Articles | Volume 35, issue 6
https://doi.org/10.5194/ejm-35-909-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-35-909-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Crystal chemistry of type paulkerrite and establishment of the paulkerrite group nomenclature
Ian E. Grey
CORRESPONDING AUTHOR
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
Stephanie Boer
Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
Colin M. MacRae
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
Nicholas C. Wilson
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
William G. Mumme
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
Ferdinando Bosi
Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
Related authors
Ian E. Grey, Christian Rewitzer, Rupert Hochleitner, Anthony R. Kampf, Stephanie Boer, William G. Mumme, Nicholas C. Wilson, and Cameron J. Davidson
Eur. J. Mineral., 37, 169–179, https://doi.org/10.5194/ejm-37-169-2025, https://doi.org/10.5194/ejm-37-169-2025, 2025
Short summary
Short summary
Fluormacraeite is the first type mineral to be described from the Plößberg pegmatite, Upper Palatinate, Bavaria, Germany. The crystal structure of fluormacraeite has been refined using synchrotron data that has resolved a small monoclinic distortion due to ordering of K and H2O. The general crystal–chemical properties of the monoclinic paulkerrite-group minerals are discussed.
Rupert Hochleitner, Ian E. Grey, Anthony R. Kampf, Stephanie Boer, Colin M. MacRae, William G. Mumme, and Nicholas C. Wilson
Eur. J. Mineral., 36, 541–554, https://doi.org/10.5194/ejm-36-541-2024, https://doi.org/10.5194/ejm-36-541-2024, 2024
Short summary
Short summary
The paper describes the characterisation of fluor-rewitzerite, a new mineral species belonging to the paulkerrite group. The crystal structure of fluor-rewitzerite has been refined using microfocus synchrotron diffraction data, which allowed 25 of the possible 30 H atoms to be located, thus establishing key features of the H bonding. Crystallochemical trends are reviewed for seven recently characterised monoclinic paulkerrite-group minerals.
Ian E. Grey, Christian Rewitzer, Rupert Hochleitner, Anthony R. Kampf, Stephanie Boer, William G. Mumme, and Nicholas C. Wilson
Eur. J. Mineral., 36, 267–278, https://doi.org/10.5194/ejm-36-267-2024, https://doi.org/10.5194/ejm-36-267-2024, 2024
Short summary
Short summary
Macraeite is the fourth type mineral to be described from the Mangualde pegmatite, Portugal, and is the first paulkerrite-group mineral to be characterised from the locality. Its crystal structure has been refined using synchrotron diffraction data, and its chemical analysis, Raman spectrum, and optical properties are reported.
Christian Rewitzer, Rupert Hochleitner, Ian E. Grey, Anthony R. Kampf, Stephanie Boer, and Colin M. MacRae
Eur. J. Mineral., 35, 805–812, https://doi.org/10.5194/ejm-35-805-2023, https://doi.org/10.5194/ejm-35-805-2023, 2023
Short summary
Short summary
Regerite is the first new mineral species to be described from the Kreuzberg pegmatite, Pleystein, in the Oberpfalz, Bavaria. It has been characterised using electron microprobe analysis, Raman spectroscopy, optical measurements and a synchrotron-based single-crystal structure refinement. The structure type for regerite has not been previously reported.
Ian E. Grey, Erich Keck, Anthony R. Kampf, Colin M. MacRae, Robert W. Gable, William G. Mumme, Nicholas C. Wilson, Alexander M. Glenn, and Cameron Davidson
Eur. J. Mineral., 35, 635–643, https://doi.org/10.5194/ejm-35-635-2023, https://doi.org/10.5194/ejm-35-635-2023, 2023
Short summary
Short summary
Hochleitnerite is a new member of the paulkerrite group of minerals. Its crystal structure, chemical analyses and Raman spectroscopy are reported, and its crystallochemical properties are discussed in relation to other group members.
Ian E. Grey, Rupert Hochleitner, Anthony R. Kampf, Stephanie Boer, Colin M. MacRae, John D. Cashion, Christian Rewitzer, and William G. Mumme
Eur. J. Mineral., 35, 295–304, https://doi.org/10.5194/ejm-35-295-2023, https://doi.org/10.5194/ejm-35-295-2023, 2023
Short summary
Short summary
Manganrockbridgeite, Mn2+2Fe3+3(PO4)3(OH)4(H2O), a new member of the rockbridgeite group, has been characterised using electron microprobe analyses, Mössbauer spectroscopy, optical properties and single-crystal X-ray diffraction. Whereas other rockbridgeite-group minerals have orthorhombic symmetry with a statistical distribution of 50%Fe3+/50% vacancies in M3-site octahedra, monoclinic manganrockbridgeite has full ordering of Fe3+ and vacancies in alternate M3 sites along the 5.2 Å axis.
Ian E. Grey, Rupert Hochleitner, Christian Rewitzer, Anthony R. Kampf, Colin M. MacRae, Robert W. Gable, William G. Mumme, Erich Keck, and Cameron Davidson
Eur. J. Mineral., 35, 189–197, https://doi.org/10.5194/ejm-35-189-2023, https://doi.org/10.5194/ejm-35-189-2023, 2023
Short summary
Short summary
Pleysteinite has been approved as a new mineral species, and we describe here the characterisation of the mineral and its relationship to related minerals benyacarite, paulkerrite and mantienneite. The characterisation includes the determination and refinement of the crystal structure, electron microprobe analyses, optical properties and interpretation of its Raman spectrum.
Rupert Hochleitner, Christian Rewitzer, Ian E. Grey, William G. Mumme, Colin M. MacRae, Anthony R. Kampf, Erich Keck, Robert W. Gable, and Alexander M. Glenn
Eur. J. Mineral., 35, 95–103, https://doi.org/10.5194/ejm-35-95-2023, https://doi.org/10.5194/ejm-35-95-2023, 2023
Short summary
Short summary
The paper gives a characterisation of the new mineral species, whiteite-(CaMnFe), which has recently been approved as a new mineral (proposal IMA2022-077). The study included a single-crystal structure refinement that, when combined with electron microprobe analyses, confirmed that the mineral was a new member of the whiteite subgroup of the jahnsite group of minerals. Relationships between the crystal structure and the unit-cell parameters for the whiteite-subgroup minerals are discussed.
Erich Keck, Ian E. Grey, Colin M. MacRae, Stephanie Boer, Rupert Hochleitner, Christian Rewitzer, William G. Mumme, A. Matt Glenn, and Cameron Davidson
Eur. J. Mineral., 34, 439–450, https://doi.org/10.5194/ejm-34-439-2022, https://doi.org/10.5194/ejm-34-439-2022, 2022
Short summary
Short summary
First occurrences of the secondary phosphate minerals kenngottite, Mn32+Fe43+(PO4)4(OH)6(H2O)2; allanpringite, Fe33+(PO4)2(OH)3·5H2O; iangreyite, Ca2Al7(PO4)2(PO3OH)2(OH,F)15·8H2O; and nizamoffite, MnZn2(PO4)2(H2O)4, from the Hagendorf Süd pegmatite are reported, with characterisation of their crystal chemistry and phase associations.
Peter Elliott, Ian E. Grey, William G. Mumme, Colin M. MacRae, and Anthony R. Kampf
Eur. J. Mineral., 34, 375–383, https://doi.org/10.5194/ejm-34-375-2022, https://doi.org/10.5194/ejm-34-375-2022, 2022
Short summary
Short summary
This paper describes the characterisation of a new mineral from a South Australian phosphate quarry. The characterisation included chemical analyses, infrared spectroscopy, and a determination and refinement of the crystal structure. The results showed that the mineral has a unique crystal chemistry, but it is closely related to the well-known phosphate mineral crandallite.
Ian Edward Grey, Peter Elliott, William Gus Mumme, Colin M. MacRae, Anthony R. Kampf, and Stuart J. Mills
Eur. J. Mineral., 34, 215–221, https://doi.org/10.5194/ejm-34-215-2022, https://doi.org/10.5194/ejm-34-215-2022, 2022
Short summary
Short summary
A reinvestigation of angastonite from the type locality has shown that it is a mixture of crystalline phases and an amorphous phase, with the published formula corresponding to the amorphous phase. A redefinition proposal for angastonite as an amorphous mineral was approved by the IMA CNMNC. Our study showed how the amorphous phase formed and how it progressively recrystallises as new crandallite-related minerals.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 549–553, https://doi.org/10.5194/ejm-37-549-2025, https://doi.org/10.5194/ejm-37-549-2025, 2025
Ferdinando Bosi, Federico Pezzotta, Henrik Skobgy, Riccardo Luppi, Paolo Ballirano, Ulf Hålenius, Gioacchino Tempesta, Giovanna Agrosì, and Jiří Sejkora
Eur. J. Mineral., 37, 505–516, https://doi.org/10.5194/ejm-37-505-2025, https://doi.org/10.5194/ejm-37-505-2025, 2025
Short summary
Short summary
This study describes the elbaite neotype, found in crystals from a site on Elba island, Italy. Researchers analyzed these nearly colorless crystals and found that their formation was influenced by earlier changes in the surrounding rock. As different minerals formed first, they set the stage for elbaite to develop later in deeper spaces. This work helps us understand how changes in the local environment affect how and when certain minerals grow.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 337–342, https://doi.org/10.5194/ejm-37-337-2025, https://doi.org/10.5194/ejm-37-337-2025, 2025
Erik Jonsson, Ulf Hålenius, Jaroslaw Majka, and Ferdinando Bosi
Eur. J. Mineral., 37, 269–277, https://doi.org/10.5194/ejm-37-269-2025, https://doi.org/10.5194/ejm-37-269-2025, 2025
Short summary
Short summary
Skogbyite, with the chemical formula Zr(Mg2+2Mn3+4)SiO12, is a new species in the braunite group of minerals. It was discovered in a complex mineral assemblage, essentially a very poor manganese ore, from the Långban Fe–Mn oxide deposit, Värmland County, Bergslagen ore province, Sweden. It is named after the Swedish mineralogist Henrik Skogby (b. 1956). It is a new mineral attesting to the localised mobility and reactivity of zirconium under very special geological conditions.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 249–255, https://doi.org/10.5194/ejm-37-249-2025, https://doi.org/10.5194/ejm-37-249-2025, 2025
Ian E. Grey, Christian Rewitzer, Rupert Hochleitner, Anthony R. Kampf, Stephanie Boer, William G. Mumme, Nicholas C. Wilson, and Cameron J. Davidson
Eur. J. Mineral., 37, 169–179, https://doi.org/10.5194/ejm-37-169-2025, https://doi.org/10.5194/ejm-37-169-2025, 2025
Short summary
Short summary
Fluormacraeite is the first type mineral to be described from the Plößberg pegmatite, Upper Palatinate, Bavaria, Germany. The crystal structure of fluormacraeite has been refined using synchrotron data that has resolved a small monoclinic distortion due to ordering of K and H2O. The general crystal–chemical properties of the monoclinic paulkerrite-group minerals are discussed.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 75–78, https://doi.org/10.5194/ejm-37-75-2025, https://doi.org/10.5194/ejm-37-75-2025, 2025
Giovanni B. Andreozzi, Claudia Gori, Henrik Skogby, Ulf Hålenius, Alessandra Altieri, and Ferdinando Bosi
Eur. J. Mineral., 37, 1–12, https://doi.org/10.5194/ejm-37-1-2025, https://doi.org/10.5194/ejm-37-1-2025, 2025
Short summary
Short summary
The compositional variation in a multi-coloured, zoned tourmaline from the Cruzeiro pegmatite, Brazil, reflects melt chemical evolution during the entire pegmatite differentiation. In uncontaminated granitic pegmatite systems such as that of Cruzeiro, the compositional evolution of tourmaline progresses from schorl to fluor-elbaite, rather than directly from schorl to elbaite, to reflect co-enrichment in Li and F during fractional crystallization.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 1005–1010, https://doi.org/10.5194/ejm-36-1005-2024, https://doi.org/10.5194/ejm-36-1005-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 917–923, https://doi.org/10.5194/ejm-36-917-2024, https://doi.org/10.5194/ejm-36-917-2024, 2024
Beatrice Celata, Ferdinando Bosi, Kira A. Musiyachenko, Andrey V. Korsakov, and Giovanni B. Andreozzi
Eur. J. Mineral., 36, 797–811, https://doi.org/10.5194/ejm-36-797-2024, https://doi.org/10.5194/ejm-36-797-2024, 2024
Short summary
Short summary
The discovery of the K-dominant tourmaline maruyamaite with microdiamond inclusions suggested its ultrahigh-pressure formation. We analyzed the role of K in the tourmaline structure, with a special focus on its stability. High pressure is necessary to squeeze the large cation K+ in the stiff framework of tourmaline, although K is the underdog component if Na+ is present in the mineralizing fluid. K-tourmaline is stable at high pressure, overcoming the stereotype of a mere crustal component.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 599–604, https://doi.org/10.5194/ejm-36-599-2024, https://doi.org/10.5194/ejm-36-599-2024, 2024
Rupert Hochleitner, Ian E. Grey, Anthony R. Kampf, Stephanie Boer, Colin M. MacRae, William G. Mumme, and Nicholas C. Wilson
Eur. J. Mineral., 36, 541–554, https://doi.org/10.5194/ejm-36-541-2024, https://doi.org/10.5194/ejm-36-541-2024, 2024
Short summary
Short summary
The paper describes the characterisation of fluor-rewitzerite, a new mineral species belonging to the paulkerrite group. The crystal structure of fluor-rewitzerite has been refined using microfocus synchrotron diffraction data, which allowed 25 of the possible 30 H atoms to be located, thus establishing key features of the H bonding. Crystallochemical trends are reviewed for seven recently characterised monoclinic paulkerrite-group minerals.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 525–528, https://doi.org/10.5194/ejm-36-525-2024, https://doi.org/10.5194/ejm-36-525-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 361–367, https://doi.org/10.5194/ejm-36-361-2024, https://doi.org/10.5194/ejm-36-361-2024, 2024
Ian E. Grey, Christian Rewitzer, Rupert Hochleitner, Anthony R. Kampf, Stephanie Boer, William G. Mumme, and Nicholas C. Wilson
Eur. J. Mineral., 36, 267–278, https://doi.org/10.5194/ejm-36-267-2024, https://doi.org/10.5194/ejm-36-267-2024, 2024
Short summary
Short summary
Macraeite is the fourth type mineral to be described from the Mangualde pegmatite, Portugal, and is the first paulkerrite-group mineral to be characterised from the locality. Its crystal structure has been refined using synchrotron diffraction data, and its chemical analysis, Raman spectrum, and optical properties are reported.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 165–172, https://doi.org/10.5194/ejm-36-165-2024, https://doi.org/10.5194/ejm-36-165-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 1073–1078, https://doi.org/10.5194/ejm-35-1073-2023, https://doi.org/10.5194/ejm-35-1073-2023, 2023
Daniel Atencio, Andrezza A. Azzi, Kai Qu, Ritsuro Miyawaki, Ferdinando Bosi, and Koichi Momma
Eur. J. Mineral., 35, 1027–1030, https://doi.org/10.5194/ejm-35-1027-2023, https://doi.org/10.5194/ejm-35-1027-2023, 2023
Short summary
Short summary
This article introduces a new nomenclature system for the cerite group minerals. This system was necessary to allow the nomenclature of new species of minerals that are currently being described.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 891–895, https://doi.org/10.5194/ejm-35-891-2023, https://doi.org/10.5194/ejm-35-891-2023, 2023
Christian Rewitzer, Rupert Hochleitner, Ian E. Grey, Anthony R. Kampf, Stephanie Boer, and Colin M. MacRae
Eur. J. Mineral., 35, 805–812, https://doi.org/10.5194/ejm-35-805-2023, https://doi.org/10.5194/ejm-35-805-2023, 2023
Short summary
Short summary
Regerite is the first new mineral species to be described from the Kreuzberg pegmatite, Pleystein, in the Oberpfalz, Bavaria. It has been characterised using electron microprobe analysis, Raman spectroscopy, optical measurements and a synchrotron-based single-crystal structure refinement. The structure type for regerite has not been previously reported.
Alessandra Altieri, Federico Pezzotta, Giovanni B. Andreozzi, Henrik Skogby, and Ferdinando Bosi
Eur. J. Mineral., 35, 755–771, https://doi.org/10.5194/ejm-35-755-2023, https://doi.org/10.5194/ejm-35-755-2023, 2023
Short summary
Short summary
Elba tourmaline crystals commonly display a sharp transition to dark colors at the analogous termination, but the mechanisms leading to the formation of such terminations are unclear. Here we propose a general genetic model in which, as a consequence of a pocket rupture event, chemical alteration of early formed Fe-/Mn-rich minerals in the enclosing pegmatite was responsible for the release of Fe and/or Mn in the geochemical system, allowing the formation of the late-stage dark terminations.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 659–664, https://doi.org/10.5194/ejm-35-659-2023, https://doi.org/10.5194/ejm-35-659-2023, 2023
Ian E. Grey, Erich Keck, Anthony R. Kampf, Colin M. MacRae, Robert W. Gable, William G. Mumme, Nicholas C. Wilson, Alexander M. Glenn, and Cameron Davidson
Eur. J. Mineral., 35, 635–643, https://doi.org/10.5194/ejm-35-635-2023, https://doi.org/10.5194/ejm-35-635-2023, 2023
Short summary
Short summary
Hochleitnerite is a new member of the paulkerrite group of minerals. Its crystal structure, chemical analyses and Raman spectroscopy are reported, and its crystallochemical properties are discussed in relation to other group members.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 397–402, https://doi.org/10.5194/ejm-35-397-2023, https://doi.org/10.5194/ejm-35-397-2023, 2023
Ian E. Grey, Rupert Hochleitner, Anthony R. Kampf, Stephanie Boer, Colin M. MacRae, John D. Cashion, Christian Rewitzer, and William G. Mumme
Eur. J. Mineral., 35, 295–304, https://doi.org/10.5194/ejm-35-295-2023, https://doi.org/10.5194/ejm-35-295-2023, 2023
Short summary
Short summary
Manganrockbridgeite, Mn2+2Fe3+3(PO4)3(OH)4(H2O), a new member of the rockbridgeite group, has been characterised using electron microprobe analyses, Mössbauer spectroscopy, optical properties and single-crystal X-ray diffraction. Whereas other rockbridgeite-group minerals have orthorhombic symmetry with a statistical distribution of 50%Fe3+/50% vacancies in M3-site octahedra, monoclinic manganrockbridgeite has full ordering of Fe3+ and vacancies in alternate M3 sites along the 5.2 Å axis.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 285–293, https://doi.org/10.5194/ejm-35-285-2023, https://doi.org/10.5194/ejm-35-285-2023, 2023
Ian E. Grey, Rupert Hochleitner, Christian Rewitzer, Anthony R. Kampf, Colin M. MacRae, Robert W. Gable, William G. Mumme, Erich Keck, and Cameron Davidson
Eur. J. Mineral., 35, 189–197, https://doi.org/10.5194/ejm-35-189-2023, https://doi.org/10.5194/ejm-35-189-2023, 2023
Short summary
Short summary
Pleysteinite has been approved as a new mineral species, and we describe here the characterisation of the mineral and its relationship to related minerals benyacarite, paulkerrite and mantienneite. The characterisation includes the determination and refinement of the crystal structure, electron microprobe analyses, optical properties and interpretation of its Raman spectrum.
Rupert Hochleitner, Christian Rewitzer, Ian E. Grey, William G. Mumme, Colin M. MacRae, Anthony R. Kampf, Erich Keck, Robert W. Gable, and Alexander M. Glenn
Eur. J. Mineral., 35, 95–103, https://doi.org/10.5194/ejm-35-95-2023, https://doi.org/10.5194/ejm-35-95-2023, 2023
Short summary
Short summary
The paper gives a characterisation of the new mineral species, whiteite-(CaMnFe), which has recently been approved as a new mineral (proposal IMA2022-077). The study included a single-crystal structure refinement that, when combined with electron microprobe analyses, confirmed that the mineral was a new member of the whiteite subgroup of the jahnsite group of minerals. Relationships between the crystal structure and the unit-cell parameters for the whiteite-subgroup minerals are discussed.
Cristian Biagioni, Ferdinando Bosi, Daniela Mauro, Henrik Skogby, Andrea Dini, and Federica Zaccarini
Eur. J. Mineral., 35, 81–94, https://doi.org/10.5194/ejm-35-81-2023, https://doi.org/10.5194/ejm-35-81-2023, 2023
Short summary
Short summary
Dutrowite is the first tourmaline supergroup minerals having Ti as a species-defining chemical constituent. Its finding improves our knowledge on the crystal chemistry of this important mineral group and allows us to achieve a better picture of the mechanisms favouring the incorporation of Ti.
Ferdinando Bosi, Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 75–79, https://doi.org/10.5194/ejm-35-75-2023, https://doi.org/10.5194/ejm-35-75-2023, 2023
Erich Keck, Ian E. Grey, Colin M. MacRae, Stephanie Boer, Rupert Hochleitner, Christian Rewitzer, William G. Mumme, A. Matt Glenn, and Cameron Davidson
Eur. J. Mineral., 34, 439–450, https://doi.org/10.5194/ejm-34-439-2022, https://doi.org/10.5194/ejm-34-439-2022, 2022
Short summary
Short summary
First occurrences of the secondary phosphate minerals kenngottite, Mn32+Fe43+(PO4)4(OH)6(H2O)2; allanpringite, Fe33+(PO4)2(OH)3·5H2O; iangreyite, Ca2Al7(PO4)2(PO3OH)2(OH,F)15·8H2O; and nizamoffite, MnZn2(PO4)2(H2O)4, from the Hagendorf Süd pegmatite are reported, with characterisation of their crystal chemistry and phase associations.
Peter Elliott, Ian E. Grey, William G. Mumme, Colin M. MacRae, and Anthony R. Kampf
Eur. J. Mineral., 34, 375–383, https://doi.org/10.5194/ejm-34-375-2022, https://doi.org/10.5194/ejm-34-375-2022, 2022
Short summary
Short summary
This paper describes the characterisation of a new mineral from a South Australian phosphate quarry. The characterisation included chemical analyses, infrared spectroscopy, and a determination and refinement of the crystal structure. The results showed that the mineral has a unique crystal chemistry, but it is closely related to the well-known phosphate mineral crandallite.
Ian Edward Grey, Peter Elliott, William Gus Mumme, Colin M. MacRae, Anthony R. Kampf, and Stuart J. Mills
Eur. J. Mineral., 34, 215–221, https://doi.org/10.5194/ejm-34-215-2022, https://doi.org/10.5194/ejm-34-215-2022, 2022
Short summary
Short summary
A reinvestigation of angastonite from the type locality has shown that it is a mixture of crystalline phases and an amorphous phase, with the published formula corresponding to the amorphous phase. A redefinition proposal for angastonite as an amorphous mineral was approved by the IMA CNMNC. Our study showed how the amorphous phase formed and how it progressively recrystallises as new crandallite-related minerals.
Cited articles
Aragao, D., Aishima, J., Cherukuvada, H., Clarken, R., Clift, M., Cowieson, N. P., Ericsson, D. J., Gee, C. L., Macedo, S., Mudie, N., Panjikar, S., Price, J. R., Riboldi-Tunnicliffe, A., Rostan, R., Williamson, R., and Caradoc-Davies, T. T.: MX2: a high-flux undulator microfocus beamline serving both the chemical and macromolecular crystallography communities at the Australian Synchrotron, J. Synch. Radiat., 25, 885–891, 2018.
Bamberger, C. E., Begun, G. M., and MacDougall, C. S.: Raman spectroscopy of potassium titanates: Their synthesis, hydrolytic reactions and thermal stability, Appl. Spectrosc., 44, 31–37, 1990.
Bosi, F., Hatert, F., Halenius, U., Pasero, M., Ritsuro, M., and Mills, S. J.: On the application of the IMA-CNMNC dominant-valency rule to complex mineral compositions, Mineral. Mag., 83, 627–632, 2019a.
Bosi, F., Biagioni, C., and Oberti, R.: On the chemical identification and classification of minerals, Minerals, 9, 12 pp., 2019b.
Demartin, F., Pilati, T., Gay, H. D., and Gramaccioli, C. M.: The crystal structure of a mineral related to paulkerrite, Z. Kristallogr., 208, 57–71, 1993.
Demartin, F., Gay, H. D., Gramaccioli, C. M., and Pilati, T.: Benyacarite, a new titanium-bearing phosphate mineral species from Cerro Blanco, Argentina, Can. Mineral., 35, 707–712, 1997.
Farrugia, L. J.: WinGX suite for small-molecule single-crystal crystallography, J. Appl. Crystallogr., 32, 837–838, 1999.
Fransolet, A.-M., Oustriere, P., Fontan, F., and Pillard, F.: La mantiennéite, une novelle espèce minérale du gisement de vivianite d'Anloua, Cameroun, Bull. Mineral., 107, 737–744, 1984.
Gagné, O. C. and Hawthorne, F. C.: Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen, Acta Crystallogr., B71, 562–578, 2015.
Gagné, O. and Hawthorne, F. C.: Chemographic exploration of the milarite-type structure, Can. Mineral., 54, 1229–1247, 2016.
Grey, I. E., Hochleitner, R., Rewitzer, C., Kampf, A. R., MacRae, C. M., Gable, R. W., Mumme, W. G., Keck, E., and Davidson, C.: Pleysteinite, [(H2O)0.5K0.5]2Mn2Al3(PO4)4F2(H2O)10 ⋅ 4H2O, the Al analogue of benyacarite, from the Hagendorf-Süd pegmatite, Oberpfalz, Bavaria, Germany, Eur. J. Mineral., 35, 189–197, https://doi.org/10.5194/ejm-35-189-2023, 2023a.
Grey, I. E., Keck, E., Kampf, A. R., MacRae, C. M., Gable, R. W., Mumme, W. G., Glenn, A. M., and Davidson, C.: Hochleitnerite, [K(H2O)]Mn2(Ti2Fe)(PO4)4O2(H2O)10 ⋅ 4H2O, a new paulkerrite-group mineral, from the Hagendorf-Süd pegmatite, Oberpfalz, Bavaria, Germany, Eur. J. Mineral., 35, 635–643, https://doi.org/10.5194/ejm-35-635-2023, 2023b.
Grey, I. E., Hochleitner, R., Kampf, A. R., Boer, S., MacRae, C. M., Mumme, W. G., and Keck, E.: Rewitzerite, K(H2O)Mn2(Al2Ti)(PO4)4[O(OH)](H2O)10⋅4H2O, a new monoclinic paulkerrite-group mineral, from the Hagendorf-Sud pegmatite, Oberpfalz, Bavaria, Germany, Mineral. Mag., 1–29, https://doi.org/10.1180/mgm.2023.55, 2023c.
Hawthorne, F. C.: Towards a structural classification of minerals: The viMivT2Φn mineral, Am. Mineral., 70, 455–473, 1985.
Hawthorne, F. C.: The use of end-member charge-arrangements in defining new mineral species and heterovalent substitutions in complex minerals, Can. Mineral., 40, 699–710, 2002.
Hurlbut, C. S.: A new phosphate, bermanite, occurring with triplite in Arizona, Am. Mineral., 21, 656–661, 1936.
Mills, S. J., Hatert, F., Nickel, E. H., and Ferraris, G.: The standardisation of mineral group hierarchies: application to recent nomenclature proposals, Eur. J. Mineral., 21, 1073–1080, 2009.
Moore, P. B.: Crystal chemistry of the basic iron phosphates, Am. Mineral. 55, 135–169, 1970.
Peacor, D. R., Dunn, P. J., and Simmons, W. B.: Paulkerrite a new titanium phosphate from Arizona, Mineral. Rec., 15, 303–306, 1984.
Petříček, V., Dušek, M., and Palatinus, L.: Crystallographic Computing System JANA2006: General features, Z. Krisallogr., 229, 345–352, 2014.
Sheldrick, G. M.: Crystal structure refinement with SHELXL, Acta Crystallogr., C71, 3–8, 2015.
Wright, S. E., Foley, J. A., and Hughes, J. M.: Optimisation of site occupancies in minerals using quadratic programming, Am. Mineral., 85, 524–531, 2000.
Short summary
The paper describes the formal establishment of the paulkerrite group of minerals and its nomenclature. It includes the application of a site-merging procedure, coupled with a site-total-charge analysis, to obtain unambiguous end-member formulae. Application of the procedure has resulted in the revision of the end-member formulae for several of the group members.
The paper describes the formal establishment of the paulkerrite group of minerals and its...