Articles | Volume 36, issue 4
https://doi.org/10.5194/ejm-36-555-2024
https://doi.org/10.5194/ejm-36-555-2024
Research article
 | 
03 Jul 2024
Research article |  | 03 Jul 2024

H2 mobility and redox control in open vs. closed hydrothermal oceanic systems – evidence from serpentinization experiments

Colin Fauguerolles, Teddy Castelain, Johan Villeneuve, and Michel Pichavant

Related authors

Granite magmatism and mantle filiation
Michel Pichavant, Arnaud Villaros, Julie A.-S. Michaud, and Bruno Scaillet
Eur. J. Mineral., 36, 225–246, https://doi.org/10.5194/ejm-36-225-2024,https://doi.org/10.5194/ejm-36-225-2024, 2024
Short summary

Related subject area

Experimental petrology
Re-equilibration of quartz inclusions in garnet
Benjamin A. Pummell and Jay B. Thomas
Eur. J. Mineral., 36, 581–597, https://doi.org/10.5194/ejm-36-581-2024,https://doi.org/10.5194/ejm-36-581-2024, 2024
Short summary
A brief history of solid inclusion piezobarometry
Ross J. Angel, Matteo Alvaro, and Silvio Ferrero
Eur. J. Mineral., 36, 411–415, https://doi.org/10.5194/ejm-36-411-2024,https://doi.org/10.5194/ejm-36-411-2024, 2024
Short summary
Li–Na interdiffusion and diffusion-driven lithium isotope fractionation in pegmatitic melts
Christian R. Singer, Harald Behrens, Ingo Horn, Martin Oeser, Ralf Dohmen, and Stefan Weyer
Eur. J. Mineral., 35, 1009–1026, https://doi.org/10.5194/ejm-35-1009-2023,https://doi.org/10.5194/ejm-35-1009-2023, 2023
Short summary
Depth profile analyses by femtosecond laser ablation (multicollector) inductively coupled plasma mass spectrometry for resolving chemical and isotopic gradients in minerals
Martin Oeser, Ingo Horn, Ralf Dohmen, and Stefan Weyer
Eur. J. Mineral., 35, 813–830, https://doi.org/10.5194/ejm-35-813-2023,https://doi.org/10.5194/ejm-35-813-2023, 2023
Short summary
A revised model for activity–composition relations in solid and molten FePt alloys and a preliminary model for characterization of oxygen fugacity in high-pressure experiments
Marc M. Hirschmann and Hongluo L. Zhang
Eur. J. Mineral., 35, 789–803, https://doi.org/10.5194/ejm-35-789-2023,https://doi.org/10.5194/ejm-35-789-2023, 2023
Short summary

Cited articles

Abrajano, T. A., Sturchio, N. C., Kennedy, B. M., Lyon, G. L., Muehlenbachs, K., and Bohlke, J. K.: Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines, Appl. Geochem., 5, 625–630, https://doi.org/10.1016/0883-2927(90)90060-I, 1990. a
Allen, D. E. and Seyfried Jr., W. E.: Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: An experimental study at 400 °C, 500 bars, Geochim. Cosmochim. Ac., 67, 1531–1542, https://doi.org/10.1016/S0016-7037(02)01173-0, 2003. a, b, c, d
Andreani, M., Mével, C., Boullier, A.-M., and Escartin, J.: Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites, Geochem. Geophy. Geosy., 8, Q02012, https://doi.org/10.1029/2006GC001373, 2007. a, b, c, d, e
Andreani, M., Munoz, M., Marcaillou, C., and Delacour, A.: μXANES study of iron redox state in serpentine during oceanic serpentinization, Lithos, 178, 70–83, https://doi.org/10.1016/j.lithos.2013.04.008, 2013. a, b, c, d, e
Auzende, A.-L., Daniel, I., Reynard, B., Lemaire, C., and Guyot, F.: High-pressure behaviour of serpentine minerals: a Raman spectroscopic study, Phys. Chem. Miner., 31, 269–277, https://doi.org/10.1007/s00269-004-0384-0, 2004. a
Download
Short summary
To explore the influence of the redox state of the environment on the serpentinization reaction, we have developed an original experimental setup. Reducing conditions, leading to the formation of serpentine and magnetite, and oxidizing conditions, leading to the formation of serpentine and hematite, are discussed in terms of analogues of low- and high-permeability hydrothermal systems, respectively. The influence of the redox on brucite stability and hydrogen production is also established.