Articles | Volume 35, issue 1
https://doi.org/10.5194/ejm-35-117-2023
https://doi.org/10.5194/ejm-35-117-2023
Research article
 | 
27 Feb 2023
Research article |  | 27 Feb 2023

CO2 diffusion in dry and hydrous leucititic melt

Lennart Koch and Burkhard C. Schmidt

Related subject area

Experimental petrology
A brief history of solid inclusion piezobarometry
Ross J. Angel, Matteo Alvaro, and Silvio Ferrero
Eur. J. Mineral., 36, 411–415, https://doi.org/10.5194/ejm-36-411-2024,https://doi.org/10.5194/ejm-36-411-2024, 2024
Short summary
Li–Na interdiffusion and diffusion-driven lithium isotope fractionation in pegmatitic melts
Christian R. Singer, Harald Behrens, Ingo Horn, Martin Oeser, Ralf Dohmen, and Stefan Weyer
Eur. J. Mineral., 35, 1009–1026, https://doi.org/10.5194/ejm-35-1009-2023,https://doi.org/10.5194/ejm-35-1009-2023, 2023
Short summary
Depth profile analyses by femtosecond laser ablation (multicollector) inductively coupled plasma mass spectrometry for resolving chemical and isotopic gradients in minerals
Martin Oeser, Ingo Horn, Ralf Dohmen, and Stefan Weyer
Eur. J. Mineral., 35, 813–830, https://doi.org/10.5194/ejm-35-813-2023,https://doi.org/10.5194/ejm-35-813-2023, 2023
Short summary
A revised model for activity–composition relations in solid and molten FePt alloys and a preliminary model for characterization of oxygen fugacity in high-pressure experiments
Marc M. Hirschmann and Hongluo L. Zhang
Eur. J. Mineral., 35, 789–803, https://doi.org/10.5194/ejm-35-789-2023,https://doi.org/10.5194/ejm-35-789-2023, 2023
Short summary
Elasticity of mixtures and implications for piezobarometry of mixed-phase inclusions
Ross J. Angel, Mattia L. Mazzucchelli, Kira A. Musiyachenko, Fabrizio Nestola, and Matteo Alvaro
Eur. J. Mineral., 35, 461–478, https://doi.org/10.5194/ejm-35-461-2023,https://doi.org/10.5194/ejm-35-461-2023, 2023
Short summary

Cited articles

Alletti, M., Baker, D. R., and Freda, C.: Halogen diffusion in a basaltic melt, Geochim. Cosmochim. Ac., 71, 3570–3580, https://doi.org/10.1016/j.gca.2007.04.018, 2007. 
Anderson, A. T.: Some basaltic and andesitic gases, Rev. Geophys., 13, 37–55, https://doi.org/10.1029/RG013i001p00037, 1975. 
Baker, D. R., Freda, C., Brooker, R. A., and Scarlato, P.: Volatile diffusion in silicate melts and its effects on melt inclusions, Ann. Geophys., 48, 699–717, https://doi.org/10.4401/ag-3227, 2005. 
Balcone-Boissard, H., Baker, D. R., Villemant, B., and Boudon, G.: F and Cl diffusion in phonolitic melts: Influence of the Na / K ratio, Chem. Geol., 263, 89–98, https://doi.org/10.1016/j.chemgeo.2008.08.018, 2009. 
Benne, D. and Behrens, H.: Water solubility in haplobasaltic melts, Eur. J. Mineral., 15, 803–814, https://doi.org/10.1127/0935-1221/2003/0015-0803, 2003. 
Download
Short summary
Volatile diffusivities in silicate melts control the nucleation and growth of bubbles in ascending magma. We investigated the diffusion of CO2 in an anhydrous and hydrous leucititic melt at high temperatures and high pressure. CO2 diffusion profiles were measured via attenuated total reflection Fourier transform infrared spectroscopy. CO2 diffusion increases with increasing temperature and water content. The data can be used to understand the CO2 degassing behaviour of leucititic melts.