Articles | Volume 36, issue 3
https://doi.org/10.5194/ejm-36-529-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-36-529-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Zvěstovite-(Fe), Ag6(Ag4Fe2)As4S13, a new member of the tetrahedrite group from the Ulatayskoe Ag–Cu–Co occurrence, eastern Siberia, Russia
Cristian Biagioni
CORRESPONDING AUTHOR
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56126 Pisa, Italy
Anatoly V. Kasatkin
Fersman Mineralogical Museum, Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Fabrizio Nestola
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, 35131 Padua, Italy
Radek Škoda
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
Vladislav V. Gurzhiy
Department of Crystallography, Institute of Earth Sciences, St Petersburg University, University Emb. 7/9, 199034 Saint Petersburg, Russia
Atali A. Agakhanov
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56126 Pisa, Italy
Natalia N. Koshlyakova
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Related authors
Giuseppe Illuminati, Silvia Musetti, Fabio Bellatreccia, Cristian Biagioni, Enrico Caprilli, Ahmad Rabiee, and Marco E. Ciriotti
Eur. J. Mineral., 37, 483–504, https://doi.org/10.5194/ejm-37-483-2025, https://doi.org/10.5194/ejm-37-483-2025, 2025
Short summary
Short summary
In this work, we present the most iron-rich chrysoberyl discovered to date, found in the Sabatini Volcanic Complex (Latium, Italy). We provide a comprehensive overview of its chemical, structural, spectroscopic, and optical properties. The characterization of this chrysoberyl reveals several unique features, offering valuable insights into its genetic model and geochemical constraints, which are consistent with existing literature on the Sabatini complex and with ongoing research.
Cristian Biagioni, Jiří Sejkora, Yves Moëlo, Georges Favreau, Vincent Bourgoin, Jean-Claude Boulliard, Elena Bonaccorsi, Daniela Mauro, Silvia Musetti, Marco Pasero, Natale Perchiazzi, and Jana Ulmanová
Eur. J. Mineral., 37, 319–335, https://doi.org/10.5194/ejm-37-319-2025, https://doi.org/10.5194/ejm-37-319-2025, 2025
Short summary
Short summary
Ginelfite is a new Ag–Fe–Tl–Pb sulfosalt described from the hydrothermal deposit of Jas Roux (France). It belongs to the so-called boxwork sulfosalts, a group of species showing the highest structural complexity among this group of chalcogenides. This very complex structure is probably stabilized by the occurrence of minor chemical constituents (Tl, Fe) occupying specific structural positions.
Cristian Biagioni, Daniela Mauro, Jiří Sejkora, Zdeněk Dolníček, Andrea Dini, and Radek Škoda
Eur. J. Mineral., 37, 39–52, https://doi.org/10.5194/ejm-37-39-2025, https://doi.org/10.5194/ejm-37-39-2025, 2025
Short summary
Short summary
Dacostaite is a new fluoride–arsenate mineral found in the Sb(Au) deposit of the Cetine di Cotorniano Mine (Tuscany, Italy). It shows a novel crystal structure formed by heteropolyhedral layers and isolated Mg(H2O)6 groups connected by H bonds. The heteropolyhedral layers are similar to those occurring in alunite-supergroup minerals, and this is a further example of the ability of nature to use similar modules in forming the large number of currently known structural arrangements.
Cristian Biagioni, Enrico Mugnaioli, Sofia Lorenzon, Daniela Mauro, Silvia Musetti, Jiří Sejkora, Donato Belmonte, Nicola Demitri, and Zdeněk Dolníček
Eur. J. Mineral., 36, 1011–1022, https://doi.org/10.5194/ejm-36-1011-2024, https://doi.org/10.5194/ejm-36-1011-2024, 2024
Short summary
Short summary
Nannoniite, Al2(OH)5F, is a new mineral species discovered in the Cetine di Cotorniano mine (Tuscany, Italy). Its description was possible through a multi-technique approach, and its crystal structure was solved through three-dimensional electron diffraction, revealing close relations with gibbsite. The partial replacement of (OH) by F induces subtle by detectable structural changes. This study reveals that Al hydroxides could be a source of F in geological environments.
Jonas Toupal, Daniela Mauro, Cristian Biagioni, Federica Zaccarini, and Reto Gieré
Eur. J. Mineral., 36, 1–10, https://doi.org/10.5194/ejm-36-1-2024, https://doi.org/10.5194/ejm-36-1-2024, 2024
Short summary
Short summary
In this work, we refine the crystal structure of childrenite. Additionally, we provide compositional data to substantially extend the published solid-solution series between childrenite and eosphorite, the Fe and Mn endmembers, respectively. We analyze the valence state of iron to avoid erroneous classification of ernstite or potential discovery of "oxychildrenite", a mineral species not yet confirmed to be stable in nature.
Jiří Sejkora, Cristian Biagioni, Pavel Škácha, Silvia Musetti, Anatoly V. Kasatkin, and Fabrizio Nestola
Eur. J. Mineral., 35, 897–907, https://doi.org/10.5194/ejm-35-897-2023, https://doi.org/10.5194/ejm-35-897-2023, 2023
Short summary
Short summary
We present the description of new mineral – a Cd-dominant member of the tetrahedrite group, tetrahedrite-(Cd), from the Radětice deposit near Příbram, Czech Republic. All necessary data including crystal structure were successfully determined, and the mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (number 2022-115).
Daniela Mauro, Cristian Biagioni, Jiří Sejkora, Zdeněk Dolníček, and Radek Škoda
Eur. J. Mineral., 35, 703–714, https://doi.org/10.5194/ejm-35-703-2023, https://doi.org/10.5194/ejm-35-703-2023, 2023
Short summary
Short summary
Batoniite is a new mineral species belonging to the Al2O3–SO3–H2O ternary system, first found in the Cetine di Cotorniano Mine (Tuscany, Italy). This hydrated Al sulfate shows a novel crystal structure, characterized by Al octamers, so far reported in only synthetic compounds.
Cristian Biagioni, Ferdinando Bosi, Daniela Mauro, Henrik Skogby, Andrea Dini, and Federica Zaccarini
Eur. J. Mineral., 35, 81–94, https://doi.org/10.5194/ejm-35-81-2023, https://doi.org/10.5194/ejm-35-81-2023, 2023
Short summary
Short summary
Dutrowite is the first tourmaline supergroup minerals having Ti as a species-defining chemical constituent. Its finding improves our knowledge on the crystal chemistry of this important mineral group and allows us to achieve a better picture of the mechanisms favouring the incorporation of Ti.
Cristian Biagioni, Marco E. Ciriotti, Georges Favreau, Daniela Mauro, and Federica Zaccarini
Eur. J. Mineral., 34, 365–374, https://doi.org/10.5194/ejm-34-365-2022, https://doi.org/10.5194/ejm-34-365-2022, 2022
Short summary
Short summary
The paper reports the type description of the new mineral species graulichite-(La). This is a new addition to the dussertite group within the alunite supergroup, and its discovery improves our knowledge on the crystal chemistry of this important supergroup of minerals, having both technological and environmental applications.
Daniela Mauro, Cristian Biagioni, and Federica Zaccarini
Eur. J. Mineral., 33, 717–726, https://doi.org/10.5194/ejm-33-717-2021, https://doi.org/10.5194/ejm-33-717-2021, 2021
Short summary
Short summary
This work reports the full crystal-chemical characterization of gersdorffite from Contrada Zillì (Peloritani Mountains, Sicily, Italy). The structural type shown by gersdorffite (ordered polytype 213) and its chemistry agree with low-temperature crystallization conditions. Moreover, the chemical zoning of the studied crystals recorded changes in the crystallization physicochemical conditions. This zoning may be due to a multistage crystallization, related to the evolution of the ore deposits.
Yves Moëlo and Cristian Biagioni
Eur. J. Mineral., 32, 623–635, https://doi.org/10.5194/ejm-32-623-2020, https://doi.org/10.5194/ejm-32-623-2020, 2020
Short summary
Short summary
The plagionite group is a family of complex sulfides (
lead-antimony sulfosalts) encountered in various Pb-Cu-Zn ore deposits. Analysis of these crystal structures confirms a systematic Pb-versus-Sb substitution in two adjacent cation positions. Such a substitution varies according not only to the Pb / Sb ratio of each member but also, apparently, to the kinetics of crystallization. Re-examination of a Pb-free synthetic derivative permitted its redefinition as a Na-Sb sulfosalt.
Giuseppe Illuminati, Silvia Musetti, Fabio Bellatreccia, Cristian Biagioni, Enrico Caprilli, Ahmad Rabiee, and Marco E. Ciriotti
Eur. J. Mineral., 37, 483–504, https://doi.org/10.5194/ejm-37-483-2025, https://doi.org/10.5194/ejm-37-483-2025, 2025
Short summary
Short summary
In this work, we present the most iron-rich chrysoberyl discovered to date, found in the Sabatini Volcanic Complex (Latium, Italy). We provide a comprehensive overview of its chemical, structural, spectroscopic, and optical properties. The characterization of this chrysoberyl reveals several unique features, offering valuable insights into its genetic model and geochemical constraints, which are consistent with existing literature on the Sabatini complex and with ongoing research.
Cristian Biagioni, Jiří Sejkora, Yves Moëlo, Georges Favreau, Vincent Bourgoin, Jean-Claude Boulliard, Elena Bonaccorsi, Daniela Mauro, Silvia Musetti, Marco Pasero, Natale Perchiazzi, and Jana Ulmanová
Eur. J. Mineral., 37, 319–335, https://doi.org/10.5194/ejm-37-319-2025, https://doi.org/10.5194/ejm-37-319-2025, 2025
Short summary
Short summary
Ginelfite is a new Ag–Fe–Tl–Pb sulfosalt described from the hydrothermal deposit of Jas Roux (France). It belongs to the so-called boxwork sulfosalts, a group of species showing the highest structural complexity among this group of chalcogenides. This very complex structure is probably stabilized by the occurrence of minor chemical constituents (Tl, Fe) occupying specific structural positions.
Tonči Balić-Žunić, Anna Garavelli, Donatella Mitolo, Fabrizio Nestola, Martha Giovanna Pamato, Maja Bar Rasmussen, and Morten Bjerkvig Jølnæs
Eur. J. Mineral., 37, 79–89, https://doi.org/10.5194/ejm-37-79-2025, https://doi.org/10.5194/ejm-37-79-2025, 2025
Short summary
Short summary
Heimaeyite (Na3Al(SO4)3) has been found in fumaroles on Eldfell volcano, which lies on the island of Heimaey, Iceland. Its crystal structure contains Al–sulfate chains and belongs to a known structure type that also comprises K–Nb, K–Ta, Na–V, and Na–Fe representatives. We registered small Fe–Al substitution in heimaeyite, which might indicate a solid solution between Na–Al and Na–Fe compounds. We investigated the specimen with electron microscopy, an electron microprobe, and X-ray diffraction.
Cristian Biagioni, Daniela Mauro, Jiří Sejkora, Zdeněk Dolníček, Andrea Dini, and Radek Škoda
Eur. J. Mineral., 37, 39–52, https://doi.org/10.5194/ejm-37-39-2025, https://doi.org/10.5194/ejm-37-39-2025, 2025
Short summary
Short summary
Dacostaite is a new fluoride–arsenate mineral found in the Sb(Au) deposit of the Cetine di Cotorniano Mine (Tuscany, Italy). It shows a novel crystal structure formed by heteropolyhedral layers and isolated Mg(H2O)6 groups connected by H bonds. The heteropolyhedral layers are similar to those occurring in alunite-supergroup minerals, and this is a further example of the ability of nature to use similar modules in forming the large number of currently known structural arrangements.
Cristian Biagioni, Enrico Mugnaioli, Sofia Lorenzon, Daniela Mauro, Silvia Musetti, Jiří Sejkora, Donato Belmonte, Nicola Demitri, and Zdeněk Dolníček
Eur. J. Mineral., 36, 1011–1022, https://doi.org/10.5194/ejm-36-1011-2024, https://doi.org/10.5194/ejm-36-1011-2024, 2024
Short summary
Short summary
Nannoniite, Al2(OH)5F, is a new mineral species discovered in the Cetine di Cotorniano mine (Tuscany, Italy). Its description was possible through a multi-technique approach, and its crystal structure was solved through three-dimensional electron diffraction, revealing close relations with gibbsite. The partial replacement of (OH) by F induces subtle by detectable structural changes. This study reveals that Al hydroxides could be a source of F in geological environments.
Jonas Toupal, Daniela Mauro, Cristian Biagioni, Federica Zaccarini, and Reto Gieré
Eur. J. Mineral., 36, 1–10, https://doi.org/10.5194/ejm-36-1-2024, https://doi.org/10.5194/ejm-36-1-2024, 2024
Short summary
Short summary
In this work, we refine the crystal structure of childrenite. Additionally, we provide compositional data to substantially extend the published solid-solution series between childrenite and eosphorite, the Fe and Mn endmembers, respectively. We analyze the valence state of iron to avoid erroneous classification of ernstite or potential discovery of "oxychildrenite", a mineral species not yet confirmed to be stable in nature.
Jiří Sejkora, Cristian Biagioni, Pavel Škácha, Silvia Musetti, Anatoly V. Kasatkin, and Fabrizio Nestola
Eur. J. Mineral., 35, 897–907, https://doi.org/10.5194/ejm-35-897-2023, https://doi.org/10.5194/ejm-35-897-2023, 2023
Short summary
Short summary
We present the description of new mineral – a Cd-dominant member of the tetrahedrite group, tetrahedrite-(Cd), from the Radětice deposit near Příbram, Czech Republic. All necessary data including crystal structure were successfully determined, and the mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (number 2022-115).
Daniela Mauro, Cristian Biagioni, Jiří Sejkora, Zdeněk Dolníček, and Radek Škoda
Eur. J. Mineral., 35, 703–714, https://doi.org/10.5194/ejm-35-703-2023, https://doi.org/10.5194/ejm-35-703-2023, 2023
Short summary
Short summary
Batoniite is a new mineral species belonging to the Al2O3–SO3–H2O ternary system, first found in the Cetine di Cotorniano Mine (Tuscany, Italy). This hydrated Al sulfate shows a novel crystal structure, characterized by Al octamers, so far reported in only synthetic compounds.
Ross J. Angel, Mattia L. Mazzucchelli, Kira A. Musiyachenko, Fabrizio Nestola, and Matteo Alvaro
Eur. J. Mineral., 35, 461–478, https://doi.org/10.5194/ejm-35-461-2023, https://doi.org/10.5194/ejm-35-461-2023, 2023
Short summary
Short summary
We have developed the thermodynamic theory of the properties of inclusions consisting of more than one phase, including inclusions containing solids plus a fluid. We present a software utility that enables for the first time the entrapment conditions of multiphase inclusions to be determined from the measurement of their internal pressure when that is measured in a laboratory.
Yanjuan Wang, Fabrizio Nestola, Huaikun Li, Zengqian Hou, Martha G. Pamato, Davide Novella, Alessandra Lorenzetti, Pia Antonietta Antignani, Paolo Cornale, Jacopo Nava, Guochen Dong, and Kai Qu
Eur. J. Mineral., 35, 361–372, https://doi.org/10.5194/ejm-35-361-2023, https://doi.org/10.5194/ejm-35-361-2023, 2023
Short summary
Short summary
In this work we have applied the elastic geobarometry approach to a Chinese diamond in order to determine the depth of formation of an olivine-bearing diamond. Together with the temperature of residence at which the diamond resided in the mantle, we were able to discover that the diamond was formed at about 190 km depth. Beyond the geological meaning of our results, this work could be a reference paper for future works on Chinese diamonds using elastic geobarometry.
Cristian Biagioni, Ferdinando Bosi, Daniela Mauro, Henrik Skogby, Andrea Dini, and Federica Zaccarini
Eur. J. Mineral., 35, 81–94, https://doi.org/10.5194/ejm-35-81-2023, https://doi.org/10.5194/ejm-35-81-2023, 2023
Short summary
Short summary
Dutrowite is the first tourmaline supergroup minerals having Ti as a species-defining chemical constituent. Its finding improves our knowledge on the crystal chemistry of this important mineral group and allows us to achieve a better picture of the mechanisms favouring the incorporation of Ti.
Yanjuan Wang, Fabrizio Nestola, Zengqian Hou, Xiangping Gu, Guochen Dong, Zhusen Yang, Guang Fan, Zhibin Xiao, and Kai Qu
Eur. J. Mineral., 35, 65–74, https://doi.org/10.5194/ejm-35-65-2023, https://doi.org/10.5194/ejm-35-65-2023, 2023
Short summary
Short summary
Bobtraillite is an extremely rare cyclosilicate with a unique composition and complex structure. In this paper, we describe the second occurrence of the extremely rare complex zirconium silicate. The results suggest that the ideal formula of bobtraillite could be written as (Na, □)12(□, Na)12Sr12Zr14(Si3O9)10[Si2BO7(OH)2]6·12H2O.
Luca Faccincani, Valerio Cerantola, Fabrizio Nestola, Paolo Nimis, Luca Ziberna, Leonardo Pasqualetto, Aleksandr I. Chumakov, Jeffrey W. Harris, and Massimo Coltorti
Eur. J. Mineral., 34, 549–561, https://doi.org/10.5194/ejm-34-549-2022, https://doi.org/10.5194/ejm-34-549-2022, 2022
Short summary
Short summary
We determined the physical conditions at the time of its entrapment for an inclusion pair hosted in a Siberian diamond (Udachnaya kimberlite) and found that it equilibrated under relatively oxidized conditions, near the enstatite–magnesite–olivine–diamond (EMOD) buffer, similarly to Udachnaya xenoliths originating from comparable depths. These results can be reconciled with models suggesting relatively oxidized, water-rich CHO fluids as the most likely parents for lithospheric diamonds.
Cristian Biagioni, Marco E. Ciriotti, Georges Favreau, Daniela Mauro, and Federica Zaccarini
Eur. J. Mineral., 34, 365–374, https://doi.org/10.5194/ejm-34-365-2022, https://doi.org/10.5194/ejm-34-365-2022, 2022
Short summary
Short summary
The paper reports the type description of the new mineral species graulichite-(La). This is a new addition to the dussertite group within the alunite supergroup, and its discovery improves our knowledge on the crystal chemistry of this important supergroup of minerals, having both technological and environmental applications.
Luboš Vrtiška, Jaromír Tvrdý, Jakub Plášil, Jiří Sejkora, Radek Škoda, Nikita V. Chukanov, Andreas Massanek, Jan Filip, Zdeněk Dolníček, and František Veselovský
Eur. J. Mineral., 34, 223–238, https://doi.org/10.5194/ejm-34-223-2022, https://doi.org/10.5194/ejm-34-223-2022, 2022
Short summary
Short summary
The study of the original material of beraunite from the type locality Hrbek, Czech Rep., from collections of the TU Bergakademie Freiberg (Germany) and National Museum Prague (Czech Republic) proved the identity of the minerals beraunite and eleonorite. Because the name beraunite has priority, we consider the name eleonorite to be redundant and proposed to abolish it. The proposal 21-D approved by the IMA discredited eleonorite and accepted the formula of beraunite Fe3+6(PO4)4O(OH)4·6H2O.
Daniela Mauro, Cristian Biagioni, and Federica Zaccarini
Eur. J. Mineral., 33, 717–726, https://doi.org/10.5194/ejm-33-717-2021, https://doi.org/10.5194/ejm-33-717-2021, 2021
Short summary
Short summary
This work reports the full crystal-chemical characterization of gersdorffite from Contrada Zillì (Peloritani Mountains, Sicily, Italy). The structural type shown by gersdorffite (ordered polytype 213) and its chemistry agree with low-temperature crystallization conditions. Moreover, the chemical zoning of the studied crystals recorded changes in the crystallization physicochemical conditions. This zoning may be due to a multistage crystallization, related to the evolution of the ore deposits.
Yves Moëlo and Cristian Biagioni
Eur. J. Mineral., 32, 623–635, https://doi.org/10.5194/ejm-32-623-2020, https://doi.org/10.5194/ejm-32-623-2020, 2020
Short summary
Short summary
The plagionite group is a family of complex sulfides (
lead-antimony sulfosalts) encountered in various Pb-Cu-Zn ore deposits. Analysis of these crystal structures confirms a systematic Pb-versus-Sb substitution in two adjacent cation positions. Such a substitution varies according not only to the Pb / Sb ratio of each member but also, apparently, to the kinetics of crystallization. Re-examination of a Pb-free synthetic derivative permitted its redefinition as a Na-Sb sulfosalt.
Cited articles
Andreasen, J. W., Makovicky, E., Lebech, B., and Karup-Møller, S.: The role of iron in tetrahedrite and tennantite determined by Rietveld refinement of neutron powder diffraction data, Phys. Chem. Miner., 35, 447–454, 2008.
Biagioni, C., George, L. G., Cook, N. J., Makovicky, E., Moëlo, Y., Pasero, M., Sejkora, J., Stanley, C. J., Welch, M. D., and Bosi, F.: The tetrahedrite group: Nomenclature and classification, Am. Mineral., 105, 109–122, 2020a.
Biagioni, C., Sejkora, J., Moëlo, Y., Makovicky, E., Pasero, M., and Dolníček, Z.: Kenoargentotennantite-(Fe), IMA 2020-062, in: CNMNC Newsletter 58, Eur. J. Mineral., 32, https://doi.org/10.5194/ejm-32-645-2020, 2020b.
Biagioni, C., Sejkora, J., Raber, T., Roth, P., Moëlo, Y., Dolníček, Z., and Pasero, M.: Tennantite-(Hg), Cu6(Cu4Hg2)As4S13, a new tetrahedrite-group mineral from the Lengenbach quarry, Binn, Switzerland, Mineral. Mag., 85, 744–751, 2021.
Biagioni, C., Kasatkin, A. V., Nestola, F., Škoda, R., Agakhanov, A. A., and Koshlyakova, N. N.: Zvĕstovite-(Fe), IMA 2022-092, in: CNMNC Newsletter 70, Eur. J. Mineral., 34, https://doi.org/10.5194/ejm-34-591-2022, 2022a.
Biagioni, C., Kasatkin, A. V., Sejkora, J., Nestola, F., and Škoda, R.: Tennantite-(Cd), Cu6(Cu4Cd2)As4S13, from the Berenguela mining district, Bolivia: the first Cd-member of the tetrahedrite group, Mineral. Mag., 86, 834–840, 2022b.
Biagioni, C., Sejkora, J., Moëlo, Y., Marcoux, E., Mauro, D., and Dolníček, Z.: Tennantite-(Cu), Cu12As4S13, from Layo, Arequipa Department, Peru: a new addition to the tetrahedrite-group minerals, Mineral. Mag., 86, 331–339, 2022c.
Bindi, L., Nespolo, M., Krivovichev, S. V., Chapuis, G., and Biagioni, C.: Producing highly complicated materials. Nature does it better, Rep. Prog. Phys. 83, 106501, https://doi.org/10.1088/1361-6633/abaa3a, 2020.
Brese, N. E. and O'Keeffe, M.: Bond-valence parameters for solids, Acta Crystallogr. B, 47, 192–197, 1991.
Britvin, S. N., Dolivo-Dobrovolsky, D. V., and Krzhizhanovskaya, M. G.: Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer, Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104–107, 2017 (in Russian).
Flack, H. D.: On enantiomorph-polarity estimation, Acta Crystallogr. A, 39, 876–881, 1983.
Gan, L. C.: Manson Lode, a stratabound base metal-silver deposit in North Kelantan, Malaysia, unpublished thesis, Montan-Universität Leoben, Austria, 171 pp., 1980.
Holland, T. J. B. and Redfern, S. A. T.: Unit cell refinement from powder diffraction data: the use of regression diagnostics, Mineral. Mag., 61, 65–77, 1997.
Johnson, N. E., Craig, J. R., and Rimstidt, J. D.: Compositional trends in tetrahedrite, Can. Mineral., 24, 385–397, 1986.
Johnson, N. E., Craig, J. R., and Rimstidt, J. D.: Crystal chemistry of tetrahedrite, Am. Mineral., 73, 389–397, 1988.
Koch, H.-P. and Heider, K.-J.: Die Selenid-Mineralisation der Grube “Frische Lutter” bei Bad Lauterbach, Harz, Der Aufschluss, 69, 1–21, 2018 (in German).
Kraus, W. and Nolze, G.: POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, J. Appl. Cryst., 29, 301–303, 1996.
Lebedev, V. I.: Ore-magmatic systems of reference arsenide-cobalt deposits, Novosibirsk, SO RAN, 136 pp., 1998 (in Russian).
Makovicky, E. and Skinner, B. J.: Studies of the sulfosalts of copper. VII. Crystal structures of the exsolution products Cu12.3Sb4S13 and Cu13.8Sb4S13 of unsubstituted synthetic tetrahedrite, Can. Mineral., 17, 619–634, 1979.
Makovicky, E., Karanović, L., Poleti, D., Balić-Zunić, T., and Paar, W. H.: Crystal structure of copper-rich unsubstituted tennantite, Cu12.5As4S13, Can. Mineral., 43, 679–688, 2005.
Mikuš, T., Vlasáč, J., Majzlan, J., Sejkora, J., Steciuk, G., Plášil, J., Rößler, C., and Matthes, C.: Argentotetrahedrite-(Cd), Ag6(Cu4Cd2)Sb4S13, a new member of the tetrahedrite group from Rudno nad Hronom, Slovakia, Mineral. Mag., 87, 262–270, 2023.
Mills, S. J., Hatert, F., Nickel, E. H., and Ferraris, G.: The standardisation of mineral group hierarchies: application to recent nomenclature proposals, Eur. J. Miner., 21, 1073–1080, https://doi.org/10.1127/0935-1221/2009/0021-1994, 2009.
Musetti, S., Sejkora, J., Biagioni, C., and Dolníček, Z.: Tellurium-rich stibiogoldfieldite and Se-bearing dantopaite from Goldfield, Nevada, USA: new crystal chemical data, Mineral. Mag., 88, 40–48, 2024.
Nikiforov, A. V., Bolonin, A. V., Sugorakova, A. M., Popov, V. A., and Lykhin, D. A.: Carbonatites of Central Tuva: geological structure, mineral and chemical composition, Geol. Ore Deposit., 47, 360–382, 2005.
Pouchou, J. L. and Pichoir, F.: “PAP” (φρZ) procedure for improved quantitative microanalysis, in: Microbeam Analysis, edited by: Armstrong, J. T., 104–106, San Francisco Press, San Francisco, 1985.
Prokopyev, I. R.: Geological and physic-chemical conditions for the formation of Fe-F-REE carbonatites of Central Tuva, PhD Thesis, Novosibirsk, 152 pp., 2014 (in Russian).
Qu, K., Sima, X., Gu, X., Sun, W., Fan, G., Yang, Z., and Wang, Y.: Kenoargentotetrahedrite-(Zn), [Ag6]4+(Cu4Zn2)Sb4S12□, a new member of the tetrahedrite group from the Yindongpo Au deposit, China, Eur. J. Mineral., 36, 397–409, https://doi.org/10.5194/ejm-36-397-2024, 2024a.
Qu, K., Su, W., Nestola, F., Gu, X., Yang, Z., Sima, X., Tang, C., Fan, G., and Wang, Y.: Kenorozhdestvenskayaite-(Fe), Ag6(Ag4Fe2)Sb4S12□: A new tetrahedrite-group mineral containing a natural [Ag6]4+ cluster and its relationship to the synthetic ternary phosphide (Ag6M4P12)M'6, Am. Mineral., https://doi.org/10.2138/am-2023-9074, online first, 2024b.
Sejkora, J., Biagioni, C., Vrtiška, L., and Moëlo, Y.: Zvěstovite-(Zn), Ag6(Ag4Zn2)As4S13, a new tetrahedrite-group mineral from Zvěstov, Czech Republic, Mineral. Mag., 85, 716–724, 2021.
Sejkora, J., Biagioni, C., Števko, M., Raber, T., Roth, P., and Vrtiška, L.: Argentotetrahedrite-(Zn), Ag6(Cu4Zn2)Sb4S13, a new member of the tetrahedrite group, Mineral. Mag., 86, 319–330, 2022.
Sejkora, J., Biagioni, C., Škácha, P., Musetti, S., Kasatkin, A. V., and Nestola, F.: Tetrahedrite-(Cd), Cu6(Cu4Cd2)Sb4S13, from Radětice near Příbram, Czech Republic: the new Cd member of the tetrahedrite group, Eur. J. Mineral., 35, 897–907, https://doi.org/10.5194/ejm-35-897-2023, 2023.
Sejkora, J., Biagioni, C., Škácha, P., Musetti, S., and Mauro, D.: Arsenoústalečite, Cu12(As2Te2)Se13, a new mineral, and crystal structures of arsenoústalečite and stibioústalečite, Mineral. Mag., 88, 127–135, https://doi.org/10.1180/mgm.2023.94, 2024.
Sheldrick, G. M.: Crystal structure refinement with SHELXL, Acta Crystallogr. C, 71, 3–8, 2015.
Spiridonov, E. M., Sokolova, N. G., Gapeev, A. K., Dashevskaya, D. M., Evstigneeva, T. L., Chvileva, T. N., Demidov, V. G., Balashov, E. P., and Shulga, V. I.: A new mineral – argentotennantite, Dokl. Akad. Nauk SSSR, 290, 206–210, 1986 (in Russian).
Suh, I. K., Ohta, H., and Waseda, Y.: High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction, J. Mater. Sci., 23, 757–760, 1988.
Wang, Y., Chen, R., Gu, X., Hou, Z., Nestola, F., Yang, Z., Fan, G., Dong, G., Ye, L., and Qu, K.: Tennantite-(Ni), Cu6(Cu4Ni2)As4S13, from Luobusa ophiolite, Tibet, China: a new Ni member of the tetrahedrite group, Mineral. Mag., 87, 591–598, 2023.
Warr, L. N.: IMA-CNMNC approved mineral symbols, Mineral. Mag., 85, 291–320, 2021.
Welch, M. D., Stanley, C. J., Spratt, J., and Mills, S. J.: Rozhdestvenskayaite Ag10Zn2Sb4S13 and argentotetrahedrite Ag6Cu4(Fe2+,Zn)2Sb4S13: two Ag-dominant members of the tetrahedrite group, Eur. J. Mineral., 30, 1163–1172, 2018.
Wilson, A. J. C. (Ed.): International Tables for Crystallography Volume C: Mathematical, Physical and Chemical Tables, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1992.
Wu, P., Yang, H., Qu, K., Wang, Y. J., and Gu, X. P.: Argentotetrahedrite-(Hg), Ag6(Cu4Hg2)Sb4S13: a new tetrahedrite group mineral from the Dongping Hg-Ag deposit, Hunan Province, China, Acta Geol. Sin., 96, 418–425, 2022 (in Chinese with English abstract).
Short summary
Zvěstovite-(Fe) is a new, Ag-rich, member of the tetrahedrite group, the most widespread sulfosalts in ore deposits. Its discovery stresses the chemical variability of this mineral group, allowing for a better understanding of the structural plasticity of these compounds, which are able to host a plethora of different elements typical of hydrothermal environments.
Zvěstovite-(Fe) is a new, Ag-rich, member of the tetrahedrite group, the most widespread...