Articles | Volume 34, issue 6
https://doi.org/10.5194/ejm-34-539-2022
https://doi.org/10.5194/ejm-34-539-2022
Research article
 | 
09 Nov 2022
Research article |  | 09 Nov 2022

Corresponding relationship between characteristic birefringence, strain, and impurities in Zimbabwean mixed-habit diamonds revealed by mapping techniques

Chengyang Sun, Taijin Lu, Mingyue He, Zhonghua Song, and Yi Deng

Related subject area

New minerals and systematic mineralogy
Mckelveyite group minerals – Part 1: Nomenclature and new data on donnayite-(Y)
Inna Lykova, Ralph Rowe, Glenn Poirier, Gerald Giester, Kelsie Ojaste, and Henrik Friis
Eur. J. Mineral., 35, 133–142, https://doi.org/10.5194/ejm-35-133-2023,https://doi.org/10.5194/ejm-35-133-2023, 2023
Short summary
Mckelveyite group minerals – Part 2: Alicewilsonite-(YCe), Na2Sr2YCe(CO3)6  ⋅  3H2O, a new species
Inna Lykova, Ralph Rowe, Glenn Poirier, Henrik Friis, and Kate Helwig
Eur. J. Mineral., 35, 143–155, https://doi.org/10.5194/ejm-35-143-2023,https://doi.org/10.5194/ejm-35-143-2023, 2023
Short summary
Whiteite-(CaMnFe), a new jahnsite-group mineral from the Hagendorf-Süd pegmatite, Oberpfalz, Bavaria
Rupert Hochleitner, Christian Rewitzer, Ian E. Grey, William G. Mumme, Colin M. MacRae, Anthony R. Kampf, Erich Keck, Robert W. Gable, and Alexander M. Glenn
Eur. J. Mineral., 35, 95–103, https://doi.org/10.5194/ejm-35-95-2023,https://doi.org/10.5194/ejm-35-95-2023, 2023
Short summary
Dutrowite, Na(Fe2+2.5Ti0.5)Al6(Si6O18)(BO3)3(OH)3O, a new mineral from the Apuan Alps (Tuscany, Italy): the first member of the tourmaline supergroup with Ti as a species-forming chemical constituent
Cristian Biagioni, Ferdinando Bosi, Daniela Mauro, Henrik Skogby, Andrea Dini, and Federica Zaccarini
Eur. J. Mineral., 35, 81–94, https://doi.org/10.5194/ejm-35-81-2023,https://doi.org/10.5194/ejm-35-81-2023, 2023
Short summary
TotBlocks: exploring the relationships between modular rock-forming minerals with 3D-printed interlocking brick modules
Derek D. V. Leung and Paige E. dePolo
Eur. J. Mineral., 34, 523–538, https://doi.org/10.5194/ejm-34-523-2022,https://doi.org/10.5194/ejm-34-523-2022, 2022
Short summary

Cited articles

Agrosì, G., Tempesta, G., Scandale, E., and Harris, J. W.: Growth and post-growth defects in a diamond from Finsch mine (South Africa), Eur. J. Mineral., 25, 551–559, https://doi.org/10.1127/0935-1221/2013/0025-2301, 2013. 
Agrosì, G., Tempesta, G., Della Ventura, G., Cestelli Guidi, M., Hutchison, M., Nimis, P., and Nestola, F.: Non-Destructive In Situ Study of Plastic Deformations in Diamonds: X-ray Diffraction Topography and μFTIR Mapping of Two Super Deep Diamond Crystals from São Luiz (Juina, Brazil), Crystals, 7, 233, https://doi.org/10.3390/cryst7080233, 2017. 
Allen, B. P. and Evans, T.: Aggregation of Nitrogen in Diamond, Including Platelet Formation, Proc. R. Soc. Lond. A, 375, 93–104, https://doi.org/10.1098/rspa.1981.0041, 1981. 
Balzaretti, N. M. and daJornada, J. A. H.: Pressure dependence of the refractive index of diamond, cubic silicon carbide and cubic boron nitride, Solid State Commun., 99, 943–948, https://doi.org/10.1016/0038-1098(96)00341-9, 1996. 
Bergman, L. and Nemanich, R. J.: Raman and Photoluminescence Analysis of Stress State and Impurity Distribution in Diamond Thin-Films, J. Appl. Phys., 78, 6709–6719, https://doi.org/10.1063/1.360495, 1995. 
Download
Short summary
It was determined that growth bands showing the straight birefringence in octahedral sectors and the enrichment of graphite inclusions in cuboid sectors of Zimbabwean mixed-habit diamonds may both be due to the fluctuation of temperature during crystallization, and they displayed positive anomalies of plastic deformation, residual stress, nitrogen concentration, and VN3H defects. This conclusion clearly revealed the correlation between birefringence and spectroscopic properties of diamonds.