Articles | Volume 35, issue 3
https://doi.org/10.5194/ejm-35-321-2023
https://doi.org/10.5194/ejm-35-321-2023
Research article
 | 
17 May 2023
Research article |  | 17 May 2023

One-atmosphere high-temperature CO–CO2–SO2 gas-mixing furnace: design, operation, and applications

Shashank Prabha-Mohan, Kenneth T. Koga, Antoine Mathieu, Franck Pointud, and Diego F. Narvaez

Related subject area

Experimental petrology
CO2 diffusion in dry and hydrous leucititic melt
Lennart Koch and Burkhard C. Schmidt
Eur. J. Mineral., 35, 117–132, https://doi.org/10.5194/ejm-35-117-2023,https://doi.org/10.5194/ejm-35-117-2023, 2023
Short summary
Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9 GPa – a proxy for melting of carbonated mantle lithologies
Melanie J. Sieber, Max Wilke, Oona Appelt, Marcus Oelze, and Monika Koch-Müller
Eur. J. Mineral., 34, 411–424, https://doi.org/10.5194/ejm-34-411-2022,https://doi.org/10.5194/ejm-34-411-2022, 2022
Short summary
High-pressure homogenization of olivine-hosted CO2-rich melt inclusions in a piston cylinder: insight into the volatile content of primary mantle melts
Roxane Buso, Didier Laporte, Federica Schiavi, Nicolas Cluzel, and Claire Fonquernie
Eur. J. Mineral., 34, 325–349, https://doi.org/10.5194/ejm-34-325-2022,https://doi.org/10.5194/ejm-34-325-2022, 2022
Short summary
Carbon-saturated COH fluids in the upper mantle: a review of high-pressure and high-temperature ex situ experiments
Carla Tiraboschi, Francesca Miozzi, and Simone Tumiati
Eur. J. Mineral., 34, 59–75, https://doi.org/10.5194/ejm-34-59-2022,https://doi.org/10.5194/ejm-34-59-2022, 2022
Short summary
The influence of oxygen fugacity and chlorine on amphibole–liquid trace element partitioning at upper-mantle conditions
Enrico Cannaò, Massimo Tiepolo, Giulio Borghini, Antonio Langone, and Patrizia Fumagalli
Eur. J. Mineral., 34, 35–57, https://doi.org/10.5194/ejm-34-35-2022,https://doi.org/10.5194/ejm-34-35-2022, 2022
Short summary

Cited articles

Blecic, J., Harrington, J., and Bowman, M. O.: TEA: A code calculating Thermochemical Equilibrium Abundances, Astrophys. J. Suppl. S., 225, 4, https://doi.org/10.3847/0067-0049/225/1/4, 2016. 
Brenan, J. M. and Caciagli, N. C.: Fe–Ni exchange between olivine and sulphide liquid: implications for oxygen barometry in sulphide-saturated magmas, Geochim. Cosmochim. Ac., 64, 307–320, https://doi.org/10.1016/S0016-7037(99)00278-1, 2000. 
Burgisser, A. and Scaillet, B.: Redox evolution of a degassing magma rising to the surface, Nature, 445, 194–197, https://doi.org/10.1038/nature05509, 2007. 
Chase, M. (Ed.): NIST-JANAF thermochemical tables, 4th Edn., American chemical society, Washington, D.C., https://doi.org/10.18434/T42S31, 1998. 
de Moor, J. M., Fischer, T. P., Sharp, Z. D., King, P. L., Wilke, M., Botcharnikov, R. E., Cottrell, E., Zelenski, M., Marty, B., Klimm, K., Rivard, C., Ayalew, D., Ramirez, C., and Kelley, K. A.: Sulfur degassing at Erta Ale (Ethiopia) and Masaya (Nicaragua) volcanoes: Implications for degassing processes and oxygen fugacities of basaltic systems: Sulfur Degassing at Basaltic Volcanoes, Geochem. Geophy. Geosy., 14, 4076–4108, https://doi.org/10.1002/ggge.20255, 2013. 
Download
Short summary
This work presents an in-depth description of a new design for a high-temperature gas-mixing furnace using a mixture of CO–CO2–SO2. It has been designed and built with user safety in mind. The furnace can sustain temperatures of up to 1650 °C. This furnace sets itself apart with its size and unique quench mechanism. Crucially, the apparatus has the ability to change the gas mixture during an experiment. This feature allows the user to simulate natural environments, such as volcanoes.