London,
1109 pp., https://doi.org/10.1007/978-3-319-25349-7, 2016.
Chukanov, N. V., Aksenov, S. M., Rastsvetaeva, R. K., Schäfer, C., Pekov,
I. V., Belakovskiy, D. I., Scholz, R., de Oliveira, L. C. A., and Britvin, S. N.:
Eleonorite, Fe (PO4)4O(OH)4 ⋅ 2H2O:
validation as a mineral species and new data, Mineral. Mag., 81,
61–76, 2017.
Fanfani, L. and Zanazzi, P. F.: The Crystal Structure of Beraunite, Acta
Crystallogr., 22, 173–181, 1967.
Frenzel, A.: Beraunit, Neues Jahrbuch für Mineralogie, Geol.
Paläontol., 23–25, 1873.
Frondel, C.: The dufrenite problem, Am. Mineral., 34, 513–540,
1949.
Frost, R.L., López, A., Scholz, R., Xi, Y., and Lana, C.: The molecular
structure of the phosphate mineral beraunite
Fe2+Fe (PO4)4(OH)5 ⋅ 4H2O, Spectrochim.
Acta Pt. A, 128, 408–412, 2014.
Gagné, O. C. and Hawthorne, F. C.: Comprehensive derivation of
bond-valence parameters for ion pairs involving oxygen, Acta
Crystallogr., 71, 562–578, 2015.
Hoppe, R.: Effective coordination numbers (ECoN) and mean fictive ionic
radii (MEFIR), Z. Kristallogr., 150, 23–52, 1979.
Kraus, W. and Nolze, G.: POWDER CELL – a program for the representation and
manipulation of crystal structures and calculation of the resulting X-ray
powder patterns, J. Appl. Crystallogr., 29, 301–303, 1996.
Moore, P. B.: Basic ferric phosphates: a crystallochemical principle,
Science, 164, 1063–1064, 1969.
Moore, P. B.: Crystal chemistry of the basic iron phosphates, Am.
Mineral., 55, 135–169, 1970.
Moore, P. B. and Kampf, A. R.: Beraunite: refinement, comparative crystal
chemistry, and selected bond valences, Z. Kristallogr.,
201, 263–281, 1992.
Nies, A.: Strengit, ein neues Mineral, Neues Jahrb. Geol.
P., 8–16, 1877.
Nies, A.: Vorläufiger Bericht über zwei neue Mineralien von der
Grube Eleonore am Dünsberg bei Gießen, Bericht der Oberhessischen
Gesellschaft für Natur- und Heilkunde, 19, 111–113, 1880.
Ondruš, P.: ZDS – A computer program for analysis of X-ray powder
diffraction patterns, Materials Science Forum, 133–136, 297–300, EPDIC-2, Trans Tech Publications,
Enschede, Switzerland, ISBN 0-87849-661-0, 1993.
Palache, C., Berman, H., and Frondel, C.: The System of Mineralogy of James
Dwight Dana and Edward Salisbury Dana, Yale University 1837–1892, Vol. II,
7th edn., John Wiley and Sons, Inc., New York, 1951.
Pechoušek, J., Jančík, D., Frydrych, J., Navařík, J.,
and Novák, P.: Setup of Mössbauer Spectrometers at RCPTM, AIP
Conf. Proc., 1489, 186–193, 2012.
Petříček, V., Dušek, M., and Palatinus, L.:
Crystallographic computing system Jana2006: general features, Z. Kristallogr., 229, 345–352, 2014.
Petříček, V., Dušek, M., and Plášil, J.:
Crystallographic computing system Jana2006: solution and refinement of
twinned structures, Z. Kristallogr., 231, 583–599,
2016.
Pouchou, J. and Pichoir, F.: “PAP” (φρz)
procedure for improved quantitative microanalysis, in:
Microbeam Analysis, edited by: Armstrong, J. T., San Francisco Press, San Francisco, 104–106, 1985.
Rigaku (Oxford Diffraction Ltd.): CrysAlis CCD and CrysAlis RED, Rigaku Oxford Diffraction Ltd.,
Yarnton, Oxfordshire, UK, 2019.
Sejkora, J., Grey, I. E., Kampf, A. R., Price, J. R., and Čejka, J.:
Tvrdýite,
Fe2+Fe Al3(PO4)4(OH)5(OH2)4 ⋅ 2H2O, a new phosphate mineral from Krásno near Horní Slavkov,
Czech Republic, Mineral. Mag., 80, 1077–1088, 2016.
Sheldrick, G. M.: SHELXT – Integrated space-group and crystal-structure
determination, Acta Crystallogr., 71, 3–8, 2015.
Steinmann, J.: Kákoxen, Archiv für die Gesamte Naturlehre VIII,
Schrag Verlag, Nürnberg, 446 pp., 1826.
Streng, A.: Ueber die Phosphate von Waldgirmes, Neues Jahrb.
Mineral. Geol. P., 101–119, 1881.
Tvrdý, J., Plášil, J., Sejkora, J., Škoda, R., Vrtiška,
L., Dolníček, Z., Petr, M., and Veselovský, F.: Ferroberaunite,
IMA 2021-036, CNMNC Newsletter 63, Mineral. Mag., 85, 910–915, https://doi.org/10.1180/mgm.2021.74, 2021.
Tvrdý, J., Plášil, J., and Škoda, R.: New crystal-chemical
data on zincoberaunite from Krásno near Horní Slavkov (Czech
Republic), J. Geosci., 65, 45–57, 2020.
Tvrdý, J., Plášil, J., Vrtiška, L., Sejkora, J., Škoda,
R., Dolníček, Z., Petr, M., and Veselovský, F.: Ferroberaunite,
Fe2+Fe (PO4)4(OH)5 ⋅ 6H2O, a
mixed-valence iron member of the beraunite series, from the Gravel Hill
mine, Perranzabuloe, Cornwall, Mineral. Mag., https://doi.org/10.1180/mgm.2022.15, online first, 2022.
Velebil, D., Vrtiška, L., and Černý, P.: Důl Hrbek u
Zaječova – slavné historické naleziště fosfátů,
Minerál, 26, 412–421, 2018.
Žák, T. and Jirásková, Y.: CONFIT: Mössbauer spectra
fitting program, Surf. Interface Anal., 38, 710–714, 2006.
Short summary
The study of the original material of beraunite from the type locality Hrbek, Czech Rep., from collections of the TU Bergakademie Freiberg (Germany) and National Museum Prague (Czech Republic) proved the identity of the minerals beraunite and eleonorite. Because the name beraunite has priority, we consider the name eleonorite to be redundant and proposed to abolish it. The proposal 21-D approved by the IMA discredited eleonorite and accepted the formula of beraunite Fe3+6(PO4)4O(OH)4·6H2O.
The study of the original material of beraunite from the type locality Hrbek, Czech Rep., from...