Articles | Volume 36, issue 4
https://doi.org/10.5194/ejm-36-555-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-36-555-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
H2 mobility and redox control in open vs. closed hydrothermal oceanic systems – evidence from serpentinization experiments
Colin Fauguerolles
CORRESPONDING AUTHOR
Institut des Sciences et de la Terre d'Orléans, UMR 7327, Orléans, France
Laboratoire de Planétologie et de Géosciences, UMR 6112, Nantes, France
Teddy Castelain
Institut des Sciences et de la Terre d'Orléans, UMR 7327, Orléans, France
Johan Villeneuve
Institut des Sciences et de la Terre d'Orléans, UMR 7327, Orléans, France
Centre de Recherches Pétrographiques et Géochimiques, UMR 7358, Vandœuvre-lès-Nancy, France
Michel Pichavant
Institut des Sciences et de la Terre d'Orléans, UMR 7327, Orléans, France
Related authors
No articles found.
Michel Pichavant, Arnaud Villaros, Julie A.-S. Michaud, and Bruno Scaillet
Eur. J. Mineral., 36, 225–246, https://doi.org/10.5194/ejm-36-225-2024, https://doi.org/10.5194/ejm-36-225-2024, 2024
Short summary
Short summary
Models for the generation of silicic magmas are divided into two groups: intra-crustal melting and basaltic origin. Peraluminous felsic leucogranites are considered as the only granite examples showing no mantle input. This interpretation is re-evaluated, and we show that leucogranites, as most other crustal granite types, can have a mantle filiation. This stresses the critical importance of the mantle for granite generation and opens the way for unification of silicic magma generation models.
Related subject area
Experimental petrology
Re-equilibration of quartz inclusions in garnet
A brief history of solid inclusion piezobarometry
Li–Na interdiffusion and diffusion-driven lithium isotope fractionation in pegmatitic melts
Depth profile analyses by femtosecond laser ablation (multicollector) inductively coupled plasma mass spectrometry for resolving chemical and isotopic gradients in minerals
A revised model for activity–composition relations in solid and molten FePt alloys and a preliminary model for characterization of oxygen fugacity in high-pressure experiments
Elasticity of mixtures and implications for piezobarometry of mixed-phase inclusions
In situ single-crystal X-ray diffraction of olivine inclusion in diamond from Shandong, China: implications for the depth of diamond formation
One-atmosphere high-temperature CO–CO2–SO2 gas-mixing furnace: design, operation, and applications
CO2 diffusion in dry and hydrous leucititic melt
Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9 GPa – a proxy for melting of carbonated mantle lithologies
High-pressure homogenization of olivine-hosted CO2-rich melt inclusions in a piston cylinder: insight into the volatile content of primary mantle melts
Carbon-saturated COH fluids in the upper mantle: a review of high-pressure and high-temperature ex situ experiments
The influence of oxygen fugacity and chlorine on amphibole–liquid trace element partitioning at upper-mantle conditions
Effect of chlorine on water incorporation in magmatic amphibole: experimental constraints with a micro-Raman spectroscopy approach
A combined Fourier transform infrared and Cr K-edge X-ray absorption near-edge structure spectroscopy study of the substitution and diffusion of H in Cr-doped forsterite
Grain boundary diffusion and its relation to segregation of multiple elements in yttrium aluminum garnet
Melting relations of anhydrous olivine-free pyroxenite Px1 at 2 GPa
Breyite inclusions in diamond: experimental evidence for possible dual origin
Benjamin A. Pummell and Jay B. Thomas
Eur. J. Mineral., 36, 581–597, https://doi.org/10.5194/ejm-36-581-2024, https://doi.org/10.5194/ejm-36-581-2024, 2024
Short summary
Short summary
Mechanical interaction between quartz inclusions in garnet creates residual pressure in the inclusion used to calculate the pressure and temperature where the two minerals formed. We crystallised quartz and garnet at high pressure and temperature and then adjusted the experimental pressure to observe the interaction between the quartz inclusions and garnet host. The quartz and garnet adjust to the new experimental pressures, reset inclusion pressures, and no longer match entrapment conditions.
Ross J. Angel, Matteo Alvaro, and Silvio Ferrero
Eur. J. Mineral., 36, 411–415, https://doi.org/10.5194/ejm-36-411-2024, https://doi.org/10.5194/ejm-36-411-2024, 2024
Short summary
Short summary
Inclusions in natural rocks are an invaluable asset for geoscientists because they provide information about processes in the Earth's history that are otherwise hidden or subsequently overprinted. In this paper we review the development over the last 200 years of the concepts and methods to measure the remnant pressures in mineral inclusions and how they can be used to determine pressures and temperatures at which the inclusions were formed deep within the Earth.
Christian R. Singer, Harald Behrens, Ingo Horn, Martin Oeser, Ralf Dohmen, and Stefan Weyer
Eur. J. Mineral., 35, 1009–1026, https://doi.org/10.5194/ejm-35-1009-2023, https://doi.org/10.5194/ejm-35-1009-2023, 2023
Short summary
Short summary
Li is a critical element that is often enriched in pegmatites. To better understand the enrichment of Li in such systems, it is necessary to understand the underlying transport mechanisms. We performed experiments to investigate diffusion rates and exchange mechanisms of Li between a Li-rich and a Li-poor melt at high temperature and pressure. Our results indicate that fluxing elements do not increase the diffusivity of Li compared to a flux-free melt.
Martin Oeser, Ingo Horn, Ralf Dohmen, and Stefan Weyer
Eur. J. Mineral., 35, 813–830, https://doi.org/10.5194/ejm-35-813-2023, https://doi.org/10.5194/ejm-35-813-2023, 2023
Short summary
Short summary
This study presents a new method designed to analyze micrometer-scale chemical and isotopic profiles in minerals, glasses, and other solids. The employed technique combines plasma mass spectrometers and a state-of-the-art femtosecond laser equipped with open-source software (LinuxCNC) that controls the movement of the laser beam. It allows for equably drilling into the sample surface, e.g., in order to measure chemically or isotopically zoned or heterogeneous materials at micrometer scales.
Marc M. Hirschmann and Hongluo L. Zhang
Eur. J. Mineral., 35, 789–803, https://doi.org/10.5194/ejm-35-789-2023, https://doi.org/10.5194/ejm-35-789-2023, 2023
Short summary
Short summary
We calibrate new models for the properties of solid and liquid FePt alloy. FePt alloy is used in experiments investigating the origin, differentiation, and evolution of planets to characterize oxygen fugacity. The new models facilitate use of FePt for more extreme conditions than has been possible previously. We also describe shortcomings in the present knowledge of FePt alloy properties and highlight strategies that could improve such knowledge.
Ross J. Angel, Mattia L. Mazzucchelli, Kira A. Musiyachenko, Fabrizio Nestola, and Matteo Alvaro
Eur. J. Mineral., 35, 461–478, https://doi.org/10.5194/ejm-35-461-2023, https://doi.org/10.5194/ejm-35-461-2023, 2023
Short summary
Short summary
We have developed the thermodynamic theory of the properties of inclusions consisting of more than one phase, including inclusions containing solids plus a fluid. We present a software utility that enables for the first time the entrapment conditions of multiphase inclusions to be determined from the measurement of their internal pressure when that is measured in a laboratory.
Yanjuan Wang, Fabrizio Nestola, Huaikun Li, Zengqian Hou, Martha G. Pamato, Davide Novella, Alessandra Lorenzetti, Pia Antonietta Antignani, Paolo Cornale, Jacopo Nava, Guochen Dong, and Kai Qu
Eur. J. Mineral., 35, 361–372, https://doi.org/10.5194/ejm-35-361-2023, https://doi.org/10.5194/ejm-35-361-2023, 2023
Short summary
Short summary
In this work we have applied the elastic geobarometry approach to a Chinese diamond in order to determine the depth of formation of an olivine-bearing diamond. Together with the temperature of residence at which the diamond resided in the mantle, we were able to discover that the diamond was formed at about 190 km depth. Beyond the geological meaning of our results, this work could be a reference paper for future works on Chinese diamonds using elastic geobarometry.
Shashank Prabha-Mohan, Kenneth T. Koga, Antoine Mathieu, Franck Pointud, and Diego F. Narvaez
Eur. J. Mineral., 35, 321–331, https://doi.org/10.5194/ejm-35-321-2023, https://doi.org/10.5194/ejm-35-321-2023, 2023
Short summary
Short summary
This work presents an in-depth description of a new design for a high-temperature gas-mixing furnace using a mixture of CO–CO2–SO2. It has been designed and built with user safety in mind. The furnace can sustain temperatures of up to 1650 °C. This furnace sets itself apart with its size and unique quench mechanism. Crucially, the apparatus has the ability to change the gas mixture during an experiment. This feature allows the user to simulate natural environments, such as volcanoes.
Lennart Koch and Burkhard C. Schmidt
Eur. J. Mineral., 35, 117–132, https://doi.org/10.5194/ejm-35-117-2023, https://doi.org/10.5194/ejm-35-117-2023, 2023
Short summary
Short summary
Volatile diffusivities in silicate melts control the nucleation and growth of bubbles in ascending magma. We investigated the diffusion of CO2 in an anhydrous and hydrous leucititic melt at high temperatures and high pressure. CO2 diffusion profiles were measured via attenuated total reflection Fourier transform infrared spectroscopy. CO2 diffusion increases with increasing temperature and water content. The data can be used to understand the CO2 degassing behaviour of leucititic melts.
Melanie J. Sieber, Max Wilke, Oona Appelt, Marcus Oelze, and Monika Koch-Müller
Eur. J. Mineral., 34, 411–424, https://doi.org/10.5194/ejm-34-411-2022, https://doi.org/10.5194/ejm-34-411-2022, 2022
Short summary
Short summary
Carbonates reduce the melting point of the mantle, and carbonate melts produced in low-degree melting of a carbonated mantle are considered the precursor of CO2-rich magmas. We established experimentally the melting relations of carbonates up to 9 GPa, showing that Mg-carbonates melt incongruently to periclase and carbonate melt. The trace element signature of carbonate melts parental to kimberlites is approached by melting of Mg-rich carbonates.
Roxane Buso, Didier Laporte, Federica Schiavi, Nicolas Cluzel, and Claire Fonquernie
Eur. J. Mineral., 34, 325–349, https://doi.org/10.5194/ejm-34-325-2022, https://doi.org/10.5194/ejm-34-325-2022, 2022
Short summary
Short summary
Magmas transport large amounts of CO2 from Earth's mantle into the atmosphere and thus contribute significantly to the global carbon cycle. We have developed an experimental method to homogenize at high pressure small liquid droplets trapped in magmatic crystals to gain access to the initial composition of the parental magma (major and volatile elements). With this technique, we show that magmas produced by melting of the subcontinental mantle contain several weight percent of CO2.
Carla Tiraboschi, Francesca Miozzi, and Simone Tumiati
Eur. J. Mineral., 34, 59–75, https://doi.org/10.5194/ejm-34-59-2022, https://doi.org/10.5194/ejm-34-59-2022, 2022
Short summary
Short summary
This review provides an overview of ex situ carbon-saturated COH fluid experiments at upper-mantle conditions. Several authors experimentally investigated the effect of COH fluids. However, fluid composition is rarely tackled as a quantitative issue, and rather infrequently fluids are analyzed as the associated solid phases in the experimental assemblage. Recently, improved techniques have been proposed for analyses of COH fluids, leading to significant advancement in fluid characterization.
Enrico Cannaò, Massimo Tiepolo, Giulio Borghini, Antonio Langone, and Patrizia Fumagalli
Eur. J. Mineral., 34, 35–57, https://doi.org/10.5194/ejm-34-35-2022, https://doi.org/10.5194/ejm-34-35-2022, 2022
Short summary
Short summary
Amphibole–liquid partitioning of elements of geological relevance is experimentally derived at conditions compatible with those of the Earth's upper mantle. Experiments are carried out at different oxygen fugacity conditions and variable Cl content in order to investigate their influence on the amphibole–liquid partition coefficients. Our results point to the capability of amphibole to act as filter for trace elements at upper-mantle conditions, oxidized conditions, and Cl-rich environments.
Enrico Cannaò, Federica Schiavi, Giulia Casiraghi, Massimo Tiepolo, and Patrizia Fumagalli
Eur. J. Mineral., 34, 19–34, https://doi.org/10.5194/ejm-34-19-2022, https://doi.org/10.5194/ejm-34-19-2022, 2022
Short summary
Short summary
Detailed knowledge of the mechanisms ruling water incorporation in amphibole is essential to understand how much water can be fixed at upper-mantle conditions by this mineral. We provide the experimental evidence of the Cl effect on the oxo-substitution and the incorporation of water in amphibole. Finally, we highlight the versatility of confocal micro-Raman spectroscopy as an analytical tool to quantify water in amphibole.
Michael C. Jollands, Hugh St.C. O'Neill, Andrew J. Berry, Charles Le Losq, Camille Rivard, and Jörg Hermann
Eur. J. Mineral., 33, 113–138, https://doi.org/10.5194/ejm-33-113-2021, https://doi.org/10.5194/ejm-33-113-2021, 2021
Short summary
Short summary
How, and how fast, does hydrogen move through crystals? We consider this question by adding hydrogen, by diffusion, to synthetic crystals of olivine doped with trace amounts of chromium. Even in a highly simplified system, the behaviour of hydrogen is complex. Hydrogen can move into and through the crystal using various pathways (different defects within the crystal) and hop between these pathways too.
Joana Polednia, Ralf Dohmen, and Katharina Marquardt
Eur. J. Mineral., 32, 675–696, https://doi.org/10.5194/ejm-32-675-2020, https://doi.org/10.5194/ejm-32-675-2020, 2020
Short summary
Short summary
Grain boundary diffusion is orders of magnitude faster compared to volume diffusion. We studied this fast transport process in a well-defined garnet grain boundary. State-of-the-art microscopy was used for quantification. A dedicated numerical diffusion model shows that iron diffusion requires the operation of two diffusion modes, one fast, one slow. We conclude that impurity bulk diffusion in garnet aggregates is always dominated by grain boundary diffusion.
Giulio Borghini and Patrizia Fumagalli
Eur. J. Mineral., 32, 251–264, https://doi.org/10.5194/ejm-32-251-2020, https://doi.org/10.5194/ejm-32-251-2020, 2020
Alan B. Woodland, Andrei V. Girnis, Vadim K. Bulatov, Gerhard P. Brey, and Heidi E. Höfer
Eur. J. Mineral., 32, 171–185, https://doi.org/10.5194/ejm-32-171-2020, https://doi.org/10.5194/ejm-32-171-2020, 2020
Short summary
Short summary
We experimentally explored direct entrapment of breyite (CaSiO3) by diamond at upper-mantle conditions in a model subducted sediment rather than formation by retrogression of CaSiO3 perovskite, implying a deeper origin. Anhydrous low-T melting of CaCO3+SiO2 precludes breyite formation. Under hydrous conditions, reduction of melt results in graphite with breyite. Thus, breyite inclusions in natural diamond may form from aragonite + coesite or carbonate melt at 6–8 GPa via reduction with water.
Cited articles
Abrajano, T. A., Sturchio, N. C., Kennedy, B. M., Lyon, G. L., Muehlenbachs, K., and Bohlke, J. K.: Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines, Appl. Geochem., 5, 625–630, https://doi.org/10.1016/0883-2927(90)90060-I, 1990. a
Allen, D. E. and Seyfried Jr., W. E.: Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: An experimental study at 400 °C, 500 bars, Geochim. Cosmochim. Ac., 67, 1531–1542, https://doi.org/10.1016/S0016-7037(02)01173-0, 2003. a, b, c, d
Auzende, A.-L., Daniel, I., Reynard, B., Lemaire, C., and Guyot, F.: High-pressure behaviour of serpentine minerals: a Raman spectroscopic study, Phys. Chem. Miner., 31, 269–277, https://doi.org/10.1007/s00269-004-0384-0, 2004. a
Bach, W., Paulick, H., Garrido, C. J., Ildefonse, B., Meurer, W. P., and Humphris, S. E.: Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15° N (ODP Leg 209, Site 1274), Geophys. Res. Lett., 33, L13306, https://doi.org/10.1029/2006GL025681, 2006. a, b, c
Beard, J. S., Frost, B. R., Fryer, P., McCaig, A., Searle, R., Ildefonse, B., Zinin, P., and Sharma, S. K.: Onset and progression of serpentinization and magnetite formation in olivine-rich troctolite from IODP Hole U1309D, J. Petrol., 50, 387–403, https://doi.org/10.1093/petrology/egp004, 2009. a
Berckhemer, H., Kampfmann, W., Aulbach, E., and Schmeling, H.: Shear modulus and Q of forsterite and dunite near partial melting from forced-oscillation experiments, Phys. Earth Planet. In., 29, 30–41, https://doi.org/10.1016/0031-9201(82)90135-2, 1982. a
Berndt, M. E., Allen, D. E., and Seyfried Jr., W. E.: Reduction of CO2 during serpentinization of olivine at 300 °C and 500 bar, Geology, 24, 351–354, https://doi.org/10.1130/0091-7613(1996)024<0351:ROCDSO>2.3.CO;2, 1996. a, b, c, d
Burnham, C. W., Holloway, J. R., and Davis, N. F.: Thermodynamic Properties of Water to 1,000 °C and 10,000 bars, Vol. 132, Geological Society of America, https://doi.org/10.1130/SPE132, 1969. a
Cannat, M.: Emplacement of mantle rocks in the seafloor at mid-ocean ridges, J. Geophys. Res.-Sol. Ea., 98, 4163–4172, https://doi.org/10.1029/92JB02221, 1993. a
Cannat, M., Fontaine, F., and Escartín, J.: Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges, in: Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges, edited by: Rona, P. A., Devey, C. W., Dyment, J., and Murton, B. J., Vol. 188 of Geophysical Monograph Series, 241–264, American Geophysical Union, Washington, D.C., https://doi.org/10.1029/2008GM000760, 2010. a, b
Chamberlain, J. A., McLeod, C. R., Traill, R. J., and Lachance, G. R.: Native metals in the Muskox intrusion, Can. J. Earth Sci., 2, 188–215, https://doi.org/10.1139/e65-017, 1965. a, b
Charlou, J. L., Donval, J. P., Fouquet, Y., Jean-Baptiste, P., and Holm, N.: Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′ N, MAR), Chem. Geol., 191, 345–359, https://doi.org/10.1016/S0009-2541(02)00134-1, 2002. a
Charlou, J. L., Donval, J. P., Konn, C., Ondréas, H., Fouquet, Y., Jean-Baptiste, P., and Fourré, E.: High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge, in: Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges, edited by: Rona, P. A., Devey, C. W., Dyment, J., and Murton, B. J., Vol. 188 of Geophysical Monograph Series, 265–296, American Geophysical Union, Washington, D.C., https://doi.org/10.1029/2008GM000752, 2010. a
Chou, I.-M.: Permeability of precious metals to hydrogen at 2 kb total pressure and elevated temperatures, Am. J. Sci., 286, 638–658, https://doi.org/10.2475/ajs.286.8.638, 1986. a, b, c, d
Chou, I.-M. and Cygan, G. L.: Quantitative redox control and measurement in hydrothermal experiments, in: Fluid-mineral Interactions: A Tribute to H. P. Eugster, edited by: Spencer, R. J. and Chou, I. M., Vol. 2 of Geochemical Society: Special publication, 3–15, Geochemical Society, ISBN 0-941809-01-3, 1990. a, b
Cullity, B. D.: Introduction to Magnetic Materials, Addison-Wiley Publishing Company, New Jersey, ISBN 0201012189, 1972. a
Day, R., Fuller, M., and Schmidt, V. A.: Hysteresis properties of titanomagnetites: grain-size and compositional dependence, Phys. Earth Planet. In., 13, 260–267, https://doi.org/10.1016/0031-9201(77)90108-X, 1977. a, b
de Faria, D. L. A., Venâncio Silva, S., and de Oliveira, M. T.: Raman microspectroscopy of some iron oxides and oxyhydroxides, J. Raman Spectrosc., 28, 873–878, https://doi.org/10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B, 1997. a
Drummond Jr., S. E.: Boiling and Mixing of Hydrothermal Fluids: Chemical Effects on Mineral Precipitation, PhD thesis, The Pennsylvania State University, 1981. a
Dunlop, D. J.: Theory and application of the Day plot ( versus ) 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res.-Sol. Ea., 107, EPM 4-1–EPM 4-22, https://doi.org/10.1029/2001JB000486, 2002. a
Escartín, J., Hirth, G., and Evans, B.: Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges, Earth Planet. Sc. Lett., 151, 181–189, https://doi.org/10.1016/S0012-821X(97)81847-X, 1997. a
Escartín, J., Hirth, G., and Evans, B.: Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere, Geology, 29, 1023–1026, https://doi.org/10.1130/0091-7613(2001)029<1023:SOSSPI>2.0.CO;2, 2001. a
Eugster, H. P.: Heterogeneous reactions involving oxidation and reduction at high pressures and temperatures, J. Chem. Phys., 26, 1760–1761, https://doi.org/10.1063/1.1743626, 1957. a, b
Eugster, H. P. and Skippen, G. B.: Igneous and metamorphic reactions involving gas equilibria, in: Researches in geochemistry, edited by: Abelson, P. H., Vol. 2, 492–520, John Wiley and Sons, New York, NY, 1967. a
Evans, B. W.: Control of the products of serpentinization by the exchange potential of olivine and orthopyroxene, J. Petrol., 49, 1873–1887, https://doi.org/10.1093/petrology/egn050, 2008. a, b
Evans, K. A., Powell, R., and Frost, B. R.: Using equilibrium thermodynamics in the study of metasomatic alteration, illustrated by an application to serpentinites, Lithos, 168, 67–84, https://doi.org/10.1016/j.lithos.2013.01.016, 2013. a, b, c, d
Evans, O., Spiegelman, M., and Kelemen, P. B.: Phase-field modeling of reaction-driven cracking: Determining conditions for extensive olivine serpentinization, J. Geophys. Res.-Sol. Ea., 125, e2019JB018614, https://doi.org/10.1029/2019JB018614, 2020. a, b
Farough, A., Moore, D. E., Lockner, D. A., and Lowell, R. P.: Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study, Geochem. Geophy. Geosy., 17, 44–55, https://doi.org/10.1002/2015GC005973, 2016. a, b
Fauguerolles, C.: Étude expérimentale de la production d'H2 associée à la serpentinisation des péridotites au niveau des dorsales océaniques lentes, Quantification – États rédox – Mécanismes réactionnels, PhD thesis, Université d'Orléans, https://theses.hal.science/tel-01549129 (last access: 27 June 2024), 2016. a, b, c, d, e, f
Fonteilles, M.: Les mécanismes de la métasomatose, B. Minéral., 101, 166–194, https://doi.org/10.3406/bulmi.1978.7185, 1978. a
Foustoukos, D. I., Bizimis, M., Frisby, C., and Shirey, S. B.: Redox controls on Ni-Fe-PGE mineralization and Re/Os fractionation during serpentinization of abyssal peridotite, Geochim. Cosmochim. Ac., 150, 11–25, https://doi.org/10.1016/j.gca.2014.11.025, 2015. a
Frost, B. R. and Beard, J. S.: On silica activity and serpentinization, J. Petrol., 48, 1351–1368, https://doi.org/10.1093/petrology/egm021, 2007. a
Garrels, R. M. and Thompson, M. E.: A chemical model for sea water at 25 °C and one atmosphere total pressure, Am. J. Sci., 260, 57–66, https://doi.org/10.2475/ajs.260.1.57, 1962. a
Haas, J. L. and Robie, R. A.: Thermodynamic data for wustite, Fe0.947O, magnetite, Fe3O4, and hematite, Fe2O3, in: Transactions-American Geophysical Union, Vol. 54, p. 483, American Geophysical Union, Whashinton DC, https://doi.org/10.1029/EO054i005p00222, 1973. a, b
Harvie, C., Weare, J. H., and O'Keefe, M.: Permeation of hydrogen through platinum: A re-evaluation of the data of Chou et al, Geochim. Cosmochim. Ac., 44, 899–900, https://doi.org/10.1016/0016-7037(80)90271-9, 1980. a, b
Hövelmann, J., Austrheim, H., Beinlich, A., and Munz, I. A.: Experimental study of the carbonation of partially serpentinized and weathered peridotites, Geochim. Cosmochim. Ac., 75, 6760–6779, https://doi.org/10.1016/j.gca.2011.08.032, 2011. a, b
Huang, R., Song, M., Ding, X., Zhu, S., Zhan, W., and Sun, W.: Influence of pyroxene and spinel on the kinetics of peridotite serpentinization, J. Geophys. Res.-Sol. Ea., 122, 7111–7126, https://doi.org/10.1002/2017JB014231, 2017b. a
Huang, R., Sun, W., Song, M., and Ding, X.: Influence of pH on molecular hydrogen (H2) generation and reaction rates during serpentinization of peridotite and olivine, Minerals, 9, 661, https://doi.org/10.3390/min9110661, 2019. a
Iyer, K., Jamtveit, B., Mathiesen, J., Malthe-Sørenssen, A., and Feder, J.: Reaction-assisted hierarchical fracturing during serpentinization, Earth Planet. Sc. Lett., 267, 503–516, https://doi.org/10.1016/j.epsl.2007.11.060, 2008. a, b
Jackson, I., Paterson, M. S., and Gerald, J. D. F.: Seismic wave dispersion and attenuation in Åheim dunite: an experimental study, Geophys. J. Int., 108, 517–534, https://doi.org/10.1111/j.1365-246X.1992.tb04633.x, 1992. a, b
Janecky, D. R. and Seyfried, W. E.: Hydrothermal serpentinization of peridotite within the oceanic crust: experimental investigations of mineralogy and major element chemistry, Geochim. Cosmochim. Ac., 50, 1357–1378, https://doi.org/10.1016/0016-7037(86)90311-X, 1986. a
Johnson, J. W., Oelkers, E. H., and Helgeson, H. C.: SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1–5000 bar and 0–1000 °C, Comput. Geosci., 18, 899–947, https://doi.org/10.1016/0098-3004(92)90029-Q, 1992 (code available at: https://pages.uoregon.edu/palandri/, last access: 20 June 2024). a, b, c, d
Karson, J. A., Thompson, G., Humphris, S. E., Edmond, J. M., Bryan, W. B., Brown, J. R., Winters, A. T., Pockalny, R. A., Casey, J. F., Campbell, A. C., Klinkhammer, G., Palmer, M. R., Kinzler, R. J., and Sulanowska, M. M.: Along-axis variations in seafloor spreading in the MARK area, Nature, 328, 681–685, https://doi.org/10.1038/328681a0, 1987. a
Kelemen, P. B. and Hirth, G.: Reaction-driven cracking during retrograde metamorphism: Olivine hydration and carbonation, Earth Planet. Sc. Lett., 345, 81–89, https://doi.org/10.1016/j.epsl.2012.06.018, 2012. a, b
Kelemen, P. B. and Matter, J.: In situ carbonation of peridotite for CO2 storage, P. Natl. Acad. Sci. USA, 105, 17295–17300, https://doi.org/10.1073/pnas.0805794105, 2008. a
Khisina, N. R., Khramov, D. A., Kleschev, A. A., and Langer, K.: Laihunitization as a mechanism of olivine oxidation, Eur. J. Mineral., 10, 229–238, https://doi.org/10.1127/ejm/10/2/0229, 1998. a
Klein, F. and Bach, W.: Fe-Ni-Co-O-S phase relations in peridotite-seawater interactions, J. Petrol., 50, 37–59, https://doi.org/10.1093/petrology/egn071, 2009. a, b, c
Klein, F. and Le Roux, V.: Quantifying the volume increase and chemical exchange during serpentinization, Geology, 48, 552–556, https://doi.org/10.1130/G47289.1, 2020. a, b
Klein, F. and McCollom, T. M.: From serpentinization to carbonation: new insights from a CO2 injection experiment, Earth Planet. Sc. Lett., 379, 137–145, https://doi.org/10.1016/j.epsl.2013.08.017, 2013. a
Klein, F., Bach, W., Jöns, N., McCollom, T., Moskowitz, B., and Berquó, T.: Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15° N on the Mid-Atlantic Ridge, Geochim. Cosmochim. Ac., 73, 6868–6893, https://doi.org/10.1016/j.gca.2009.08.021, 2009. a, b, c
Klein, F., Bach, W., Humphris, S. E., Kahl, W.-A., Jöns, N., Moskowitz, B., and Berquó, T. S.: Magnetite in seafloor serpentinite – Some like it hot, Geology, 42, 135–138, https://doi.org/10.1130/G35068.1, 2014. a, b, c
Klein, F., Grozeva, N. G., Seewald, J. S., McCollom, T. M., Humphris, S. E., Moskowitz, B., Berquó, T. S., and Kahl, W.-A.: Fluids in the crust. Experimental constraints on fluid-rock reactions during incipient serpentinization of harzburgite, Am. Mineral., 100, 991–1002, https://doi.org/10.2138/am-2015-5112, 2015. a, b, c
Klein, F., Grozeva, N. G., and Seewald, J. S.: Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions, P. Natl. Acad. Sci. USA, 116, 17666–17672, https://doi.org/10.1073/pnas.1907871116, 2019. a
Knafelc, J., Filiberto, J., Ferré, E. C., Conder, J. A., Costello, L., Crandall, J. R., Dyar, M. D., Friedman, S. A., Hummer, D. R., and Schwenzer, S. P.: The effect of oxidation on the mineralogy and magnetic properties of olivine, Am. Mineral., 104, 694–702, https://doi.org/10.2138/am-2019-6829, 2019. a
Korzhinskii, D. S.: The theory of systems with perfectly mobile components and processes of mineral formation, Am. J. Sci., 263, 193–205, https://doi.org/10.2475/ajs.263.3.193, 1965. a
Krammer, K.: Rock magnetic properties and opaque mineralogy of selected samples from Hole 670A, in: Proceedings of the Ocean Drilling Program, Scientific Results, edited by: Detrick, R., Honnorez, J., Bryan, W. B., Juteau, T., and et al., Vol. 106/109, College Station, TX (Ocean Drilling Program), 269–273, https://doi.org/10.2973/odp.proc.sr.106109.154.1990, 1990. a
Lafay, R., Montes-Hernandez, G., Janots, E., Chiriac, R., Findling, N., and Toche, F.: Mineral replacement rate of olivine by chrysotile and brucite under high alkaline conditions, J. Crystal Growth, 347, 62–72, https://doi.org/10.1016/j.jcrysgro.2012.02.040, 2012. a
Lafay, R., Montes-Hernandez, G., Renard, F., and Vonlanthen, P.: Intracrystalline reaction-induced cracking in olivine evidenced by hydration and carbonation experiments, Minerals, 8, 412, https://doi.org/10.3390/min8090412, 2018. a, b, c
Lamadrid, H. M., Rimstidt, J. D., Schwarzenbach, E. M., Klein, F., Ulrich, S., Dolocan, A., and Bodnar, R. J.: Effect of water activity on rates of serpentinization of olivine, Nat. Commun., 8, 16107, https://doi.org/10.1038/ncomms16107, 2017. a, b, c
Lamadrid, H. M., Zajacz, Z., Klein, F., and Bodnar, R. J.: Synthetic fluid inclusions XXIII. Effect of temperature and fluid composition on rates of serpentinization of olivine, Geochim. Cosmochim. Ac., 292, 285–308, https://doi.org/10.1016/j.gca.2020.08.009, 2021. a, b
Lazar, C.: Using silica activity to model redox-dependent fluid compositions in serpentinites from 100 to 700 °C and from 1 to 20 kbar, J. Petrol., 61, egaa101, https://doi.org/10.1093/petrology/egaa101, 2020. a
Legodi, M. A. and de Waal, D.: The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste, Dyes Pigments, 74, 161–168, https://doi.org/10.1016/j.dyepig.2006.01.038, 2007. a, b
Lemaire, C.: Application des Spectroscopies Vibrationnelles à la Détection d'Amiante dans les Matériaux et à l'Étude des Serpentines, PhD thesis, Paris 7, 2000. a
Maffione, M., Morris, A., Plümper, O., and van Hinsbergen, D. J. J.: Magnetic properties of variably serpentinized peridotites and their implication for the evolution of oceanic core complexes, Geochem. Geophy. Geosy., 15, 923–944, https://doi.org/10.1002/2013GC004993, 2014. a, b
Malvoisin, B. and Brunet, F.: Water diffusion-transport in a synthetic dunite: Consequences for oceanic peridotite serpentinization, Earth Planet. Sc. Lett., 403, 263–272, https://doi.org/10.1016/j.epsl.2014.07.004, 2014. a, b
Malvoisin, B., Brunet, F., Carlut, J., Rouméjon, S., and Cannat, M.: Serpentinization of oceanic peridotites: 2. Kinetics and processes of San Carlos olivine hydrothermal alteration, J. Geophys. Res.-Sol. Ea., 117, B04102, https://doi.org/10.1029/2011JB008842, 2012a. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Malvoisin, B., Carlut, J., and Brunet, F.: Serpentinization of oceanic peridotites: 1. A high-sensitivity method to monitor magnetite production in hydrothermal experiments, J. Geophys. Res.-Sol. Ea., 117, B01104, https://doi.org/10.1029/2011JB008612, 2012b. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Malvoisin, B., Zhang, C., Müntener, O., Baumgartner, L. P., Kelemen, P. B., and ODP Science Party: Measurement of volume change and mass transfer during serpentinization: Insights from the Oman Drilling Project, J. Geophys. Res.-Sol. Ea., 125, e2019JB018877, https://doi.org/10.1029/2019JB018877, 2020. a, b
Martin, B. and Fyfe, W. S.: Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization, Chem. Geol., 6, 185–202, https://doi.org/10.1016/0009-2541(70)90018-5, 1970. a
Mayhew, L. E., Ellison, E. T., McCollom, T. M., Trainor, T. P., and Templeton, A. S.: Hydrogen generation from low-temperature water-rock reactions, Nat. Geosci., 6, 478–484, https://doi.org/10.1038/ngeo1825, 2013. a
McCollom, T. M. and Bach, W.: Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks, Geochim. Cosmochim. Ac., 73, 856–875, https://doi.org/10.1016/j.gca.2008.10.032, 2009. a, b, c
McCollom, T. M. and Seewald, J. S.: A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine, Geochim. Cosmochim. Ac., 65, 3769–3778, https://doi.org/10.1016/S0016-7037(01)00655-X, 2001. a
McCollom, T. M., Klein, F., Robbins, M., Moskowitz, B., Berquó, T. S., Jöns, N., Bach, W., and Templeton, A.: Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine, Geochim. Cosmochim. Ac., 181, 175–200, https://doi.org/10.1016/j.gca.2016.03.002, 2016. a, b, c, d, e, f, g
McCollom, T. M., Klein, F., Moskowitz, B., Berquó, T. S., Bach, W., and Templeton, A. S.: Hydrogen generation and iron partitioning during experimental serpentinization of an olivine-pyroxene mixture, Geochim. Cosmochim. Ac., 282, 55–75, https://doi.org/10.1016/j.gca.2020.05.016, 2020a. a, b, c
McCollom, T. M., Klein, F., Solheid, P., and Moskowitz, B.: The effect of pH on rates of reaction and hydrogen generation during serpentinization, Philos. T. R. Soc. A, 378, 20180428, https://doi.org/10.1098/rsta.2018.0428, 2020b. a, b, c
Mével, C.: Serpentinization of abyssal peridotites at mid-ocean ridges, C.R. Geosci., 335, 825–852, https://doi.org/10.1016/j.crte.2003.08.006, 2003. a, b
Moody, J. B.: An experimental study on the serpentinization of iron-bearing olivines, Can. Mineral., 14, 462–478, 1976. a
Myers, J. and Eugster, H. P.: The system Fe-Si-O: Oxygen buffer calibrations to 1,500 K, Contrib. Mineral. Petr., 82, 75–90, https://doi.org/10.1007/BF00371177, 1983. a, b
Nakatani, T. and Nakamura, M.: Experimental constraints on the serpentinization rate of fore-arc peridotites: Implications for the upwelling condition of the slab-derived fluid, Geochem. Geophy. Geosy., 17, 3393–3419, https://doi.org/10.1002/2016GC006295, 2016. a
Nazarova, K. A., Wasilewski, P. J., and Dick, H. J. B.: Magnetic study of serpentinized harzburgites from the Islas Orcadas Fracture Zone, Mar. Geophys. Res., 21, 475–488, https://doi.org/10.1023/A:1026550011802, 2000. a
Neal, C. and Stanger, G.: Hydrogen generation from mantle source rocks in Oman, Earth Planet. Sc. Lett., 66, 315–320, https://doi.org/10.1016/0012-821X(83)90144-9, 1983. a
Oelkers, E. H., Declercq, J., Saldi, G. D., Gislason, S. R., and Schott, J.: Olivine dissolution rates: A critical review, Chem. Geol., 500, 1–19, https://doi.org/10.1016/j.chemgeo.2018.10.008, 2018. a
Ogasawara, Y., Okamoto, A., Hirano, N., and Tsuchiya, N.: Coupled reactions and silica diffusion during serpentinization, Geochim. Cosmochim. Ac., 119, 212–230, https://doi.org/10.1016/j.gca.2013.06.001, 2013. a
Osselin, F., Pichavant, M., Champallier, R., Ulrich, M., and Raimbourg, H.: Reactive transport experiments of coupled carbonation and serpentinization in a natural serpentinite. Implication for hydrogen production and carbon geological storage, Geochim. Cosmochim. Ac., 318, 165–189, https://doi.org/10.1016/j.gca.2021.11.039, 2022. a, b
Oyanagi, R., Okamoto, A., and Tsuchiya, N.: Silica controls on hydration kinetics during serpentinization of olivine: Insights from hydrothermal experiments and a reactive transport model, Geochim. Cosmochim. Ac., 270, 21–42, https://doi.org/10.1016/j.gca.2019.11.017, 2020. a, b
Peuble, S., Godard, M., Gouze, P., Leprovost, R., Martinez, I., and Shilobreeva, S.: Control of CO2 on flow and reaction paths in olivine-dominated basements: An experimental study, Geochim. Cosmochim. Ac., 252, 16–38, https://doi.org/10.1016/j.gca.2019.02.007, 2019. a, b, c
Pichavant, M.: Effects of B and H2O on liquidus phase relations in the haplogranite system at 1 kbar, Am. Mineral., 72, 1056–1070, 1987. a
Plümper, O., Røyne, A., Magrasó, A., and Jamtveit, B.: The interface-scale mechanism of reaction-induced fracturing during serpentinization, Geology, 40, 1103–1106, https://doi.org/10.1130/G33390.1, 2012. a, b
Prévot, M., Lecaille, A., and Mankinen, E. A.: Magnetic effects of maghemitization of oceanic crust, J. Geophys. Res.-Sol. Ea., 86, 4009–4020, https://doi.org/10.1029/JB086iB05p04009, 1981. a
Rouméjon, S. and Cannat, M.: Serpentinization of mantle-derived peridotites at mid-ocean ridges: Mesh texture development in the context of tectonic exhumation, Geochem. Geophy. Geosy., 15, 2354–2379, https://doi.org/10.1002/2013GC005148, 2014. a, b, c
Rouméjon, S., Cannat, M., Agrinier, P., Godard, M., and Andreani, M.: Serpentinization and fluid pathways in tectonically exhumed peridotites from the Southwest Indian Ridge (62–65° E), J. Petrol., 56, 703–734, https://doi.org/10.1093/petrology/egv014, 2015. a
rruff.info: Magnetite R061111, https://rruff.info/)/R061111, last access: 11 August 2023. a
Rudert, V., Chou, I.-M., and Eugster, H. P.: Temperature gradients in rapid-quench cold-seal pressure vessels, Am. Mineral., 61, 1012–1015, 1976. a
Schmidt, B. C., Scaillet, B., and Holtz, F.: Accurate control of in cold-seal pressure vessels with the Shaw membrane technique, Eur. J. Mineral., 7, 893–904, https://doi.org/10.1127/ejm/7/4/0893, 1995. a, b
Schwartz, S., Guillot, S., Reynard, B., Lafay, R., Debret, B., Nicollet, C., Lanari, P., and Auzende, A. L.: Pressure–temperature estimates of the lizardite/antigorite transition in high pressure serpentinites, Lithos, 178, 197–210, https://doi.org/10.1016/j.lithos.2012.11.023, 2013. a
Seyfried Jr., W. E. and Dibble Jr., W. E.: Seawater-peridotite interaction at 300 °C and 500 bars: implications for the origin of oceanic serpentinites, Geochim. Cosmochim. Ac., 44, 309–321, https://doi.org/10.1016/0016-7037(80)90139-8, 1980. a
Seyfried Jr., W. E., Foustoukos, D. I., and Fu, Q.: Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200 °C, 500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges, Geochim. Cosmochim. Ac., 71, 3872–3886, https://doi.org/10.1016/j.gca.2007.05.015, 2007. a, b, c, d, e
Seyfried Jr., W. E., Pester, N. J., Ding, K., and Rough, M.: Vent fluid chemistry of the Rainbow hydrothermal system (36° N, MAR): Phase equilibria and in situ pH controls on subseafloor alteration processes, Geochim. Cosmochim. Ac., 75, 1574–1593, https://doi.org/10.1016/j.gca.2011.01.001, 2011. a
Seyfried Jr., W. E., Pester, N. J., Tutolo, B. M., and Ding, K.: The Lost City hydrothermal system: Constraints imposed by vent fluid chemistry and reaction path models on subseafloor heat and mass transfer processes, Geochim. Cosmochim. Ac., 163, 59–79, https://doi.org/10.1016/j.gca.2015.04.040, 2015. a
Shaw, H. R.: Hydrogen-water vapor mixtures: control of hydrothermal atmospheres by hydrogen osmosis, Science, 139, 1220–1222, https://doi.org/10.1126/science.139.3560.1220, 1963. a
Shaw, H. R. and Wones, D. R.: Fugacity coefficients for hydrogen gas between 0 degrees and 1000 degrees C, for pressures to 3000 atm, Am. J. Sci., 262, 918–929, https://doi.org/10.2475/ajs.262.7.918, 1964. a
Sleep, N. H., Meibom, A., Fridriksson, T., Coleman, R. G., and Bird, D. K.: H2−rich fluids from serpentinization: geochemical and biotic implications, P. Natl. Acad. Sci. USA, 101, 12818–12823, https://doi.org/10.1073/pnas.0405289101, 2004. a
Smith, G. M. and Banerjee, S. K.: Magnetic-properties of plutonic rocks from the central North-Atlantic Ocean, in: Initial Reports of the Deep Sea Drilling Project, edited by: Bougault, H., Cande, S. C., Brannon, J. C., Christie, D. M., Clark, M., Curtis, D. M., Drake, N., Echols, D., Ashley Hill, I., Javed Khan, M., Mills, W., Neuser, R., Rideout, M. L., and Weaver, B. L., Vol. 82, 377–383, U.S. Government Printing Office, Washington, D.C., USA, https://doi.org/10.2973/dsdp.proc.82.117.1985, 1985. a, b
Steefel, C. I., DePaolo, D. J., and Lichtner, P. C.: Reactive transport modeling: An essential tool and a new research approach for the Earth sciences, Earth Planet. Sc. Lett., 240, 539–558, https://doi.org/10.1016/j.epsl.2005.09.017, 2005. a
Syverson, D. D., Tutolo, B. M., Borrok, D. M., and Seyfried Jr., W. E.: Serpentinization of olivine at 300 °C and 500 bars: an experimental study examining the role of silica on the reaction path and oxidation state of iron, Chem. Geol., 475, 122–134, https://doi.org/10.1016/j.chemgeo.2017.11.006, 2017. a, b
Toft, P. B., Arkani-Hamed, J., and Haggerty, S. E.: The effects of serpentinization on density and magnetic susceptibility: a petrophysical model, Phys. Earth Planet. In., 65, 137–157, https://doi.org/10.1016/0031-9201(90)90082-9, 1990. a, b
Villeneuve, J., Fauguerolles, C., Castelain, T., and Pichavant, M.: Étude expérimentale de l'évolution de la perméabilité des péridotites lors de la serpentinisation, 24ème Réunion des Sciences de la Terre, Pau, France, https://rst2014-pau.sciencesconf.org/conference/rst2014-pau/rstabstractsnum.pdf (last access: 27 June 2024), 2014. a
Wegner, W. W. and Ernst, W. G.: Experimentally determined hydration and dehydration reaction rates in the system MgO-SiO2-H2O, in: Studies in Metamorphism and Metasomatism, edited by: Greenwood, H. J., Vol. 283-A, 151–180, American Journal of Science, New Haven, Connecticut, 1983. a
Weill, D. F. and Fyfe, W. S.: A discussion of the Korzhinskii and Thompson treatment of thermodynamic equilibrium in open systems, Geochim. Cosmochim. Ac., 28, 565–576, https://doi.org/10.1016/0016-7037(64)90077-8, 1964. a
Short summary
To explore the influence of the redox state of the environment on the serpentinization reaction, we have developed an original experimental setup. Reducing conditions, leading to the formation of serpentine and magnetite, and oxidizing conditions, leading to the formation of serpentine and hematite, are discussed in terms of analogues of low- and high-permeability hydrothermal systems, respectively. The influence of the redox on brucite stability and hydrogen production is also established.
To explore the influence of the redox state of the environment on the serpentinization reaction,...