Articles | Volume 35, issue 3
https://doi.org/10.5194/ejm-35-427-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-35-427-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nomenclature of the triphylite group of minerals
Lyudmila M. Lyalina
CORRESPONDING AUTHOR
Geological Institute, Kola Science Centre of the Russian Academy of
Sciences, Apatity, 184209, Russia
Ekaterina A. Selivanova
Geological Institute, Kola Science Centre of the Russian Academy of
Sciences, Apatity, 184209, Russia
Frédéric Hatert
Laboratoire de Minéralogie, Université de Liège, B18,
4000 Liège, Belgium
Related authors
No articles found.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 549–553, https://doi.org/10.5194/ejm-37-549-2025, https://doi.org/10.5194/ejm-37-549-2025, 2025
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 337–342, https://doi.org/10.5194/ejm-37-337-2025, https://doi.org/10.5194/ejm-37-337-2025, 2025
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 249–255, https://doi.org/10.5194/ejm-37-249-2025, https://doi.org/10.5194/ejm-37-249-2025, 2025
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 75–78, https://doi.org/10.5194/ejm-37-75-2025, https://doi.org/10.5194/ejm-37-75-2025, 2025
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 1005–1010, https://doi.org/10.5194/ejm-36-1005-2024, https://doi.org/10.5194/ejm-36-1005-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 917–923, https://doi.org/10.5194/ejm-36-917-2024, https://doi.org/10.5194/ejm-36-917-2024, 2024
Martin Depret, Frédéric Hatert, Michel Blondieau, Stéphane Puccio, Muriel M. L. Erambert, Fabrice Dal Bo, and Florent Bomal
Eur. J. Mineral., 36, 687–708, https://doi.org/10.5194/ejm-36-687-2024, https://doi.org/10.5194/ejm-36-687-2024, 2024
Short summary
Short summary
Ardennite is a rare Mn-rich aluminosilicate that was originally described in Salmchâteau, Belgium. In the last few years, new samples of ardennites have been found at several localities close to Salmchâteau. These samples were analysed by electron microprobe, single-crystal X-ray diffraction, and infrared spectroscopy. The results given in this paper allow us to identify the main substitution mechanisms that occur in Belgian ardennites and to discuss the nomenclature of the ardennite group.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 599–604, https://doi.org/10.5194/ejm-36-599-2024, https://doi.org/10.5194/ejm-36-599-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 525–528, https://doi.org/10.5194/ejm-36-525-2024, https://doi.org/10.5194/ejm-36-525-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 361–367, https://doi.org/10.5194/ejm-36-361-2024, https://doi.org/10.5194/ejm-36-361-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 165–172, https://doi.org/10.5194/ejm-36-165-2024, https://doi.org/10.5194/ejm-36-165-2024, 2024
Fabrice Dal Bo, Henrik Friis, Marlina A. Elburg, Frédéric Hatert, and Tom Andersen
Eur. J. Mineral., 36, 73–85, https://doi.org/10.5194/ejm-36-73-2024, https://doi.org/10.5194/ejm-36-73-2024, 2024
Short summary
Short summary
We report the description and the characterization of a new mineral species, found in a rock sample from the geological formation called the Pilanesberg Complex, South Africa. This is a silicate mineral that contains a significant amount of sodium, calcium, iron, titanium and fluorine. Its atomic structure shows that it is related to other wöhlerite-group minerals. This work provides new insights into the crystallization conditions that ruled the formation of the Pilanesberg complex.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 1073–1078, https://doi.org/10.5194/ejm-35-1073-2023, https://doi.org/10.5194/ejm-35-1073-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 891–895, https://doi.org/10.5194/ejm-35-891-2023, https://doi.org/10.5194/ejm-35-891-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 659–664, https://doi.org/10.5194/ejm-35-659-2023, https://doi.org/10.5194/ejm-35-659-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 397–402, https://doi.org/10.5194/ejm-35-397-2023, https://doi.org/10.5194/ejm-35-397-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 285–293, https://doi.org/10.5194/ejm-35-285-2023, https://doi.org/10.5194/ejm-35-285-2023, 2023
Ferdinando Bosi, Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 75–79, https://doi.org/10.5194/ejm-35-75-2023, https://doi.org/10.5194/ejm-35-75-2023, 2023
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 591–601, https://doi.org/10.5194/ejm-34-591-2022, https://doi.org/10.5194/ejm-34-591-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 463–468, https://doi.org/10.5194/ejm-34-463-2022, https://doi.org/10.5194/ejm-34-463-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 385–391, https://doi.org/10.5194/ejm-34-385-2022, https://doi.org/10.5194/ejm-34-385-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 359–364, https://doi.org/10.5194/ejm-34-359-2022, https://doi.org/10.5194/ejm-34-359-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 253–257, https://doi.org/10.5194/ejm-34-253-2022, https://doi.org/10.5194/ejm-34-253-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 143–148, https://doi.org/10.5194/ejm-34-143-2022, https://doi.org/10.5194/ejm-34-143-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 1–6, https://doi.org/10.5194/ejm-34-1-2022, https://doi.org/10.5194/ejm-34-1-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 639–646, https://doi.org/10.5194/ejm-33-639-2021, https://doi.org/10.5194/ejm-33-639-2021, 2021
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 479–484, https://doi.org/10.5194/ejm-33-479-2021, https://doi.org/10.5194/ejm-33-479-2021, 2021
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 299–304, https://doi.org/10.5194/ejm-33-299-2021, https://doi.org/10.5194/ejm-33-299-2021, 2021
Yannick Bruni, Frédéric Hatert, Philippe George, Hélène Cambier, and David Strivay
Eur. J. Mineral., 33, 221–232, https://doi.org/10.5194/ejm-33-221-2021, https://doi.org/10.5194/ejm-33-221-2021, 2021
Short summary
Short summary
The reliquary crown, hosted in the diocesan museum of Namur (Belgium), was produced during the beginning of the 13th century. This beautiful piece of goldsmithery is decorated with approximately 400 pearls and coloured stones which were investigated by Raman and pXRF techniques. Emeralds, pink spinels, sapphires, almandine garnets, turquoises, and pearls were identified. The gemstones, contemporary with the crown, probably arrived in Europe by the silk trade road.
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 203–208, https://doi.org/10.5194/ejm-33-203-2021, https://doi.org/10.5194/ejm-33-203-2021, 2021
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 139–143, https://doi.org/10.5194/ejm-33-139-2021, https://doi.org/10.5194/ejm-33-139-2021, 2021
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 32, 645–651, https://doi.org/10.5194/ejm-32-645-2020, https://doi.org/10.5194/ejm-32-645-2020, 2020
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 32, 495–499, https://doi.org/10.5194/ejm-32-495-2020, https://doi.org/10.5194/ejm-32-495-2020, 2020
Cited articles
Alberti, A.: Crystal structure of ferrisicklerite,
Li<1(Fe3+,Mn2+)PO4, Acta Crystallogr. B, 32,
2761–2764, 1976.
Alluaud, F.: Notices sur l'hétérosite, l'hureaulite (fer et
manganèse phosphatés), et sur quelques autres minéraux du
département de la Haute-Vienne, Anneles des Sciences Naturelles, 8,
334–354, 1826.
Baijot, M., Hatert, F., and Philippo, S.: Mineralogy and geochemistry of
phosphates and silicates in the Sapucaia pegmatite, Minas Gerais, Brazil:
genetic implications, Can. Mineral., 50, 1531–1554,
https://doi.org/10.3749/canmin.50.6.1531, 2012.
Bayrakov, V. V., Yakubovich, O. V., Simonov, M. A., Borisovskiy, S. E., and
Ziborova, T. A.: Simferite, Li(Mg,Fe3+,
Mn3+)2[PO4]2, a new mineral, Mineral Zh., 27, 112–120,
2005.
Björling, C. O. and Westgren, A.: Minerals of the Varuträsk
Pegmatite, Geol. Fören. Stock. För., 60,
67–72, 1938.
Brush, G. J. and Dana, E. S.: On a new and remarkable mineral locality in
Fairfield County, Connecticut; with a description of several new species
occurring there. First Paper, American Journal of Science and Arts, 116,
114–123, 1878.
Brush, G. J., Dana, E. S., and Wells, H. L.: On the mineral locality at
Branchville, Connecticut. Fifth paper, Am. J. Sci., 39,
201–216, 1890.
Chapman, C. A.: Large magnesia-rich triphylite crystals in pegmatite, Am.
Mineral., 28, 90–98, 1943.
Ercit, T. S., Piilonen, P. C., Locock, A. J., Kolitsch, U., and Rowe, R.: New
mineral names, Am. Mineral, 91, 1201–1209, 2006.
Eventoff, W., Martin, R., and Peacor D. R.: The crystal structure of
heterosite, Am. Mineral, 57, 45–51, 1972.
Fehr, K. Y., Hochleitner, R., Schmidbauer, E., and Schneider, J.: Mineralogy,
Mössbauer spectra and electrical conductivity of triphylite
Li(Fe2+,Mn2+)PO4, Phys. Chem. Miner., 34,
485–494, https://doi.org/10.1007/s00269-007-0164-8, 2007.
Finger, L. W. and Rapp, G. R.: Refinement of the crystal structure of
triphylite, Carnegie I. Wash., 68, 290–292, 1969.
Fleischer's Glossary of Mineral Species 2008: 10th Edn., edited by: Back, M. E. and Mandarino, J. A., Mineralogical Record Inc., Tucson, Arizona 85740, USA, 346 pp., 2008.
Fontan, P. F., Huvelin, P., Orliac, M., and Permingeat, F.: La
ferrisicklérite des pegmatites de Sidi Bou Othmane (Jebilet, Maroc) et
le groupe des minéraux à structure de triphylite, B.
Soc. Fr. Minéral. Cr., 99,
274–286, 1976 (in French with English abstract).
Fransolet, A. M., Antenucci, D., Speetjens, J. M., and Tarte, P.: An X-ray
determinative method for the divalent cation ratio in the
triphylite-lithiophilite series, Mineral. Mag., 48, 373–381, 1984.
Fransolet, A. M., Keller, P., and Fontan, F.: The phosphate mineral
associations of the Tsaobismund pegmatite, Namibia, Contrib. Mineral.
Petrol., 92, 502–517, 1986.
Fuchs, J. N.: Ueber ein neues Mineral (Triphylin), J. Prakt.
Chem., 3, 98–104, 1834.
Gai, M., Chen, Z., Fan, Z., and Wang, J.: Synthesis and luminescence in
LiMgPO4 : Tb,Sm,B phosphors with possible applications in real-time
dosimetry, J. Rare Earths, 31, 551–554, 2013.
Graton, L. C. and Schaller, W. T.: Purpurite, a new mineral, Am. J.
Sci., 20, 146–151, 1905.
Hatert, F.: Iron-Manganese Phosphates with the Olivine – and
Alluaudite-Type Structures: Crystal Chemistry and Applications, in: Minerals
as Advanced Materials II, edited by: Krivovichev, S., Springer Heidelberg,
New York, Dordrecht, London, 279–291,
https://doi.org/10.1007/978-3-642-20018-2, 2012.
Hatert, F. and Burke, E.: THE IMA–CNMNC dominant-constituent rule revisited
and extended, Can. Mineral., 46, 717–728,
https://doi.org/10.3749/canmin.46.3.717, 2008.
Hatert, F., Fransolet, A. M., and Maresch, W. V.: The stability of primary
alluaudites in granitic pegmatites: an experimental investigation of the
Na2(Mn2−2xFe )(PO4)3 system, Contrib.
Mineral. Petr., 152, 399–419, https://doi.org/10.1007/s00410-006-0115-2, 2006.
Hatert, F., Ottolini, L., and Schmid-Beurmann, P.: Experimental
investigation of the alluaudite + triphylite assemblage, and development
of the Na-in-triphylite geothermometer: applications to natural pegmatite
phosphates, Contrib. Mineral. Petr., 161, 531–546,
https://doi.org/10.1007/s00410-010-0547-6, 2011a.
Hatert, F., Ottolini, L., Fontan, F., Keller, P., Roda-Robles, E., and
Fransolet, A. M.: The crystal chemistry of olivine-type phosphates,
the Contributions to the 5th International Symposium on Granitic pegmatites,
20–27 April 2011, Mendoza, Argentina, Associacin Geolgica Argentina,
serie D, Publicacin Especial, 14, 103–105, 2011b.
Hatert, F., Ottolini, L., Wouters, J., and Fontan, F.: A structural study of
the lithiophilite-sicklerite series, Can. Mineral., 50, 843–854, https://doi.org/10.3749/canmin.50.4.843, 2012.
Jana, S., Lingannan, G., Ishtiyak, M., Panigrahi, G., Sonachalam, A., and
Prakash, J.: Syntheses, crystal structures, optical, Raman spectroscopy, and
magnetic properties of two polymorphs of NaMnPO4, Mater. Res.
Bull., 126, 110835, https://doi.org/10.1016/j.materresbull.2020.110835,
2020.
Kulig, D., Gieszczyk, W., Marczewska, B., Bilski, P., Kłosowski, M., and
Malthez, A. L. M. C.: Comparative studies on OSL properties of
LiMgPO4 : Tb,B powders and crystals, Radiat. Meas., 106, 94–99,
2017.
Langer, K., Taran, M. N., and Fransolet, A. M.: Electronic absorption spectra
of phosphate minerals with olivine-type Structures: II. The oxidized
minerals ferrisicklerite, Lix)M2[6](Fe Mn )[PO4],
and heterosite, M1[6](□1.00)M2[6](Fe Mn )[PO4], with x≤0.5, Eur. J. Mineral., 19, 589–592, https://doi.org/10.1127/0935-1221/2007/0019-1742, 2007.
Le Page, Y. and Donnay, G.: The crystal structure of the new mineral
marićite, NaFePO4, Can. Mineral., 15, 518–521, 1977.
Losey, A., Rakovan, J., Hughes, J. M., Francis, C. A., and Dyar, M. D.:
Structural variation in the lithiophilite-triphylite series and other
olivine-group structures, Can. Mineral., 42, 1105–1115, 2004.
Marczewska, B., Bilski, P., Wróbel, D., and Kłosowski, M.:
Investigations of OSL properties of LiMgPO4 : Tb,B based dosimeters,
Radiat. Meas., 90, 265–268, 2016.
Mills, S. J., Hatert, F., Nickel, E. H., and Ferraris, G.: The standardisation
of mineral group hierarchies: application to recent nomenclature proposals,
Eur. J. Mineral., 21, 1073–1080, https://doi.org/10.1127/0935-1221/2009/0021-1994,
2009.
Miyawaki, R., Hatert, F., Pasero, M., and Mills, S. J.: IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) – Newsletter 70, Eur. J. Mineral., 34, 591–601, https://doi.org/10.5194/ejm-34-591-2022, 2022.
Moore, P. B.: Natrophilite, NaMn(PO4), has ordered cations, Am.
Mineral., 57, 1333–1344, 1972.
Padhi, A. K., Nanjundaswamy, K. S., and Goodenough J. B.: Phospho-olivines as
positive materials for rechargeable lithium batteries, J. Electrochem. Soc.,
144, 1188–1194, 1997.
Quensel, P.: Minerals of the Varuträsk Pegmatite. I. The lithium –
manganese phosphates, Geol. Fören. Stock.
För., 59, 77–96, 1937.
Rakovan, J.: Li-Phosphate Minerals and Storage Batteries, Mineral Maters
Column in Elements, 1, 125, 2005.
Roda-Robles, E., Pesquera, A., García de Madinabeitia, S., Gil
Ibarguchi, J., Nizamoff, J., Simmons, W., Falster, A., and Galliski, M. A.:
On the geochemical character of primary Fe-Mn phosphates belonging to the
triphylite-lithiophilite, graftonite-beusite, and triplite-zwieselite
series: first results and implications for pegmatite petrogenesis, Can.
Mineral., 52, 321–335, https://doi.org/10.3749/canmin.52.2.321, 2014.
Schaller, W. T.: New manganese phosphates from the gem tourmaline field of
Southern California, Journal of the Washington Academy of Sciences, 2,
143–145, 1912.
Schmid-Beurmann, P., Ottolini, L., Hatert, F., Geisler, T., Huyskens, M.,
and Kahlenberg, V.: Topotactic formation of ferrisicklerite from natural
triphylite under hydrothermal conditions, Miner. Petrol., 107, 501–515,
https://doi.org/10.1007/s00710-012-0250-6, 2013.
Shannon, R. D., Shannon, R. C., Medenbach, O., and Fischer, R. X.: Refractive
Index and Dispersion of Fluorides and Oxides, J. Phys. Chem. Ref. Data,
31, 931–970, 2002.
Shigley, J. E. and Brown, G. E.: Occurence and alteration of phosphate
minerals at the Stewart Pegmatite, Pala District, San Diego County,
California, Am. Mineral., 70, 395–408, 1985.
Struman, B. D., Mandarino, J. A., and Corlett, M. I.: Marićite, a sodium
iron phosphate, from the Big Fish River area, Yukon Territory, Canada, Can.
Mineral., 15, 396–398, 1977.
Svetov, S. A., Stepanova, A. V., Chazhengina, S. Y., Svetova, E. N., Rybnikova,
Z. P., Mikhailova, A. I., Paramonov, A. S., Utitsyna, V. L., Ekhova, M. V., and
Kolodey, B. S.: Precision geochemical (ICP-MS, LA-ICP-MS) analysis of rock
and mineral composition: the method and accuracy estimation in the case
study of Early Precambrian mafic complexes, Proceedings of the Karelian
Research Centre RAS, 7, 54–73, https://doi.org/10.17076/geo140, 2015.
Vignola, P., Hatert, F., Fransolet, A.-M., Medenbach, O., Diella, V., and
Andò, S.: Karenwebberite, Na(Fe2+,Mn2+)PO4, a new member
of the triphylite group from the Malpensata pegmatite, Lecco Province,
Italy, Am. Mineral., 98, 767–772, 2013.
Yakubovich, O., Khasanova, N., and Antipov, E.: Mineral-Inspired Materials:
Synthetic Phosphate Analogues for Battery Applications, Minerals, 10,
524, https://doi.org/10.3390/min10060524, 2020.
Yakubovich, O. V., Bairakov, V. V., and Simonov, M. A.: Crystal structure of
simferite, Li(Mg,Fe3+,Mn3+)2[PO4]2, Proceedings of
the Academy of Sciences USSR, 307, 1119–1122, 1989 (in Russian).
Yamada, A., Takei, Y., Koizumi, H., Sonoyama, N., Kanno, R., Itoh, K.,
Yonemura, M., and Kamiyama, T.: Electrochemical, magnetic, and structural
investigation of the Lix(MnyFe1−y)PO4 olivine phases,
Chem. Mater., 18, 804–813, https://doi.org/10.1021/cm051861f,
2006.
Short summary
There are unresolved problems related to the nomenclature and identification of mineral species belonging to the triphylite group of minerals. They can be solved by discarding the traditional views on succession of mineral species during oxidation. In other words, it is necessary to separate the concepts of the origin of the mineral and the boundaries of the species.
There are unresolved problems related to the nomenclature and identification of mineral species...