Research article
27 Jun 2022
Research article
| 27 Jun 2022
Graulichite-(La), LaFe3+3(AsO4)2(OH)6, a new addition to the alunite supergroup from the Patte d'Oie mine, Bou Skour mining district, Morocco
Cristian Biagioni et al.
Related authors
Daniela Mauro, Cristian Biagioni, and Federica Zaccarini
Eur. J. Mineral., 33, 717–726, https://doi.org/10.5194/ejm-33-717-2021, https://doi.org/10.5194/ejm-33-717-2021, 2021
Short summary
Short summary
This work reports the full crystal-chemical characterization of gersdorffite from Contrada Zillì (Peloritani Mountains, Sicily, Italy). The structural type shown by gersdorffite (ordered polytype 213) and its chemistry agree with low-temperature crystallization conditions. Moreover, the chemical zoning of the studied crystals recorded changes in the crystallization physicochemical conditions. This zoning may be due to a multistage crystallization, related to the evolution of the ore deposits.
Yves Moëlo and Cristian Biagioni
Eur. J. Mineral., 32, 623–635, https://doi.org/10.5194/ejm-32-623-2020, https://doi.org/10.5194/ejm-32-623-2020, 2020
Short summary
Short summary
The plagionite group is a family of complex sulfides (
lead-antimony sulfosalts) encountered in various Pb-Cu-Zn ore deposits. Analysis of these crystal structures confirms a systematic Pb-versus-Sb substitution in two adjacent cation positions. Such a substitution varies according not only to the Pb / Sb ratio of each member but also, apparently, to the kinetics of crystallization. Re-examination of a Pb-free synthetic derivative permitted its redefinition as a Na-Sb sulfosalt.
Daniela Mauro, Cristian Biagioni, and Federica Zaccarini
Eur. J. Mineral., 33, 717–726, https://doi.org/10.5194/ejm-33-717-2021, https://doi.org/10.5194/ejm-33-717-2021, 2021
Short summary
Short summary
This work reports the full crystal-chemical characterization of gersdorffite from Contrada Zillì (Peloritani Mountains, Sicily, Italy). The structural type shown by gersdorffite (ordered polytype 213) and its chemistry agree with low-temperature crystallization conditions. Moreover, the chemical zoning of the studied crystals recorded changes in the crystallization physicochemical conditions. This zoning may be due to a multistage crystallization, related to the evolution of the ore deposits.
Stuart J. Mills, Uwe Kolitsch, Georges Favreau, William D. Birch, Valérie Galea-Clolus, and Johannes Markus Henrich
Eur. J. Mineral., 32, 637–644, https://doi.org/10.5194/ejm-32-637-2020, https://doi.org/10.5194/ejm-32-637-2020, 2020
Yves Moëlo and Cristian Biagioni
Eur. J. Mineral., 32, 623–635, https://doi.org/10.5194/ejm-32-623-2020, https://doi.org/10.5194/ejm-32-623-2020, 2020
Short summary
Short summary
The plagionite group is a family of complex sulfides (
lead-antimony sulfosalts) encountered in various Pb-Cu-Zn ore deposits. Analysis of these crystal structures confirms a systematic Pb-versus-Sb substitution in two adjacent cation positions. Such a substitution varies according not only to the Pb / Sb ratio of each member but also, apparently, to the kinetics of crystallization. Re-examination of a Pb-free synthetic derivative permitted its redefinition as a Na-Sb sulfosalt.
Related subject area
New minerals and systematic mineralogy
Arrojadite-group nomenclature: sigismundite reinstated
Redefinition of beraunite, Fe3+6(PO4)4O(OH)4 ⋅ 6H2O, and discreditation of the name eleonorite: a re-investigation of type material from the Hrbek Mine (Czech Republic)
Redefinition of angastonite, CaMgAl2(PO4)2(OH)4 ⋅ 7H2O, as an amorphous mineral
Liguowuite, WO3, a new member of the A-site vacant perovskite type minerals from the Panzhihua–Xichang region, China
Zinkgruvanite, Ba4Mn2+4Fe3+2(Si2O7)2(SO4)2O2(OH)2, a new ericssonite-group mineral from the Zinkgruvan Zn-Pb-Ag-Cu deposit, Askersund, Örebro County, Sweden
Kahlenbergite KAl11O17, a new β-alumina mineral and Fe-rich hibonite from the Hatrurim Basin, the Negev desert, Israel
Occurrence of silesiaite, a new calcium–iron–tin sorosilicate in the calcic skarn of El Valle-Boinás, Asturias, Spain
Grimmite, NiCo2S4, a new thiospinel from Příbram, Czech Republic
Freitalite, C14H10, a new aromatic hydrocarbon mineral from Freital, Saxony, Germany
Gobelinite, the Co analogue of ktenasite from Cap Garonne, France, and Eisenzecher Zug, Germany
Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi2, from the Cr-11 chromitite orebody, Luobusa ophiolite, Tibet, China: is this evidence for super-reduced mantle-derived fluids?
Wumuite (KAl0.33W2.67O9) – a new mineral with an HTB-type structure from the Panzhihua–Xichang region in China
Luxembourgite, AgCuPbBi4Se8, a new mineral species from Bivels, Grand Duchy of Luxembourg
Niasite and johanngeorgenstadtite, Ni2+4.5(AsO4)3 dimorphs from Johanngeorgenstadt, Germany
Laurentthomasite, Mg2K(Be2Al)Si12O30: a new milarite-group-type member from the Ihorombe region, Fianarantsoa Province, Madagascar
Tancaite-(Ce), ideally FeCe(MoO4)3 ● 3H2O: description and average crystal structure
Heliophyllite: a discredited mineral species identical to ecdemite
New IMA CNMNC guidelines on combustion products from burning coal dumps
Crystal chemistry of fluorcarletonite, a new mineral from the Murun alkaline complex (Russia)
Halilsarpite, a new arsenate analogue of walentaite, from the Oumlil mine, Bou Azzer district, Morocco
Frank de Wit and Stuart J. Mills
Eur. J. Mineral., 34, 321–324, https://doi.org/10.5194/ejm-34-321-2022, https://doi.org/10.5194/ejm-34-321-2022, 2022
Short summary
Short summary
The name sigismundite has been reinstated for what was previously arrojadite-(BaFe). Sigismundite honours Pietro Sigismund (1874–1962), and this paper outlines his significant contributions to Italian mineralogy.
Luboš Vrtiška, Jaromír Tvrdý, Jakub Plášil, Jiří Sejkora, Radek Škoda, Nikita V. Chukanov, Andreas Massanek, Jan Filip, Zdeněk Dolníček, and František Veselovský
Eur. J. Mineral., 34, 223–238, https://doi.org/10.5194/ejm-34-223-2022, https://doi.org/10.5194/ejm-34-223-2022, 2022
Short summary
Short summary
The study of the original material of beraunite from the type locality Hrbek, Czech Rep., from collections of the TU Bergakademie Freiberg (Germany) and National Museum Prague (Czech Republic) proved the identity of the minerals beraunite and eleonorite. Because the name beraunite has priority, we consider the name eleonorite to be redundant and proposed to abolish it. The proposal 21-D approved by the IMA discredited eleonorite and accepted the formula of beraunite Fe3+6(PO4)4O(OH)4·6H2O.
Ian Edward Grey, Peter Elliott, William Gus Mumme, Colin M. MacRae, Anthony R. Kampf, and Stuart J. Mills
Eur. J. Mineral., 34, 215–221, https://doi.org/10.5194/ejm-34-215-2022, https://doi.org/10.5194/ejm-34-215-2022, 2022
Short summary
Short summary
A reinvestigation of angastonite from the type locality has shown that it is a mixture of crystalline phases and an amorphous phase, with the published formula corresponding to the amorphous phase. A redefinition proposal for angastonite as an amorphous mineral was approved by the IMA CNMNC. Our study showed how the amorphous phase formed and how it progressively recrystallises as new crandallite-related minerals.
Yuan Xue, Ningyue Sun, Hongping He, Aiqing Chen, and Yiping Yang
Eur. J. Mineral., 34, 95–108, https://doi.org/10.5194/ejm-34-95-2022, https://doi.org/10.5194/ejm-34-95-2022, 2022
Short summary
Short summary
Liguowuite, a new member of the non-stoichiometric perovskite group minerals, ideally WO3, has been found in the Panzhihua–Xichang region, China. Liguowuite is monoclinic and is in space group P21 / n, with a = 7.32582(18) Å, b = 7.54767(18) Å, c = 7.71128(18) Å, β = 90.678(3)°, V = 426.348(19) Å3, and Z = 8. According to the hierarchical scheme for perovskite supergroup minerals, liguowuite is the first reported example of A-site vacant single oxide, i.e., a new perovskite subgroup.
Fernando Cámara, Dan Holtstam, Nils Jansson, Erik Jonsson, Andreas Karlsson, Jörgen Langhof, Jaroslaw Majka, and Anders Zetterqvist
Eur. J. Mineral., 33, 659–673, https://doi.org/10.5194/ejm-33-659-2021, https://doi.org/10.5194/ejm-33-659-2021, 2021
Short summary
Short summary
Zinkgruvanite, a barium manganese iron silicate with sulfate, is a new mineral found in drill core samples from the Zinkgruvan zinc, lead and silver mine in Sweden. It is associated with other minerals like baryte, barytocalcite, diopside and sulfide minerals. It occurs as flattened and elongated crystals up to 1 mm. It is almost black. Zinkgruvanite is closely related to the mineral yoshimuraite and based on its crystal structure, grouped with the ericssonite group of minerals.
Biljana Krüger, Evgeny V. Galuskin, Irina O. Galuskina, Hannes Krüger, and Yevgeny Vapnik
Eur. J. Mineral., 33, 341–355, https://doi.org/10.5194/ejm-33-341-2021, https://doi.org/10.5194/ejm-33-341-2021, 2021
Short summary
Short summary
This is the first description of the new mineral kahlenbergite, found in the Hatrurim Basin, Israel, which is a region with unusual pyrometamorphic rocks. Kahlenbergite is chemically and structurally characterized. It is very similar to β-alumina compounds, which are synthetic materials known for their properties as fast ion conductors. Research in the Hatrurim Basin is needed to understand the complex mechanisms that created this mineralogically diverse
hotspotof new minerals.
Antonia Cepedal, Mercedes Fuertes-Fuente, and Agustín Martin-Izard
Eur. J. Mineral., 33, 165–174, https://doi.org/10.5194/ejm-33-165-2021, https://doi.org/10.5194/ejm-33-165-2021, 2021
Pavel Škácha, Jiří Sejkora, Jakub Plášil, Zdeněk Dolníček, and Jana Ulmanová
Eur. J. Mineral., 33, 175–187, https://doi.org/10.5194/ejm-33-175-2021, https://doi.org/10.5194/ejm-33-175-2021, 2021
Short summary
Short summary
Grimmite, sulfide of cobalt and nickel, is the new mineral for the mineralogical system.
Thomas Witzke, Martin Schreyer, Benjamin Brandes, René Csuk, and Herbert Pöllmann
Eur. J. Mineral., 33, 1–8, https://doi.org/10.5194/ejm-33-1-2021, https://doi.org/10.5194/ejm-33-1-2021, 2021
Short summary
Short summary
The new mineral species freitalite, C14H10, corresponding to the aromatic hydrocarbon anthracene, has been discovered on the mine dump of the Königin Carola shaft (Paul Berndt Mine), Freital, near Dresden, Saxony, Germany. Freitalite is a product of pyrolysis of coal and was formed by sublimation from a gas phase. The mineral was identified by several analytical methods.
Stuart J. Mills, Uwe Kolitsch, Georges Favreau, William D. Birch, Valérie Galea-Clolus, and Johannes Markus Henrich
Eur. J. Mineral., 32, 637–644, https://doi.org/10.5194/ejm-32-637-2020, https://doi.org/10.5194/ejm-32-637-2020, 2020
Fahui Xiong, Xiangzhen Xu, Enrico Mugnaioli, Mauro Gemmi, Richard Wirth, Edward S. Grew, Paul T. Robinson, and Jingsui Yang
Eur. J. Mineral., 32, 557–574, https://doi.org/10.5194/ejm-32-557-2020, https://doi.org/10.5194/ejm-32-557-2020, 2020
Short summary
Short summary
Two new nanominerals: titanium monophosphide and titanium disilicide, formed at pressures of Earth’s upper mantle by the action of methane and hydrogen from the mantle on basaltic melts in the Luobusa ophiolite (Tibet). The minerals were characterized by 3D electron diffraction, which can solve the crystal structures of phases less than a micrometer in size. The results contribute to our understanding of deeply subducted crustal rocks and their exhumation back to the Earth's surface.
Yuan Xue, Guowu Li, and Yingmei Xie
Eur. J. Mineral., 32, 483–494, https://doi.org/10.5194/ejm-32-483-2020, https://doi.org/10.5194/ejm-32-483-2020, 2020
Short summary
Short summary
Wumuite, ideally KAl0.33W2.67O9 with a hexagonal tungsten bronze (HTB)-type structure, is another new mineral containing potassium and tungsten found in the Pan–Xi region in China after tewite was discovered. In this study, artificial synthetic experiments have been conducted to explore the formation process of wumuite and tewite. Wumuite was speculated to be formed by a metasomatic reaction between W-rich hydrothermal fluids and the potassium feldspar in the monzonite.
Simon Philippo, Frédéric Hatert, Yannick Bruni, Pietro Vignola, and Jiří Sejkora
Eur. J. Mineral., 32, 449–455, https://doi.org/10.5194/ejm-32-449-2020, https://doi.org/10.5194/ejm-32-449-2020, 2020
Short summary
Short summary
Luxembourgite, ideally AgCuPbBi4Se8, is a new selenide discovered at Bivels, Grand Duchy of Luxembourg. The mineral forms tiny fibres deposited on dolomite crystals. Its crystal structure is similar to those of litochlebite and watkinsonite, and can be described as an alternation of two types of anionic layers: a pseudotetragonal layer four atoms thick and a pseudohexagonal layer one atom thick. The species named for the city of Luxembourg, close to its locality of discovery.
Anthony R. Kampf, Barbara P. Nash, Jakub Plášil, Jason B. Smith, and Mark N. Feinglos
Eur. J. Mineral., 32, 373–385, https://doi.org/10.5194/ejm-32-373-2020, https://doi.org/10.5194/ejm-32-373-2020, 2020
Cristiano Ferraris, Isabella Pignatelli, Fernando Cámara, Giancarlo Parodi, Sylvain Pont, Martin Schreyer, and Fengxia Wei
Eur. J. Mineral., 32, 355–365, https://doi.org/10.5194/ejm-32-355-2020, https://doi.org/10.5194/ejm-32-355-2020, 2020
Short summary
Short summary
Laurentthomasite is a new mineral from Madagascar showing a very strong dichroism going from deep blue to yellow-green colours. The physical and chemical characteristics of this gem quality mineral bring it to the attention of the jewel industry as well as collectors of cut stones.
Elena Bonaccorsi and Paolo Orlandi
Eur. J. Mineral., 32, 347–354, https://doi.org/10.5194/ejm-32-347-2020, https://doi.org/10.5194/ejm-32-347-2020, 2020
Short summary
Short summary
Molybdates are of a great interest due to their ionic conductivity, negative thermal expansion, and immobilization of radionuclides. The new mineral tancaite-(Ce), FeCe(MoO4)3•3H2O, shows a new structure type never observed in natural and synthetic molybdates. Its cubic average structure may be described as a derivative of the perovskite structure, in which Fe-centred octahedra are linked through MoO4 groups. The ordering of Mo and O atoms results in one or more complex superstructures.
Natale Perchiazzi, Ulf Hålenius, Nicola Demitri, and Pietro Vignola
Eur. J. Mineral., 32, 265–273, https://doi.org/10.5194/ejm-32-265-2020, https://doi.org/10.5194/ejm-32-265-2020, 2020
Short summary
Short summary
Type material for heliophyllite, preserved in the Swedish Museum of Natural History in Stockholm, was re-investigated through a combined EPMA (electron probe X-ray microanalysis), Raman, and X-ray powder diffraction (XRPD) and single-crystal study. EPMA chemical data, together with Raman and single-crystal structural studies, point to heliophyllite being identical to ecdemite. XRPD synchrotron data highlight the presence of a minor quantity of finely admixed finnemanite in the analyzed material.
Jan Parafiniuk and Frédéric Hatert
Eur. J. Mineral., 32, 215–217, https://doi.org/10.5194/ejm-32-215-2020, https://doi.org/10.5194/ejm-32-215-2020, 2020
Ekaterina Kaneva, Tatiana Radomskaya, Ludmila Suvorova, Irina Sterkhova, and Mikhail Mitichkin
Eur. J. Mineral., 32, 137–146, https://doi.org/10.5194/ejm-32-137-2020, https://doi.org/10.5194/ejm-32-137-2020, 2020
Tomas Husdal, Ian E. Grey, Henrik Friis, Fabrice Dal Bo, Anthony R. Kampf, Colin M. MacRae, W. Gus Mumme, Ole-Thorstein Ljøstad, and Finlay Shanks
Eur. J. Mineral., 32, 89–98, https://doi.org/10.5194/ejm-32-89-2020, https://doi.org/10.5194/ejm-32-89-2020, 2020
Short summary
Short summary
This paper describes the characterization of a new mineral from the Oumlil mine in the Bou Azzer cobalt mining district in Morocco. This mining district is one of the world's largest producers of the important element cobalt. This study on the new mineral halilsarpite provides useful information on the results of chemical weathering processes on the primary arsenide minerals at the mine.
Cited articles
Bayliss, P. and Levinson, A. A.: A system of nomenclature for rare-earth
mineral species: Revision and extension, Am. Mineral., 73, 422–423, 1988.
Bayliss, P., Kolitsch, U., Nickel, E. H., and Pring, A.: Alunite supergroup:
recommended nomenclature, Mineral. Mag., 74, 919–927, 2010.
Biagioni, C., Mauro, D., Pasero, M., Bonaccorsi, E., Lepore, G. O.,
Zaccarini, F., and Skogby, H.: Crystal-chemistry of sulfates from the Apuan
Alps (Tuscany, Italy). VI. Tl-bearing alum-(K) and voltaite from the
Fornovolasco mining complex, Am. Mineral., 105, 1088–1098, 2020.
Burton, E. D., Karimian, N., Johnston, S. G., Schoepfer, V. A., Choppala, G.,
and Lamb, D.: Arsenic-imposed effects on schwertmannite and jarosite
formation in Acid Mine Drainage and coupled impacts on arsenic mobility, ACS
Earth Space Chem., 5, 1418–1435, 2021.
Bruker AXS Inc.: APEX 3. Bruker Advanced X-ray Solutions, Madison,
Wisconsin, USA, 2016.
Cooper, M. A. and Hawthorne, F. C.: Refinement of the crystal structure of
zoned philipsbornite-hidalgoite from the Tsumeb mine, Namibia, and hydrogen
bonding in the D2+G (T5+O4)(TO3OH)(OH)6
alunite structures, Mineral. Mag., 76, 839–49, 2012.
Dietrich, J. É.: Sur quelques minéraux de la zone d'oxydation du
gisement de cuivre de Bou Skour (Anti-Atlas marocain), Thèse,
Université de Toulouse, 1970 (in French).
Dietrich, J. É.: La wulfenite de la mine de Bou Skour, quartier de la
Patte d'Oie (Jbel Sarhro, Maroc), Notes Serv. géol. Maroc, 32, 25–29,
1972 (in French).
Dietrich, J. É. and Favreau, G.: Bou Skour (Maroc): au pays de
wulfénites bleues, Le Cahier des Micromonteurs, 89, 106–114, 2005 (in French).
Dietrich, J. É., Orliac, M., and Permingeat, F.: L'agardite, une nouvelle
espèce minérale, et le problème du chlorotile, Bull. Soc. fr.
Minéral. Cristallogr., 92, 420–434, 1969 (in French).
Dutrizac, J. E. and Jambor, J. L.: Jarosites and their application in
hydrometallurgy, Rev. Mineral. Geochem., 40, 405–452, 2000.
El Azmi, D., Aissa, M., Ouguir, H., Mahdoudi, M.L., El Azmi, M., Ouadjo, A.,
and Zouhair, M.: Magmatic context of Bou Skour copper deposit (Eastern
Anti-Atlas, Morocco): Petrogrography, geochemistry and alterations, J.
Afr. Earth Sci., 97, 40–55, 2014.
Ferraris, G. and Ivaldi, G.: Bond valence vs bond length in O⋯O hydrogen bonds, Acta Crystallogr., B44, 341–344,
1988.
Frost, R. L., Palmer, S. J., Spratt, H. J., and Martens, W. N.: The molecular
structure of the mineral beudantite PbFe3(AsO4,SO4)(OH)6
– Implications for arsenic accumulation and removal, J. Molecul. Struct.,
988, 52–58, 2011.
Frost, R. L., Xi, Y., Scholz, R., and Tazava, E.: Spectroscopic
characterization of the phosphate mineral florencite-La –
LaAl3(PO4)2(OH,H2O)6, a potential tool in the REE
mineral prospection, J. Molecul. Struct., 1037, 148–153, 2013.
Gagné, O. C. and Hawthorne, F. C.: Comprehensive derivation of
bond-valence parameters for ion pairs involving oxygen, Acta Crystallogr.,
B71, 562–578, 2015.
Gieré, R., Sidenko, N. V., and Lazareva, E. V.: The role of secondary
minerals in controlling the migration of arsenic and metals from high-grade
sulfide wastes (Berikul gold mine, Siberia), Appl. Geochem., 18, 1347–1359,
2003.
Grey, I. E., Birch, W. D., Bougerol, C., and Mills, S. J.: Unit-cell intergrowth
of pyrochlore and hexagonal tungsten bronze structures in secondary tungsten
minerals, J. Solid State Chem., 179, 3834–3843, 2006.
Hatert, F., Lefèvre, P., Pasero, M., and Fransolet, A.-M.:
Graulichite-(Ce), a new arsenate mineral from the Stavelot massif, Belgium,
Eur. J. Mineral., 15, 733–739, 2003.
Hawthorne, F. C., Krivovichev, S. V., and Burns, P. C.: The crystal chemistry of sulfate minerals. In: Sulfate minerals-crystallography, geochemistry and environmental significance, Rev. Mineral. Geochem., 40, 1–101, 2000.
Holland, T. J. B. and Redfern, S. A. T.: Unit cell refinement from powder
diffraction data: The use of regression diagnostics, Mineral. Mag., 61,
65–77, 1997.
Huminicki, D. M. C. and Hawthorne, F. C.: The Crystal Chemistry of Phosphate
Minerals, Rev. Mineral. Geochem., 48, 123–253, 2002.
Kampf, A. R., Richards, R. P., Nash, B. P., Murowchick, J. B., and Rakovan, J. F.:
Carlsonite, (NH4)5Fe O(SO4)6 ⚫ 7H2O, and huizingite-(Al),
(NH4)9Al3(SO4)8(OH)2 ⚫ 4H2O, two
new minerals from a natural fire in an oil-bearing shale near Milan, Ohio,
Am. Mineral., 101, 2095–2107, 2016.
Kraus, W. and Nolze, G.: Powder Cell – a program for the representation and
manipulation of crystal structures and calculation of the resulting X-ray
powder patterns, J. Appl. Crystallogr., 29, 301–303, 1996.
Levinson, A. A.: A system of nomenclature for rare-earth minerals, Am.
Mineral., 51, 152–158, 1966.
Maacha, L., Ouadjou, A., Azmi, M., Zouhair, M., Saquaque, A., Alansari, A.,
and Soulaimani, A.: 1.6.-La mine de cuivre et argent de Bouskour (J.
Saghro, Anti-Atlas oriental), in: Les principales mines du Maroc, edited by: Mouttaqi, A., Rjimati, E. C., Maacha, L.,
Michard, A., Soulaimani, A., and Ibouh, H.,
Nouveaux Guides Géologiques et Miniers du Maroc, 9, 59–64, 2011 (in French).
Majzlan, J., Drahota, P., and Filippi, M.: Parageneses and Crystal Chemistry
of Arsenic Minerals, Rev. Mineral. Geochem., 79, 17–184, 2014.
Mandarino, J. A.: The Gladstone-Dale relationship. Part III. Some general
applications, Can. Mineral., 17, 71–76, 1979.
Mandarino, J. A.: The Gladstone-Dale relationship. Part IV. The compatibility
concept and some application, Can. Mineral., 19, 441–450, 1981.
Martín Romero, F., Prol-Ledesma, R. M., Canet, C., Núñez
Alvares, L., and Pérez-Vázquez, R.: Acid drainage at the inactive
Santa Lucia mine, western Cuba: Natural attenuation of arsenic, barium and
lead, and geochemical behavior of rare earth elements, Appl. Geochem., 25,
716–727, 2010.
Mauro, D., Biagioni, C., and Zaccarini, F.: A contribution to the mineralogy
of Sicily, Italy – Kintoreite from the Tripi mine, Peloritani Mountains:
occurrence and crystal structure, Mineral. Mag., https://doi.org/10.1180/mgm.2021.85, online first,
2021.
Mills, S. J., Kartashov, P. M., Kampf, A. R., and Raudsepp, M.:
Arsenoflorencite-(La), a new mineral from the Komi Republic, Russian
Federation: description and crystal structure, Eur. J. Mineral., 22,
613–621, 2010.
Nickel, E. H. and Temperly, J. E.: Arsenoflorencite-(Ce): a new arsenate mineral
from Australia, Mineral. Mag., 51, 605–609, 1987.
Plášil, J., Škoda, R., Fejfavorá, K., Čejka, J.,
Kasatkin, A., Dušek, M., Talla, D., Lapčák, L., Machovič, V.,
and Dini, M.: Hydroniumjarosite,
(H3O)+Fe3(SO4)2(OH)6, from Cerros Pintados,
Chile: Single-crystal X-ray diffraction and vibrational spectroscopic study,
Mineral. Mag., 78, 535–547, 2014.
Repina, S. A., Popova, V. I., Churin, E. I., Belogub, E. V., and Khiller, V. V.:
Florencite-(Sm) – (Sm,Nd)Al3(PO4)2(OH)6: A new mineral
species of the alunite-jarosite group from the Subpolar Urals, Geol. Ore
Deposti., 53, 564–574, 2011.
Scharm, B., Scharmová, M., Sulovský, B., and Kühn, P.:
Philpsbornite, arsenoflorencite-(La), and arsenoflorencite-(Nd) from the
uranium district in northern Bohemia, Czechoslovakia, Casopis pro
Mineralogii a Geologii, 36, 103–113, 1991.
Shannon, R. D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., A32, 751–767, 1976.
Sheldrick, G. M.: Crystal structure refinement with SHELXL, Acta Crystallogr.,
C71, 3–8, 2015.
Wilson, A. J. C. (Ed.): International Tables for Crystallography Volume C:
Mathematical, Physical and Chemical Tables, Kluwer Academic Publishers,
Dordrecht, the Netherlands, 1992.
Short summary
The paper reports the type description of the new mineral species graulichite-(La). This is a new addition to the dussertite group within the alunite supergroup, and its discovery improves our knowledge on the crystal chemistry of this important supergroup of minerals, having both technological and environmental applications.
The paper reports the type description of the new mineral species graulichite-(La). This is a...