Articles | Volume 32, issue 3
Eur. J. Mineral., 32, 347–354, 2020
https://doi.org/10.5194/ejm-32-347-2020
Eur. J. Mineral., 32, 347–354, 2020
https://doi.org/10.5194/ejm-32-347-2020

Research article 08 Jun 2020

Research article | 08 Jun 2020

Tancaite-(Ce), ideally FeCe(MoO4)3 3H2O: description and average crystal structure

Elena Bonaccorsi and Paolo Orlandi

Related subject area

New minerals and systematic mineralogy
Kahlenbergite KAl11O17, a new β-alumina mineral and Fe-rich hibonite from the Hatrurim Basin, the Negev desert, Israel
Biljana Krüger, Evgeny V. Galuskin, Irina O. Galuskina, Hannes Krüger, and Yevgeny Vapnik
Eur. J. Mineral., 33, 341–355, https://doi.org/10.5194/ejm-33-341-2021,https://doi.org/10.5194/ejm-33-341-2021, 2021
Short summary
Occurrence of silesiaite, a new calcium–iron–tin sorosilicate in the calcic skarn of El Valle-Boinás, Asturias, Spain
Antonia Cepedal, Mercedes Fuertes-Fuente, and Agustín Martin-Izard
Eur. J. Mineral., 33, 165–174, https://doi.org/10.5194/ejm-33-165-2021,https://doi.org/10.5194/ejm-33-165-2021, 2021
Grimmite, NiCo2S4, a new thiospinel from Příbram, Czech Republic
Pavel Škácha, Jiří Sejkora, Jakub Plášil, Zdeněk Dolníček, and Jana Ulmanová
Eur. J. Mineral., 33, 175–187, https://doi.org/10.5194/ejm-33-175-2021,https://doi.org/10.5194/ejm-33-175-2021, 2021
Short summary
Freitalite, C14H10, a new aromatic hydrocarbon mineral from Freital, Saxony, Germany
Thomas Witzke, Martin Schreyer, Benjamin Brandes, René Csuk, and Herbert Pöllmann
Eur. J. Mineral., 33, 1–8, https://doi.org/10.5194/ejm-33-1-2021,https://doi.org/10.5194/ejm-33-1-2021, 2021
Short summary
Gobelinite, the Co analogue of ktenasite from Cap Garonne, France, and Eisenzecher Zug, Germany
Stuart J. Mills, Uwe Kolitsch, Georges Favreau, William D. Birch, Valérie Galea-Clolus, and Johannes Markus Henrich
Eur. J. Mineral., 32, 637–644, https://doi.org/10.5194/ejm-32-637-2020,https://doi.org/10.5194/ejm-32-637-2020, 2020

Cited articles

Bonaccorsi, E. and Orlandi, P.: Tancaite-(Ce) data set, CIF and FCF files, figshare, https://doi.org/10.6084/m9.figshare.12319214, 2020. 
Bruker AXS Inc.: APEX 3. Bruker Advanced X-ray Solutions, Madison, WI, USA, 2016. 
Frost, R. L., Bouzaid, J., and Butler, I. S.: Raman spectroscopic study of the molybdate mineral szenicsite and compared with other paragenetically related molybdate minerals, Spectrosc. Lett., 40, 603–614, https://doi.org/10.1080/00387010701301220, 2007. 
Harrison, W. T. A.: Crystal structure of paraelastic aluminum molybdate and ferric molybdate, β−Al2(MoO4)3 and β−Fe2(MoO4)3, Mat. Res. Bull., 30, 1325–1331, https://doi.org/10.1016/0025-5408(95)00157-3, 1995. 
Holland, T. J. B. and Redfern, S. A. T.: Unit cell refinement from powder diffraction data: the use of regression diagnostics, Mineral. Mag., 61, 65–77, https://doi.org/10.1180/minmag.1997.061.404.07, 1997. 
Download
Short summary
Molybdates are of a great interest due to their ionic conductivity, negative thermal expansion, and immobilization of radionuclides. The new mineral tancaite-(Ce), FeCe(MoO4)3•3H2O, shows a new structure type never observed in natural and synthetic molybdates. Its cubic average structure may be described as a derivative of the perovskite structure, in which Fe-centred octahedra are linked through MoO4 groups. The ordering of Mo and O atoms results in one or more complex superstructures.