Articles | Volume 34, issue 6
Eur. J. Mineral., 34, 539–547, 2022
https://doi.org/10.5194/ejm-34-539-2022
Eur. J. Mineral., 34, 539–547, 2022
https://doi.org/10.5194/ejm-34-539-2022
Research article
09 Nov 2022
Research article | 09 Nov 2022

Corresponding relationship between characteristic birefringence, strain, and impurities in Zimbabwean mixed-habit diamonds revealed by mapping techniques

Chengyang Sun et al.

Related subject area

New minerals and systematic mineralogy
TotBlocks: exploring the relationships between modular rock-forming minerals with 3D-printed interlocking brick modules
Derek D. V. Leung and Paige E. dePolo
Eur. J. Mineral., 34, 523–538, https://doi.org/10.5194/ejm-34-523-2022,https://doi.org/10.5194/ejm-34-523-2022, 2022
Short summary
Ferri-taramite, a new member of the amphibole supergroup, from the Jakobsberg Mn–Fe deposit, Värmland, Sweden
Dan Holtstam, Fernando Cámara, Andreas Karlsson, Henrik Skogby, and Thomas Zack
Eur. J. Mineral., 34, 451–462, https://doi.org/10.5194/ejm-34-451-2022,https://doi.org/10.5194/ejm-34-451-2022, 2022
Short summary
Ferro-ferri-holmquistite, Li2(Fe2+3Fe3+2)Si8O22(OH)2, Fe2+Fe3+ analogue of holmquistite, from the Iwagi islet, Ehime, Japan
Mariko Nagashima, Teruyoshi Imaoka, Takashi Kano, Jun-ichi Kimura, Qing Chang, and Takashi Matsumoto
Eur. J. Mineral., 34, 425–438, https://doi.org/10.5194/ejm-34-425-2022,https://doi.org/10.5194/ejm-34-425-2022, 2022
Short summary
Tomsquarryite, NaMgAl3(PO4)2(OH)6 8H2O, a new crandallite-derivative mineral from Tom's phosphate quarry, Kapunda, South Australia
Peter Elliott, Ian E. Grey, William G. Mumme, Colin M. MacRae, and Anthony R. Kampf
Eur. J. Mineral., 34, 375–383, https://doi.org/10.5194/ejm-34-375-2022,https://doi.org/10.5194/ejm-34-375-2022, 2022
Short summary
Graulichite-(La), LaFe3+3(AsO4)2(OH)6, a new addition to the alunite supergroup from the Patte d'Oie mine, Bou Skour mining district, Morocco
Cristian Biagioni, Marco E. Ciriotti, Georges Favreau, Daniela Mauro, and Federica Zaccarini
Eur. J. Mineral., 34, 365–374, https://doi.org/10.5194/ejm-34-365-2022,https://doi.org/10.5194/ejm-34-365-2022, 2022
Short summary

Cited articles

Agrosì, G., Tempesta, G., Scandale, E., and Harris, J. W.: Growth and post-growth defects in a diamond from Finsch mine (South Africa), Eur. J. Mineral., 25, 551–559, https://doi.org/10.1127/0935-1221/2013/0025-2301, 2013. 
Agrosì, G., Tempesta, G., Della Ventura, G., Cestelli Guidi, M., Hutchison, M., Nimis, P., and Nestola, F.: Non-Destructive In Situ Study of Plastic Deformations in Diamonds: X-ray Diffraction Topography and μFTIR Mapping of Two Super Deep Diamond Crystals from São Luiz (Juina, Brazil), Crystals, 7, 233, https://doi.org/10.3390/cryst7080233, 2017. 
Allen, B. P. and Evans, T.: Aggregation of Nitrogen in Diamond, Including Platelet Formation, Proc. R. Soc. Lond. A, 375, 93–104, https://doi.org/10.1098/rspa.1981.0041, 1981. 
Balzaretti, N. M. and daJornada, J. A. H.: Pressure dependence of the refractive index of diamond, cubic silicon carbide and cubic boron nitride, Solid State Commun., 99, 943–948, https://doi.org/10.1016/0038-1098(96)00341-9, 1996. 
Bergman, L. and Nemanich, R. J.: Raman and Photoluminescence Analysis of Stress State and Impurity Distribution in Diamond Thin-Films, J. Appl. Phys., 78, 6709–6719, https://doi.org/10.1063/1.360495, 1995. 
Download
Short summary
It was determined that growth bands showing the straight birefringence in octahedral sectors and the enrichment of graphite inclusions in cuboid sectors of Zimbabwean mixed-habit diamonds may both be due to the fluctuation of temperature during crystallization, and they displayed positive anomalies of plastic deformation, residual stress, nitrogen concentration, and VN3H defects. This conclusion clearly revealed the correlation between birefringence and spectroscopic properties of diamonds.