Articles | Volume 34, issue 1
Eur. J. Mineral., 34, 59–75, 2022
https://doi.org/10.5194/ejm-34-59-2022

Special issue: Probing the Earth: experiments and mineral physics at mantle...

Eur. J. Mineral., 34, 59–75, 2022
https://doi.org/10.5194/ejm-34-59-2022

Review article 26 Jan 2022

Review article | 26 Jan 2022

Carbon-saturated COH fluids in the upper mantle: a review of high-pressure and high-temperature ex situ experiments

Carla Tiraboschi et al.

Related subject area

Experimental petrology
The influence of oxygen fugacity and chlorine on amphibole–liquid trace element partitioning at upper-mantle conditions
Enrico Cannaò, Massimo Tiepolo, Giulio Borghini, Antonio Langone, and Patrizia Fumagalli
Eur. J. Mineral., 34, 35–57, https://doi.org/10.5194/ejm-34-35-2022,https://doi.org/10.5194/ejm-34-35-2022, 2022
Short summary
Effect of chlorine on water incorporation in magmatic amphibole: experimental constraints with a micro-Raman spectroscopy approach
Enrico Cannaò, Federica Schiavi, Giulia Casiraghi, Massimo Tiepolo, and Patrizia Fumagalli
Eur. J. Mineral., 34, 19–34, https://doi.org/10.5194/ejm-34-19-2022,https://doi.org/10.5194/ejm-34-19-2022, 2022
Short summary
A combined Fourier transform infrared and Cr K-edge X-ray absorption near-edge structure spectroscopy study of the substitution and diffusion of H in Cr-doped forsterite
Michael C. Jollands, Hugh St.C. O'Neill, Andrew J. Berry, Charles Le Losq, Camille Rivard, and Jörg Hermann
Eur. J. Mineral., 33, 113–138, https://doi.org/10.5194/ejm-33-113-2021,https://doi.org/10.5194/ejm-33-113-2021, 2021
Short summary
Grain boundary diffusion and its relation to segregation of multiple elements in yttrium aluminum garnet
Joana Polednia, Ralf Dohmen, and Katharina Marquardt
Eur. J. Mineral., 32, 675–696, https://doi.org/10.5194/ejm-32-675-2020,https://doi.org/10.5194/ejm-32-675-2020, 2020
Short summary
Melting relations of anhydrous olivine-free pyroxenite Px1 at 2 GPa
Giulio Borghini and Patrizia Fumagalli
Eur. J. Mineral., 32, 251–264, https://doi.org/10.5194/ejm-32-251-2020,https://doi.org/10.5194/ejm-32-251-2020, 2020

Cited articles

Aerts, M., Hack, A. C., Reusser, E., and Ulmer, P.: Assessment of the diamond-trap method for studying high-pressure fluids and melts and an improved freezing stage design for laser ablation ICP-MS analysis, Am. Mineral., 95, 1523–1526, 2010. 
Akaishi, M. and Yamaoka, S.: Crystallization of diamond from C-O-H fluids under high-pressure and high-temperature conditions, J. Cryst. Growth, 209, 999–1003, https://doi.org/10.1016/S0022-0248(99)00756-3, 2000. 
Akaishi, M., Shaji Kumar, M. D., Kanda, K., and Yamaoka, S.: Formation process of diamond from supercritical H2O-CO2 fluid under high pressure and high temperature conditions, Diam. Relat. Mater., 9, 1945–1950, https://doi.org/10.1016/S0925-9635(00)00366-6, 2000. 
Andersen, T. and Neumann, E. R.: Fluid inclusions in mantle xenoliths, Lithos, 55, 301–320, https://doi.org/10.1016/S0024-4937(00)00049-9, 2001. 
Aoya, M., Kouketsu, Y., Endo, S., Shimizu, H., Mizukami, T., Nakamura, D., and Wallis, S.: Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks, J. Metamorph. Geol., 28(9), 895–914, https://doi.org/10.1111/j.1525-1314.2010.00896.x, 2010. 
Download
Short summary
This review provides an overview of ex situ carbon-saturated COH fluid experiments at upper-mantle conditions. Several authors experimentally investigated the effect of COH fluids. However, fluid composition is rarely tackled as a quantitative issue, and rather infrequently fluids are analyzed as the associated solid phases in the experimental assemblage. Recently, improved techniques have been proposed for analyses of COH fluids, leading to significant advancement in fluid characterization.