Articles | Volume 34, issue 6
https://doi.org/10.5194/ejm-34-523-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-34-523-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
TotBlocks: exploring the relationships between modular rock-forming minerals with 3D-printed interlocking brick modules
School of GeoSciences, The University of Edinburgh, Edinburgh, United
Kingdom
Harquail School of Earth Sciences, Laurentian University, Sudbury,
Ontario, Canada
Paige E. dePolo
School of GeoSciences, The University of Edinburgh, Edinburgh, United
Kingdom
Related authors
Derek D. V. Leung, Florian Fusseis, and Ian B. Butler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3499, https://doi.org/10.5194/egusphere-2025-3499, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
Curling stones often collide with each other during a game. Over time, these collisions cause damage in the striking bands on the sides of the stones. We determined experimentally how hard these stones collide into one another. We then looked at old curling stones to understand how damage builds up in these rocks. We found that early, fast impacts produce fractures until the striking band is saturated in fractures. Repeated impacts after this stage make fractures grow.
Derek D. V. Leung and Paige E. dePolo
Geosci. Commun., 6, 125–129, https://doi.org/10.5194/gc-6-125-2023, https://doi.org/10.5194/gc-6-125-2023, 2023
Short summary
Short summary
We used 3D-printed building blocks (TotBlocks) in an undergraduate optical mineralogy lab session to illustrate the links between crystal structures and the properties of minerals. Students built mica, pyroxene, and amphibole structures. We observed an improved understanding of cleavage (how minerals break) and pleochroism (how light interacts with minerals), but understanding did not improve with more abstract concepts. TotBlocks hold potential as a teaching tool in mineralogy classrooms.
Derek D. V. Leung, Florian Fusseis, and Ian B. Butler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3499, https://doi.org/10.5194/egusphere-2025-3499, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
Curling stones often collide with each other during a game. Over time, these collisions cause damage in the striking bands on the sides of the stones. We determined experimentally how hard these stones collide into one another. We then looked at old curling stones to understand how damage builds up in these rocks. We found that early, fast impacts produce fractures until the striking band is saturated in fractures. Repeated impacts after this stage make fractures grow.
Derek D. V. Leung and Paige E. dePolo
Geosci. Commun., 6, 125–129, https://doi.org/10.5194/gc-6-125-2023, https://doi.org/10.5194/gc-6-125-2023, 2023
Short summary
Short summary
We used 3D-printed building blocks (TotBlocks) in an undergraduate optical mineralogy lab session to illustrate the links between crystal structures and the properties of minerals. Students built mica, pyroxene, and amphibole structures. We observed an improved understanding of cleavage (how minerals break) and pleochroism (how light interacts with minerals), but understanding did not improve with more abstract concepts. TotBlocks hold potential as a teaching tool in mineralogy classrooms.
Cited articles
Angel, R. J. and Burnham, C. W.: Pyroxene-pyroxenoid polysomatism revisited:
A clarification, Am. Mineral., 76, 900–903, 1991.
Bailey, S. W.: Summary of recommendations of AIPEA nomenclature committee on
clay minerals, Am. Mineral., 65, 1–7, 1980.
Bailey, S. W., Frank-Kamenetskii, V. A., Goldztaub, S., Kato, A., Pabst, A.,
Schulz, H., Taylor, H. F. W., Fleischer, M., and Wilson, A. J. C.: Report of
IMA–IUCr joint committee on nomenclature, Acta Crystallogr. A, 33, 681–684,
https://doi.org/10.1107/S0567739477001703, 1977.
Barak, P. and Nater, E. A.: The Virtual Museum of Minerals and Molecules:
molecular visualization in a virtual hands-on museum, J. Nat. Resour. Life
Sci. Educ., 24, 67–71, 2005.
Brauner, K. and Preisinger, A.: Structur und entstehung des sepioliths, Tsh.
Min. Pet. Mitt., 6, 120–140, https://doi.org/10.1007/BF01128033, 1956.
Brimhall, G. H., Agee, C., and Stoffregen, R.: The hydrothermal conversion of
hornblende to biotite, Can. Mineral., 23, 369–379, 1985.
Brown, M. K., Hartling, D., Tailor, H. N., Van Wieren, K., Houghton, G. B.,
McGregor, I. G., Hansen, C. D., and Merbouh, N.: Piecewise 3D printing of
crystallographic data for post-printing construction, CrystEngComm, 21,
5757–5766, https://doi.org/10.1039/C9CE00986H, 2019.
Cameron, M., Sueno, S., Prewitt, C. T., and Papike, J. J.: High-temperature
crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and
ureyite, Am. Mineral., 58, 594–618, 1973.
Capitani, G. C. and Mellini, M.: The crystal structure of a second antigorite
polysome (m=16), by single-crystal synchrotron diffraction, Am. Mineral.,
91, 394–399, https://doi.org/10.2138/am.2006.1919, 2006.
Carlson, W. D., Swinnea, J. S., and Miser, D. E.: Stability of
orthoenstatite at high temperature and low pressure, Am. Mineral., 73,
1255–1263, 1988.
Deer, W. A., Howie, R. A., and Zussman, J.: An introduction to the
rock-forming minerals, 3rd Edn., The Mineralogical Society, London, UK, https://doi.org/10.1180/DHZ,
2013.
Demichelis, R., De La Pierre, M., Mookherjee, M., Zicovich-Wilson, C. M.,
and Orlando, R.: Serpentine polymorphism: a quantitative insight from
first-principles calculations, CrystEngComm, 18, 4412–4419, 2016.
Dixon, J. B.: Kaolin and Serpentine Group Minerals, in: Minerals in Soil
Environments, 2nd Edn., edited by: Dixon, J. B. and Weed, S. B,
SSSA Book Series, no. 1, 467–525, https://doi.org/10.2136/sssabookser1.2ed, 1989.
Dyar, M. D., Gunter, M. E., Davis, J. C., and Odell, M. R. L.: Integration
of new methods into teaching mineralogy, J. Geosci. Educ., 52, 23–30,
2004.
Fahey, J. J., Ross, M., and Axelrod, J. M.: Loughlinite, a new hydrous
sodium magnesium silicate, Am. Mineral., 45, 270–281, 1960.
Ferraris, G. and Gula, A.: Polysomatic aspects of microporous minerals –
Heterophyllosilicates, palysepioles, and rhodesite-related structures, Rev.
Min. Geochem., 57, 69–104, https://doi.org/10.2138/rmg.2005.57.3, 2005.
Ferraris, G., Khomyakov, A. P., Belluso, E., and Soboleva, S.V.:
Kalifersite, a new alkaline silicate from Kola Peninsula (Russia) based on a
palygorskite-sepiolite polysomatic series, Eur. J. Mineral., 10, 865–874,
1998.
Ferraris, G., Makovicky, E., and Merlino, S. (Eds.): Modularity at crystal scale –
Twinning, in: Crystallography of Modular Materials, Oxford University Press, Oxford, UK,
https://doi.org/10.1093/acprof:oso/9780199545698.003.0005, 2008.
Fischer, K. F.: A further refinement of the crystal structure of
cummingtonite, (Mg,Fe)7(Si4O11)2(OH)2, Am. Mineral., 51, 814–818, 1966.
Guggenheim, S., Adams, J. M., Bain, D. C., Bergaya, F., Brigatti, M. F.,
Drits, V. A., Formoso, M. L. L., Galán, E., Kogure, T., and Stanjek, H.:
Summary of recommendations of nomenclature committees relevant to clay
mineralogy: Report of the association international pour l'etude des argiles
(AIPEA) nomenclature committee for 2006, Clay. Clay Miner., 54,
761–772, 2006.
Hartman, P. and Perdok, W. G.: On the relations between structure and
morphology of crystals. I, Acta. Crystallogr., 8, 49–52,
https://doi.org/10.1107/S0365110X55000121, 1955.
Hawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W. V., Martin, R. F.,
Schumacher, J. C., and Welch, M. D.: Nomenclature of the amphibole
supergroup, Am. Mineral., 97, 2031–2048, 2012.
Hendricks, S. B. and Jefferson, M. E.: Polymorphism of the micas with
optical measurements, Am. Mineral., 24, 729–771, 1939.
Jahn, S. and Martonak, R.: Phase behavior of protoenstatite at high pressure
studied by atomistic simulations, Am. Mineral., 94, 950–956,
https://doi.org/10.2138/am.2009.3118, 2009.
Johannsen, A.: Petrographic terms for field use, J. Geol., 19, 317–332,
1911.
Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, V., Palmer, C., and
Bowyer, A.: Reprap – The replicating rapid prototype, Robotica, 29,
177–191, 2011.
Kintel, M.: OpenSCAD, GitHub [code], https://github.com/openscad/openscad/, last access: 6
February 2021.
Leung, D. D. and McDonald, A. M.: Windmountainite, □Fe Mg2Si8O20(OH)2(H2O)4 ⋅ 4H2O, a new modulated, layered
Fe3+-Mg-silicate-hydrate from Wind Mountain, New Mexico: Characterisation
and origin, with comments on the classification of palygorskite-group
minerals, Can. Mineral., 58, 477–509, 2020.
Leung, D. D. V.: derekdvleung/totblocks: Totblocks 2022.05
(totblocks-2022.05), Zenodo [code], https://doi.org/10.5281/zenodo.5240816, 2022.
Liebau, F. (Ed.): Crystal chemical classification of silicate anions, in:
Structural Chemistry of Silicates: Structure, Bonding and Classification,
Springer-Verlag, Berlin, Germany, 52–68,
https://doi.org/10.1007/978-3-642-50076-3, 1985.
McDonough, W. F. and Rudnick, R. L.: Mineralogy and composition of the upper
mantle, Rev. Mineral. Geochem., 37, 139–164, 1998.
Mellini, M.: The crystal structure of lizardite 1T: Hydrogen bonds and
polytypism, Am. Mineral., 67, 587–598, 1982.
Miramodus Ltd. Company: Miramodus alphabetic list of molecular models and crystal structure models:
https://www.miramodus.com/molecular-models/beevers-models/alphabetic-index.shtml,
last access: 3 December 2021.
Momma, K. and Izumi, F.: VESTA 3 for three-dimensional visualization of
crystal, volumentric and morphology data, J. Appl. Crystallogr., 44,
1272–1276, 2011.
Moorefield-Lang, H. M.: Makers in the library: case studies of 3D printers
and maker spaces in library settings, Libr. Hi Tech., 32, 583–593,
https://doi.org/10.1108/LHT-06-2014-0056, 2014.
Morimoto, N., Fabries, J., Ferguson, A. K., Ginzburg, I. V., Ross, M.,
Seifert, F. A., Zussman, J., Aoki, K., and Gottardi, G.: Nomenclature of
pyroxenes, Am. Mineral., 73, 1123–1133, 1988.
Nagai, T., Hattori, T., and Yamanaka, T., Compression mechanism of brucite:
An investigation by structural refinement under pressure, Am. Mineral.,
85, 760–764, https://doi.org/10.2138/am-2000-5-615, 2000.
Nespolo, M. and Bouznari, K.: Modularity of crystal structures: a unifying
model for the biopyribole-palysepiole series, Eur. J. Mineral., 29,
369–383, https://doi.org/10.1127/ejm/2017/0029-2632, 2017.
Pasero, M.: The new IMA list of minerals – A work in progress,
International Mineralogical Association, Commission on New Minerals,
Nomenclature and Classification (IMA-CNMNC), http://cnmnc.main.jp/, last
access: 1 February 2020.
Post, J. E., Bish, D. L., and Heaney, P. J.: Synchrotron powder X-ray
diffraction study of the structure and dehydration behavior of sepiolite,
Am. Mineral., 92, 91–97, https://doi.org/10.2138/am.2007.2134, 2007.
Pluth, J. J., Smith, J. V., Pushcharovsky, D. Y., Semenov, E. I., Bram, A.,
Riekel, C., Weber, H.-P., and Broach, R. W.: Third-generation synchrotron
x-ray diffraction of 6-µm crystal of raite, ≈Na3Mn3Ti0.25Si8O20(OH)2 ⋅ 10H2O, P. Natl. Acad. Sci. USA, 94, 12263–12267,
https://doi.org/10.1073/pnas.94.23.12263, 1997.
Prato, S. C. and Britton, L.: Digital fabrication technology in the library:
Where we are and where we are going, J. Assoc. Inf. Sci. Tech., 42,
12–15, 2016.
Prusa, J.: Prusa3D, GitHub [code], https://github.com/prusa3d, last access: 16 July 2021.
Pryor, S.: Implementing a 3D printing service in an academic library, J.
Libr. Adm., 54, 1–10, https://doi.org/10.1080/01930826.2014.893110, 2014.
Ralph, J.: Mindat, https://mindat.org, last access: 1 February 2020.
Rieder, M., Cavazzini, G., D'Yakonov, Y. S., Frank-Kamenetskii, V. A.,
Gottardi, G., Guggenheim, S., Koval, P. V., Müller, G., Neiva, A. M. R.,
Radoslovich, E. W., Robert, J.-L., Sassi, F. P., Takeda, H., Weiss, Z., and Wones,
D. R.: Nomenclature of the micas, Can. Mineral., 36, 905–912, 1998.
Rodenbough, P. P., Vanti, W. B., and Chan, S.-W.: 3D-printing
crystallographic unit cells for learning materials science and engineering,
J. Chem. Educ., 92, 1960–1962,
https://doi.org/10.1021/acs.jchemed.5b00597, 2015.
Ronov, A. B. and Yaroshevsky, A. A.: Chemical Composition of the Earth's
Crust, in: The Earth's Crust and Upper mantle, edited by: Hart, P. J.,
American Geophysical Union, 37–57, https://doi.org/10.1029/GM013p0037, 1969.
Simon, H. A.: The architecture of complexity, P. Am. Philos. Soc., 106,
467–482, 1962.
Takéuchi, Y.: Tropochemical cell-twinning: A structure-building
mechanism in crystalline solids, edited by: Sunagawa, I., Akimoto, S., Kushiro, I., and Morimoto, N., Terra Scientific Publishing Company, Tokyo,
Japan, 1997.
Thompson, J. B.: Recent discussions of pyroxenes and amphiboles, Am.
Mineral., 55, 292–316, 1970.
Thompson, J. B.: Biopyriboles and polysomatic series, Am. Mineral., 63,
239–249, 1978.
Thompson, J. B.: An introduction to the mineralogy and petrology of the
biopyriboles, Rev. Mineral. Geochem., 9A, 141–188, 1981.
Thompson, R. M., Yang, H., and Downs, R. T.: Ideal wollastonite and the
structural relationship between the pyroxenoids and pyroxenes, Am. Mineral.,
101, 2544–2553, https://doi.org/10.2138/am-2016-5683, 2016.
Tsui, C.-Y. and Treagust, D. F.: Introduction to multiple representations:
their importance in biology and biological education, in: Multiple
Representation in Biological Education, edited by: Treagust, D. F. and Tsui,
C.-Y., Springer, 3–18, 2013.
Veblen, D. R. and Burnham, C. W.: New biopyriboles from Chester, Vermont: I.
Descriptive mineralogy, Am. Mineral., 63, 1000–1009, 1978a.
Veblen, D. R. and Burnham, C. W.: New biopyriboles from Chester, Vermont:
II. The crystal chemistry of jimthompsonite, clinojimthompsonite, and
chesterite, and the amphibole-mica reaction, Am. Mineral., 63, 1053–1073,
1978b.
Warr, L.: IMA–CNMNC approved symbols, Mineral. Mag., 85, 291–320, 2021.
Wood, P. A., Sarjeant, A. A., Bruno, I. J., Macrae, C. F., Maynard-Casely, H. E., and
Towler, M.: The next dimension of structural science communication: simple
3D printing directly from a crystal structure, CrystEngComm, 19, 690–698,
2017.
Zanazzi, P. F., Montagnoli, M., Nazzareni, S., and Comodi, P.: Structural
effects of pressure on monoclinic chlorite: A single-crystal study, Am.
Mineral., 92, 655–661, https://doi.org/10.2138/am.2007.2341, 2007.
Zoltai, T.: Amphibole asbestos mineralogy, Rev. Mineral. Geochem., 9A,
237–278, 1981.
Short summary
Minerals have complex crystal structures, but many common minerals are built from the same chemical building blocks. TotBlocks is a novel, open-source tool for investigating these structures. It consists of 3D-printed modules representing the silica tetrahedra and metal–oxygen octahedra that form the shared chemical building blocks of rock-forming minerals. TotBlocks is a low-cost visualization tool that relates mineral properties (habit, cleavage, and symmetry) to crystal structures.
Minerals have complex crystal structures, but many common minerals are built from the same...