Articles | Volume 35, issue 6
https://doi.org/10.5194/ejm-35-1009-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-35-1009-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Li–Na interdiffusion and diffusion-driven lithium isotope fractionation in pegmatitic melts
Christian R. Singer
CORRESPONDING AUTHOR
Institut für Mineralogie, Leibniz Universität Hannover, 30167 Hanover, Germany
Harald Behrens
Institut für Mineralogie, Leibniz Universität Hannover, 30167 Hanover, Germany
Ingo Horn
Institut für Mineralogie, Leibniz Universität Hannover, 30167 Hanover, Germany
Martin Oeser
Institut für Mineralogie, Leibniz Universität Hannover, 30167 Hanover, Germany
Ralf Dohmen
Institut für Geologie, Mineralogie und Geophysik, Ruhr Universität Bochum, 44780 Bochum, Germany
Stefan Weyer
Institut für Mineralogie, Leibniz Universität Hannover, 30167 Hanover, Germany
Related authors
Francesco Vetere, Kristina Schimetzek, Maurizio Petrelli, Fleurice Parat, André Stechern, Christian Singer, and Francois Holtz
Eur. J. Mineral., 38, 9–25, https://doi.org/10.5194/ejm-38-9-2026, https://doi.org/10.5194/ejm-38-9-2026, 2026
Short summary
Short summary
This study examines how trace elements are distributed between melt and crystals during dacite crystallization (675–775 °C, 200 MPa) using a two-step experiment combining long-duration runs and a mineral trap technique. Residual melts were effectively separated and analysed. LA-ICP-MS (laser ablation inductively coupled plasma mass spectroscopy) data for elements like P, Y, Zr, Nb, Cs, Ce, Yb, and U reveal that, while Cs and U stay incompatible, other elements are affected by the type of crystallizing minerals.
Francesco Vetere, Kristina Schimetzek, Maurizio Petrelli, Fleurice Parat, André Stechern, Christian Singer, and Francois Holtz
Eur. J. Mineral., 38, 9–25, https://doi.org/10.5194/ejm-38-9-2026, https://doi.org/10.5194/ejm-38-9-2026, 2026
Short summary
Short summary
This study examines how trace elements are distributed between melt and crystals during dacite crystallization (675–775 °C, 200 MPa) using a two-step experiment combining long-duration runs and a mineral trap technique. Residual melts were effectively separated and analysed. LA-ICP-MS (laser ablation inductively coupled plasma mass spectroscopy) data for elements like P, Y, Zr, Nb, Cs, Ce, Yb, and U reveal that, while Cs and U stay incompatible, other elements are affected by the type of crystallizing minerals.
Jens Jarnot, Ralf Dohmen, Claus O. W. Trost, Christian Mitterer, Patrick Cordier, and Oleksandr Glushko
Eur. J. Mineral., 37, 91–99, https://doi.org/10.5194/ejm-37-91-2025, https://doi.org/10.5194/ejm-37-91-2025, 2025
Short summary
Short summary
The amorphous phase of the natural mineral olivine was synthesized to investigate its mechanical properties. Tensile tests with in situ optical microscopy revealed brittle behaviour of amorphous olivine. Using digital image correlation, we estimated the intrinsic strength of amorphous olivine to be about 1.8 GPa. The measured intrinsic strength of amorphous olivine should help to better identify the “weak link” that initiates or promotes macroscopic material failure.
Florian Pohl, Harald Behrens, Martin Oeser, Felix Marxer, and Ralf Dohmen
Eur. J. Mineral., 36, 985–1003, https://doi.org/10.5194/ejm-36-985-2024, https://doi.org/10.5194/ejm-36-985-2024, 2024
Short summary
Short summary
The growing interest in lithium (Li) diffusion for the determination of timescales of magmatic events increases the necessity to better understand Li diffusion in common mineral phases. In this context we analyzed Li diffusion in plagioclase, one of the most common mineral phases. Our study is the first to confirm two diffusion mechanisms for Li in plagioclase, and our results indicate timescales derived from Li diffusion data in previous studies were underestimated by a factor of up to 100.
Martin Oeser, Ingo Horn, Ralf Dohmen, and Stefan Weyer
Eur. J. Mineral., 35, 813–830, https://doi.org/10.5194/ejm-35-813-2023, https://doi.org/10.5194/ejm-35-813-2023, 2023
Short summary
Short summary
This study presents a new method designed to analyze micrometer-scale chemical and isotopic profiles in minerals, glasses, and other solids. The employed technique combines plasma mass spectrometers and a state-of-the-art femtosecond laser equipped with open-source software (LinuxCNC) that controls the movement of the laser beam. It allows for equably drilling into the sample surface, e.g., in order to measure chemically or isotopically zoned or heterogeneous materials at micrometer scales.
Cited articles
Baasner, A., Schmidt, B. C., Dupree, R., and Webb, S. L.: Fluorine speciation as a function of composition in peralkaline and peraluminous Na2O–CaO–Al2O3–SiO2 glasses: A multinuclear NMR study, Geochim. Cosmochim. Ac., 132, 151–169, https://doi.org/10.1016/j.gca.2014.01.041, 2014.
Barnes, E. M., Weis, D., and Groat, L. A.: Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada, Lithos, 132/133, 21–36, https://doi.org/10.1016/j.lithos.2011.11.014, 2012.
Bartels, A., Vetere, F., Holtz, F., Behrens, H., and Linnen, R. L.: Viscosity of flux-rich pegmatitic melts, Contrib. Mineral. Petrol., 162, 51–60, https://doi.org/10.1007/s00410-010-0582-3, 2011.
Bartels, A., Behrens, H., Holtz, F., Schmidt, B. C., Fechtelkord, M., Knipping, J., Crede, L., Baasner, A., and Pukallus, N.: The effect of fluorine, boron and phosphorus on the viscosity of pegmatite forming melts, Chem. Geol., 346, 184–198, https://doi.org/10.1016/j.chemgeo.2012.09.024, 2013.
Bartels, A., Behrens, H., Holtz, F., and Schmidt, B. C.: The effect of lithium on the viscosity of pegmatite forming liquids, Chem. Geol., 410, 1–11, https://doi.org/10.1016/j.chemgeo.2015.05.011, 2015.
Bauer, U., Welsch, A.-M., Behrens, H., Rahn, J., Schmidt, H., and Horn, I.: Li diffusion and the effect of local structure on Li mobility in Li2O-SiO2 glasses, J. Phys. Chem. B, 117, 15184–15195, https://doi.org/10.1021/jp408805e, 2013.
Behrens, H., Romano, C., Nowak, M., Holtz, F., and Dingwell, D. B.: Near-infrared spectroscopic determination of water species in glasses of the systems MAlSi3O8 (M = Li, Na, K): an interlaboratory study, Chem. Geol., 128, 41–63, 1996.
Behrens, H., Kappes, R., and Heitjans, P.: Proton conduction in glass – an impedance and infrared spectroscopic study on hydrous BaSi2O5 glass, J. Non-Cryst. Sol., 306, 271–281, 2002.
Černý, P.: Rare-element Granitic Pegmatites, Part I: Anatomy and Internal Evolution of Pegmatitic Deposits, Geosci. Can., 18, 49–67, 1991.
Černý, P. and Ercit, T. S.: The classification of granitic pegmatites revisited, Can. Mineral., 43, 2005–2026, https://doi.org/10.2113/gscanmin.43.6.2005, 2005.
Chakraborty, S.: Rates and mechanisms of Fe-Mg interdiffusion in olivine at 980–1300 ∘C, J. Geophys. Res., 102, 12317–12331, https://doi.org/10.1029/97JB00208, 1997.
Coogan, L. A., Kasemann, S. A., and Chakraborty, S.: Rates of hydrothermal cooling of new oceanic upper crust derived from lithium-geospeedometry, Earth Planet. Sc. Lett., 240, 415–424, https://doi.org/10.1016/j.epsl.2005.09.020, 2005.
Crank, J.: The Mathematics of Diffusion, 2nd Edn., Oxford science publications, Oxford University Press, Oxford, 414 pp., Clarendon Press, ISBN: 9780198534112, 1975.
Cunningham, G. J., Henderson, P., Lowry, R. K., Nolan, J., Reed, S., and Long, J.: Lithium diffusion in silicate melts, Earth Planet. Sc. Lett., 65, 203–205, https://doi.org/10.1016/0012-821X(83)90199-1, 1983.
De Hoog, J. C. M.: Matrix Effects During SIMS Measurement of the Lithium Mass Fractions of Silicate Glasses: Correction Procedures and Updated Preferred Values of Reference Materials, Geostand. Geoanal. Res., 42, 513–522, https://doi.org/10.1111/ggr.12237, 2018.
Deveaud, S., Millot, R., and Villaros, A.: The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas, Chem. Geol., 411, 97–111, https://doi.org/10.1016/j.chemgeo.2015.06.029, 2015.
Dingwell, D. B., Knoche, R., Webb, S. L., and Pichavant, M.: The effect of B2O3 on the viscosity of haplogranitic liquids, Am. Miner., 77, 457–461, 1992.
Dohmen, R., Kasemann, S. A., Coogan, L., and Chakraborty, S.: Diffusion of Li in olivine, Part I: Experimental observations and a multi species diffusion model, Geochim. Cosmochim. Ac., 74, 274–292, https://doi.org/10.1016/j.gca.2009.10.016, 2010.
Fanara, S. and Behrens, H.: Proton conduction in hydrous glasses of the join CaAl2Si2O8-CaMgSi2O6: An impedance and infrared spectroscopic study, J. Chem. Phys., 134, 194505, https://doi.org/10.1063/1.3589898, 2011.
Freda, C. and Baker, D. R.: Na-K interdiffusion in alkali feldspar melts, Geochim. Cosmochim. Ac., 62, 2997–3007, https://doi.org/10.1016/S0016-7037(98)00226-9, 1998.
Giordano, D., Russell, J. K., and Dingwell, D. B.: Viscosity of magmatic liquids: A model, Earth Planet. Sc. Lett., 271, 123–134, https://doi.org/10.1016/j.epsl.2008.03.038, 2008.
Guillong, M., Meier, D. L., Allan, M. M., Heinrich, C. A., and Yardley, B. W.: Appendix A6: SILLS: A MATLAB-based program for the reduction of laser ablation ICP-MS data of homogenous materials and inclusions, Mineral Assoc. Canada Short Course, 328–333, 2008.
Henderson, G. S.: The structure of silicate melts: A glass perspective, Can. Mineral., 43, 1921–1958, https://doi.org/10.2113/gscanmin.43.6.1921, 2005.
Holycross, M. E., Watson, E. B., Richter, F. M., and Villeneuve, J.: Diffusive fractionation of Li isotopes in wet, silicic melts, Geochem. Persp. Let., 6, 39–42, https://doi.org/10.7185/geochemlet.1807, 2018.
Horn, I., Blanckenburg, F. von, Schoenberg, R., Steinhoefel, G., and Markl, G.: In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes, Geochim. Cosmochim. Ac., 70, 3677–3688, https://doi.org/10.1016/j.gca.2006.05.002, 2006.
Hui, H. and Zhang, Y.: Toward a general viscosity equation for natural anhydrous and hydrous silicate melts, Geochim. Cosmochim. Ac., 71, 403–416, https://doi.org/10.1016/j.gca.2006.09.003, 2007.
Isard, J. O.: The mixed alkali effect in glass, J. Non-Cryst. Sol., 1, 235–261, https://doi.org/10.1016/0022-3093(69)90003-9, 1969.
Jambon, A.: Tracer diffusion in granitic melts: Experimental results for NA, K, RB, CS, CA, SR, BA, CE, EU to 1300 ∘C and a model of calculation, J. Geophys. Res., 87, 10797–10810, https://doi.org/10.1029/JB087iB13p10797, 1982.
Jambon, A. and Semet, M. P.: Lithium diffusion in silicate glasses of albite, orthoclase, and obsidian composition: An ion-microprobe determination, Earth Planet. Sc. Lett., 37, 445–450, https://doi.org/10.1016/0012-821X(78)90060-2, 1978.
Jeffcoate, A. B., Elliott, T., Kasemann, S. A., Ionov, D., Cooper, K., and Brooker, R.: Li isotope fractionation in peridotites and mafic melts, Geochim. Cosmochim. Ac., 71, 202–218, 2007.
Jochum, K. P. and Stoll, B.: Reference materials for elemental and isotopic analyses by LA-(MC)-ICP-MS: Successes and outstanding needs, in: Laser ablation ICP-MS in the Earth sciences: Current practices and outstanding issues, edited by: Sylvestor, P., Mineralogical Association of Canada, Quebec, 147–168, ISBN: 9780921294498, 2008.
Jochum, K. P., Stoll, B., Herwig, K., Willbold, M., Hofmann, A. W., Amini, M., Aarburg, S., Abouchami, W., Hellebrand, E., Mocek, B., Raczek, I., Stracke, A., Alard, O., Bouman, C., Becker, S., Dücking, M., Brätz, H., Klemd, R., Bruin, D. de, Canil, D., Cornell, D., Hoog, C.-J. de, Dalpé, C., Danyushevsky, L., Eisenhauer, A., Gao, Y., Snow, J. E., Groschopf, N., Günther, D., Latkoczy, C., Guillong, M., Hauri, E. H., Höfer, H. E., Lahaye, Y., Horz, K., Jacob, D. E., Kasemann, S. A., Kent, A. J. R., Ludwig, T., Zack, T., Mason, P. R. D., Meixner, A., Rosner, M., Misawa, K., Nash, B. P., Pfänder, J., Premo, W. R., Sun, W. D., Tiepolo, M., Vannucci, R., Vennemann, T., Wayne, D., and Woodhead, J. D.: MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios, Geochem. Geophy. Geosy., 7, 1–44, https://doi.org/10.1029/2005GC001060, 2006.
Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D. E., Stracke, A., Birbaum, K., Frick, D. A., Günther, D., and Enzweiler, J.: Determination of Reference Values for NIST SRM 610-617 Glasses Following ISO Guidelines, Geostand. Geoanal. Res., 35, 397–429, https://doi.org/10.1111/j.1751-908X.2011.00120.x, 2011.
Kasemann, S. A., Jeffcoate, A. B., and Elliott, T.: Lithium isotope composition of basalt glass reference material, Anal. Chem., 77, 5251–5257, https://doi.org/10.1021/ac048178h, 2005.
Leschik, M., Heide, G., Frischat, G. H., Behrens, H., Wiedenbeck, M., Wagner, N., Heide, K., Geißler, H., and Reinholz, U.: Determination of H2O and D2O contents in rhyolitic glasses, Phys. Chem. Glasses, 45, 238–251, 2004.
London, D.: Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: Evidence from fluid inclusions and phase-equilibrium experiments, Am. Miner., 71, 376–395, 1986.
London, D.: The application of experimental petrology to the genesis and crystallization of granitic pegmatites, Can. Mineral., 30, 499–540, 1992.
London, D.: Granitic pegmatites: an assessment of current concepts and directions for the future, Lithos, 80, 281–303, https://doi.org/10.1016/j.lithos.2004.02.009, 2005.
London, D.: Pegmatites, The Canadian Mineralogist Special Publication, 10, Mineralogical Association of Canada, Ottawa, 347 pp., ISBN: 9780921294474, 2008.
London, D., Morgan VI, G. B., and Hervig, R. L.: Vapor-undersaturated experiments with Macusani glass + H2O at 200 MPa, and the internal differentiation of granitic pegmatites, Contrib. Mineral. Petrol., 102, 1–17, 1989.
London, D., Morgan, G. B., Babb, H. A., and Loomis, J. L.: Behavior and effects of phosphorus in the system Na2O-K2O-Al2O3-SiO2-P2O5-H2O at 200 MPa (H2O), Contrib. Mineral. Petrol., 113, 450–465, 1993.
Lowry, R. K., Reed, S., Nolan, J., Henderson, P., and Long, J.: Lithium tracer-diffusion in an alkali-basaltic melt – An ion-microprobe determination, Earth Planet. Sc. Lett., 53, 36–40, https://doi.org/10.1016/0012-821X(81)90023-6, 1981.
Lynn, K. J., Shea, T., Garcia, M. O., Costa, F., and Norman, M. D.: Lithium diffusion in olivine records magmatic priming of explosive basaltic eruptions, Earth Planet. Sc. Lett., 500, 127–135, https://doi.org/10.1016/j.epsl.2018.08.002, 2018.
Magna, T., Janoušek, V., Kohút, M., Oberli, F., and Wiechert, U.: Fingerprinting sources of orogenic plutonic rocks from Variscan belt with lithium isotopes and possible link to subduction-related origin of some A-type granites, Chem. Geol., 274, 94–107, https://doi.org/10.1016/j.chemgeo.2010.03.020, 2010.
Maloney, J. S., Nabelek, P. I., and Sirbescu, M.-L. C. H.: Lithium and its isotopes in tourmaline as indicators of the crystallization process in the San Diego County pegmatites, California, USA, Eur. J. Mineral., 20, 905–916, https://doi.org/10.1127/0935-1221/2008/0020-1823, 2008.
Manning, J. R.: Diffusion Kinetics for Atoms in Crystals, Van Nostrand, Princeton, NJ, 257 pp., Van Nostrand Reinhold Inc., U.S., ISBN: 9780442050948, 1968.
Margaritz, M. and Hofmann, A. W.: Diffusion of Sr, Ba and Na in obsidian, Geochim. Cosmochim. Ac., 42, 595–605, 1978.
Matthews, W., Linnen, R. L., and Guo, Q.: A filler-rod technique for controlling redox conditions in cold-seal pressure vessels, Am. Mineral., 88, 701–707, https://doi.org/10.2138/am-2003-0424, 2003.
Morgan, G. B. and London, D.: Crystallization of the Little Three layered pegmatite-aplite dike, Ramona District, California, Contrib. Mineral. Petrol., 136, 310–330, https://doi.org/10.1007/s004100050541, 1999.
Mosbah, M., Metrich, N., and Massiot, P.: PIGME fluorine determination using a nuclear microprobe with application to glass inclusions, Nucl. Inst. Methods Phys. Res. B, 58, 227–231, https://doi.org/10.1016/0168-583X(91)95592-2, 1991.
Mysen, B. O. and Richet, P.: Silicate Glasses and Melts: Properties and Structure, Developments in geochemistry, 10, Elsevier Science, Amsterdam, 544 pp., ISBN: 9780444520111, 2005.
Nabelek, P. I., Whittington, A. G., and Sirbescu, M.-L. C.: The role of H2O in rapid emplacement and crystallization of granite pegmatites: resolving the paradox of large crystals in highly undercooled melts, Contrib. Mineral. Petrol., 160, 313–325, https://doi.org/10.1007/s00410-009-0479-1, 2010.
Neukampf, J., Ellis, B. S., Laurent, O., Steinmann, L. K., Ubide, T., Oeser, M., Magna, T., Weyer, S., and Bachmann, O.: Time scales of syneruptive volatile loss in silicic magmas quantified by Li isotopes, Geology, 49, 125–129, https://doi.org/10.1130/G47764.1, 2021.
Phelps, P. R. and Lee, C.-T. A.: Extreme lithium isotope fractionation in quartz from the Stewart pegmatite, Geochim. Cosmochim. Ac., 336, 208–218, https://doi.org/10.1016/j.gca.2022.09.014, 2022.
Qi, H. P., Taylor, P., Berglund, M., and Bièvre, P. de: Calibrated measurements of the isotopic composition and atomic weight of the natural Li isotopic reference material IRMM-016, Int. J. Mass Spectrom. Ion Process., 171, 263–268, https://doi.org/10.1016/S0168-1176(97)00125-0, 1997.
Richet, P., Whittington, A., Holtz, F., Behrens, H., Ohlhorst, S., and Wilke, M.: Water and the density of silicate glasses, Contr. Mineral. and Petrol., 138, 337–347, https://doi.org/10.1007/s004100050567, 2000.
Richter, F., Watson, B., Chaussidon, M., Mendybaev, R., and Ruscitto, D.: Lithium isotope fractionation by diffusion in minerals, Part 1: Pyroxenes, Geochim. Cosmochim. Ac., 126, 352–370, https://doi.org/10.1016/j.gca.2013.11.008, 2014.
Richter, F., Chaussidon, M., Bruce Watson, E., Mendybaev, R., and Homolova, V.: Lithium isotope fractionation by diffusion in minerals, Part 2: Olivine, Geochim. Cosmochim. Ac., 219, 124–142, https://doi.org/10.1016/j.gca.2017.09.001, 2017.
Richter, F. M., Liang, Y., and Davis, A. M.: Isotope fractionation by diffusion in molten oxides, Geochim. Cosmochim. Ac., 63, 2853–2861, https://doi.org/10.1016/S0016-7037(99)00164-7, 1999.
Richter, F. M., Davis, A. M., DePaolo, D. J., and Watson, E.: Isotope fractionation by chemical diffusion between molten basalt and rhyolite, Geochim. Cosmochim. Ac., 67, 3905–3923, https://doi.org/10.1016/S0016-7037(03)00174-1, 2003.
Richter, F. M., Watson, E. B., Mendybaev, R. A., Teng, F.-Z., and Janney, P. E.: Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion, Geochim. Cosmochim. Ac., 72, 206–220, https://doi.org/10.1016/j.gca.2007.10.016, 2008.
Richter, F. M., Watson, E. B., Mendybaev, R., Dauphas, N., Georg, B., Watkins, J., and Valley, J.: Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion, Geochim. Cosmochim. Ac., 73, 4250–4263, https://doi.org/10.1016/j.gca.2009.04.011, 2009.
Schäffer, A.-K., Petrishcheva, E., Habler, G., Abart, R., Rhede, D., and Giester, G.: Sodium-potassium interdiffusion in potassium-rich alkali feldspar II: Composition- and temperature-dependence obtained from cation exchange experiments, Am. J. Sci., 314, 1300–1318, https://doi.org/10.2475/09.2014.03, 2014.
Shannon, R. D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A, 32, 751–767, https://doi.org/10.1107/S0567739476001551, 1976.
Sirbescu, M.-L. C. and Nabelek, P. I.: Crustal melts below 400 ∘C, Geology, 31, 685–688, https://doi.org/10.1130/G19497.1, 2003.
Spallanzani, R., Koga, K. T., Cichy, S. B., Wiedenbeck, M., Schmidt, B. C., Oelze, M., and Wilke, M.: Lithium and boron diffusivity and isotopic fractionation in hydrated rhyolitic melts, Contrib. Mineral. Petrol., 177, 74, https://doi.org/10.1007/s00410-022-01937-2, 2022.
Steinmann, L. K., Oeser, M., Horn, I., Seitz, H.-M., and Weyer, S.: In situ high-precision lithium isotope analyses at low concentration levels with femtosecond-LA-MC-ICP-MS, J. Anal. At. Spectrom., 34, 1447–1458, https://doi.org/10.1039/C9JA00088G, 2019.
Steinmann, L. K., Oeser, M., Horn, I., and Weyer, S.: Multi-Stage Magma Evolution in Intra-Plate Volcanoes: Insights From Combined in situ Li and Mg–Fe Chemical and Isotopic Diffusion Profiles in Olivine, Front. Earth Sci., 8, 201, https://doi.org/10.3389/feart.2020.00201, 2020.
Stilling, A., Černý, P., and Vanstone, P. J.: The Tanco pegmatite at Bernic Lake, Manitoba, XVI. Zonal and bulk compositions and their petrogenetic significance, Can. Mineral., 44, 599–623, https://doi.org/10.2113/gscanmin.44.3.599, 2006.
Teng, F.-Z., McDonough, W. F., Rudnick, R. L., Walker, R. J., and Sirbescu, M.-L. C.: Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota, Am. Miner., 91, 1488–1498, https://doi.org/10.2138/am.2006.2083, 2006a.
Teng, F.-Z., McDonough, W. F., Rudnick, R. L., and Walker, R. J.: Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite, Earth Planet. Sc. Lett., 243, 701–710, https://doi.org/10.1016/j.epsl.2006.01.036, 2006b.
Thomas, R. and Webster, J. D.: Strong tin enrichment in a pegmatite-forming melt, Mineral. Deposita, 35, 570–582, https://doi.org/10.1007/s001260050262, 2000.
Thomas, R., Webster, J. D., and Heinrich, W.: Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure, Contrib. Mineral. Petrol., 139, 394–401, https://doi.org/10.1007/s004100000120, 2000.
US Geological Survey: Mineral Commodity Summaries, US Geological Survey, Mineral Commodity Summaries, 200 pp., US Geological Survey, https://doi.org/10.3133/mcs2021, 2021.
Vetere, F., Behrens, H., Misiti, V., Ventura, G., Holtz, F., de Rosa, R., and Deubener, J.: The viscosity of shoshonitic melts (Vulcanello Peninsula, Aeolian Islands, Italy): Insight on the magma ascent in dikes, Chem. Geol., 245, 89–102, https://doi.org/10.1016/j.chemgeo.2007.08.002, 2007.
Watkins, J. M., DePaolo, D. J., Ryerson, F. J., and Peterson, B. T.: Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions, Geochim. Cosmochim. Ac., 75, 3103–3118, https://doi.org/10.1016/j.gca.2011.03.002, 2011.
Webber, K. L., Simmons, W. B., Falster, A. U., and Foord, E. E.: Cooling rates and crystallization dynamics of shallow level pegmatite-aplite dikes, San Diego County, California, Am. Miner., 84, 708–717, https://doi.org/10.2138/am-1999-5-602, 1999.
Withers, A. C. and Behrens, H.: Temperature-induced changes in the NIR spectra of hydrous albitic and rhyolitic glasses between 300 and 100 K, Phys. Chem. Mineral., 27, 119–132, https://doi.org/10.1007/s002690050248, 1999.
Wu, S., Wörner, G., Jochum, K. P., Stoll, B., Simon, K., and Kronz, A.: The Preparation and Preliminary Characterisation of Three Synthetic Andesite Reference Glass Materials (ARM-1, ARM-2, ARM-3) for In Situ Microanalysis, Geostand. Geoanal. Res., 43, 567–584, https://doi.org/10.1111/ggr.12301, 2019.
Wu, S., Yang, Y., Jochum, K. P., Romer, R. L., Glodny, J., Savov, I. P., Agostini, S., Hoog, J. C. de, Peters, S. T., Kronz, A., Zhang, C., Bao, Z., Wang, X., Li, Y., Tang, G., Feng, L., Yu, H., Li, Z., Le Zhang, Lin, J., Zeng, Y., Xu, C., Wang, Y., Cui, Z., Deng, L., Xiao, J., Liu, Y., Xue, D., Di Zhang, Jia, L., Wang, H., Xu, L., Huang, C., Xie, L., Pack, A., Wörner, G., He, M., Li, C., Yuan, H., Huang, F., Li, Q., Yang, J., Li, X., and Wu, F.: Isotopic Compositions (Li-B-Si-O-Mg-Sr-Nd-Hf-Pb) and Fe Fe Ratios of Three Synthetic Andesite Glass Reference Materials (ARM-1, ARM-2, ARM-3), Geostand. Geoanal. Res., 45, 719–745, https://doi.org/10.1111/ggr.12399, 2021.
Zhang, C., Koepke, J., Albrecht, M., Horn, I., and Holtz, F.: Apatite in the dike-gabbro transition zone of mid-ocean ridge: Evidence for brine assimilation by axial melt lens, Am. Miner., 102, 558–570, https://doi.org/10.2138/am-2017-5906, 2017.
Zhang, Y., Xu, Z., and Behrens, H.: Hydrous species geospeedometer in rhyolite: improved calibration and application, Geochim. Cosmochim. Ac., 64, 3347–3355, https://doi.org/10.1016/S0016-7037(00)00424-5, 2000.
Zhang, Y., Ni, H., and Chen, Y.: Diffusion Data in Silicate Melts, Rev. Mineral. Geochem., 72, 311–408, https://doi.org/10.2138/rmg.2010.72.8, 2010.
Short summary
Li is a critical element that is often enriched in pegmatites. To better understand the enrichment of Li in such systems, it is necessary to understand the underlying transport mechanisms. We performed experiments to investigate diffusion rates and exchange mechanisms of Li between a Li-rich and a Li-poor melt at high temperature and pressure. Our results indicate that fluxing elements do not increase the diffusivity of Li compared to a flux-free melt.
Li is a critical element that is often enriched in pegmatites. To better understand the...