Articles | Volume 32, issue 6
https://doi.org/10.5194/ejm-32-675-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-32-675-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Grain boundary diffusion and its relation to segregation of multiple elements in yttrium aluminum garnet
Joana Polednia
Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany
Ralf Dohmen
Institute of Geology, Mineralogy, and Geophysics, Ruhr University
Bochum, 44801 Bochum, Germany
Katharina Marquardt
CORRESPONDING AUTHOR
Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany
Department of Materials, Imperial College London, SW7 2AY London, UK
Related subject area
Experimental petrology
Chemical interdiffusion between Na-series tephritic and phonolitic melts with different H2O content, temperature, and oxygen fugacity values
Re-equilibration of quartz inclusions in garnet
H2 mobility and redox control in open vs. closed hydrothermal oceanic systems – evidence from serpentinization experiments
A brief history of solid inclusion piezobarometry
Li–Na interdiffusion and diffusion-driven lithium isotope fractionation in pegmatitic melts
Depth profile analyses by femtosecond laser ablation (multicollector) inductively coupled plasma mass spectrometry for resolving chemical and isotopic gradients in minerals
A revised model for activity–composition relations in solid and molten FePt alloys and a preliminary model for characterization of oxygen fugacity in high-pressure experiments
Elasticity of mixtures and implications for piezobarometry of mixed-phase inclusions
In situ single-crystal X-ray diffraction of olivine inclusion in diamond from Shandong, China: implications for the depth of diamond formation
One-atmosphere high-temperature CO–CO2–SO2 gas-mixing furnace: design, operation, and applications
CO2 diffusion in dry and hydrous leucititic melt
Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9 GPa – a proxy for melting of carbonated mantle lithologies
High-pressure homogenization of olivine-hosted CO2-rich melt inclusions in a piston cylinder: insight into the volatile content of primary mantle melts
Carbon-saturated COH fluids in the upper mantle: a review of high-pressure and high-temperature ex situ experiments
The influence of oxygen fugacity and chlorine on amphibole–liquid trace element partitioning at upper-mantle conditions
Effect of chlorine on water incorporation in magmatic amphibole: experimental constraints with a micro-Raman spectroscopy approach
A combined Fourier transform infrared and Cr K-edge X-ray absorption near-edge structure spectroscopy study of the substitution and diffusion of H in Cr-doped forsterite
Melting relations of anhydrous olivine-free pyroxenite Px1 at 2 GPa
Breyite inclusions in diamond: experimental evidence for possible dual origin
Diego González-García, Florian Pohl, Felix Marxer, Stepan Krasheninnikov, Renat Almeev, and François Holtz
Eur. J. Mineral., 36, 623–640, https://doi.org/10.5194/ejm-36-623-2024, https://doi.org/10.5194/ejm-36-623-2024, 2024
Short summary
Short summary
We studied the exchange of chemical elements by diffusion between magmas of tephritic and phonolitic composition from the Canary Islands, performing experiments at high pressure and high temperature with different amounts of added water. Our results characterize the way water and temperature affect the diffusion process, and we also find unexpectedly high mobility of aluminium, which may be related to its variable chemical bonding in highly alkaline melts.
Benjamin A. Pummell and Jay B. Thomas
Eur. J. Mineral., 36, 581–597, https://doi.org/10.5194/ejm-36-581-2024, https://doi.org/10.5194/ejm-36-581-2024, 2024
Short summary
Short summary
Mechanical interaction between quartz inclusions in garnet creates residual pressure in the inclusion used to calculate the pressure and temperature where the two minerals formed. We crystallised quartz and garnet at high pressure and temperature and then adjusted the experimental pressure to observe the interaction between the quartz inclusions and garnet host. The quartz and garnet adjust to the new experimental pressures, reset inclusion pressures, and no longer match entrapment conditions.
Colin Fauguerolles, Teddy Castelain, Johan Villeneuve, and Michel Pichavant
Eur. J. Mineral., 36, 555–579, https://doi.org/10.5194/ejm-36-555-2024, https://doi.org/10.5194/ejm-36-555-2024, 2024
Short summary
Short summary
To explore the influence of the redox state of the environment on the serpentinization reaction, we have developed an original experimental setup. Reducing conditions, leading to the formation of serpentine and magnetite, and oxidizing conditions, leading to the formation of serpentine and hematite, are discussed in terms of analogues of low- and high-permeability hydrothermal systems, respectively. The influence of the redox on brucite stability and hydrogen production is also established.
Ross J. Angel, Matteo Alvaro, and Silvio Ferrero
Eur. J. Mineral., 36, 411–415, https://doi.org/10.5194/ejm-36-411-2024, https://doi.org/10.5194/ejm-36-411-2024, 2024
Short summary
Short summary
Inclusions in natural rocks are an invaluable asset for geoscientists because they provide information about processes in the Earth's history that are otherwise hidden or subsequently overprinted. In this paper we review the development over the last 200 years of the concepts and methods to measure the remnant pressures in mineral inclusions and how they can be used to determine pressures and temperatures at which the inclusions were formed deep within the Earth.
Christian R. Singer, Harald Behrens, Ingo Horn, Martin Oeser, Ralf Dohmen, and Stefan Weyer
Eur. J. Mineral., 35, 1009–1026, https://doi.org/10.5194/ejm-35-1009-2023, https://doi.org/10.5194/ejm-35-1009-2023, 2023
Short summary
Short summary
Li is a critical element that is often enriched in pegmatites. To better understand the enrichment of Li in such systems, it is necessary to understand the underlying transport mechanisms. We performed experiments to investigate diffusion rates and exchange mechanisms of Li between a Li-rich and a Li-poor melt at high temperature and pressure. Our results indicate that fluxing elements do not increase the diffusivity of Li compared to a flux-free melt.
Martin Oeser, Ingo Horn, Ralf Dohmen, and Stefan Weyer
Eur. J. Mineral., 35, 813–830, https://doi.org/10.5194/ejm-35-813-2023, https://doi.org/10.5194/ejm-35-813-2023, 2023
Short summary
Short summary
This study presents a new method designed to analyze micrometer-scale chemical and isotopic profiles in minerals, glasses, and other solids. The employed technique combines plasma mass spectrometers and a state-of-the-art femtosecond laser equipped with open-source software (LinuxCNC) that controls the movement of the laser beam. It allows for equably drilling into the sample surface, e.g., in order to measure chemically or isotopically zoned or heterogeneous materials at micrometer scales.
Marc M. Hirschmann and Hongluo L. Zhang
Eur. J. Mineral., 35, 789–803, https://doi.org/10.5194/ejm-35-789-2023, https://doi.org/10.5194/ejm-35-789-2023, 2023
Short summary
Short summary
We calibrate new models for the properties of solid and liquid FePt alloy. FePt alloy is used in experiments investigating the origin, differentiation, and evolution of planets to characterize oxygen fugacity. The new models facilitate use of FePt for more extreme conditions than has been possible previously. We also describe shortcomings in the present knowledge of FePt alloy properties and highlight strategies that could improve such knowledge.
Ross J. Angel, Mattia L. Mazzucchelli, Kira A. Musiyachenko, Fabrizio Nestola, and Matteo Alvaro
Eur. J. Mineral., 35, 461–478, https://doi.org/10.5194/ejm-35-461-2023, https://doi.org/10.5194/ejm-35-461-2023, 2023
Short summary
Short summary
We have developed the thermodynamic theory of the properties of inclusions consisting of more than one phase, including inclusions containing solids plus a fluid. We present a software utility that enables for the first time the entrapment conditions of multiphase inclusions to be determined from the measurement of their internal pressure when that is measured in a laboratory.
Yanjuan Wang, Fabrizio Nestola, Huaikun Li, Zengqian Hou, Martha G. Pamato, Davide Novella, Alessandra Lorenzetti, Pia Antonietta Antignani, Paolo Cornale, Jacopo Nava, Guochen Dong, and Kai Qu
Eur. J. Mineral., 35, 361–372, https://doi.org/10.5194/ejm-35-361-2023, https://doi.org/10.5194/ejm-35-361-2023, 2023
Short summary
Short summary
In this work we have applied the elastic geobarometry approach to a Chinese diamond in order to determine the depth of formation of an olivine-bearing diamond. Together with the temperature of residence at which the diamond resided in the mantle, we were able to discover that the diamond was formed at about 190 km depth. Beyond the geological meaning of our results, this work could be a reference paper for future works on Chinese diamonds using elastic geobarometry.
Shashank Prabha-Mohan, Kenneth T. Koga, Antoine Mathieu, Franck Pointud, and Diego F. Narvaez
Eur. J. Mineral., 35, 321–331, https://doi.org/10.5194/ejm-35-321-2023, https://doi.org/10.5194/ejm-35-321-2023, 2023
Short summary
Short summary
This work presents an in-depth description of a new design for a high-temperature gas-mixing furnace using a mixture of CO–CO2–SO2. It has been designed and built with user safety in mind. The furnace can sustain temperatures of up to 1650 °C. This furnace sets itself apart with its size and unique quench mechanism. Crucially, the apparatus has the ability to change the gas mixture during an experiment. This feature allows the user to simulate natural environments, such as volcanoes.
Lennart Koch and Burkhard C. Schmidt
Eur. J. Mineral., 35, 117–132, https://doi.org/10.5194/ejm-35-117-2023, https://doi.org/10.5194/ejm-35-117-2023, 2023
Short summary
Short summary
Volatile diffusivities in silicate melts control the nucleation and growth of bubbles in ascending magma. We investigated the diffusion of CO2 in an anhydrous and hydrous leucititic melt at high temperatures and high pressure. CO2 diffusion profiles were measured via attenuated total reflection Fourier transform infrared spectroscopy. CO2 diffusion increases with increasing temperature and water content. The data can be used to understand the CO2 degassing behaviour of leucititic melts.
Melanie J. Sieber, Max Wilke, Oona Appelt, Marcus Oelze, and Monika Koch-Müller
Eur. J. Mineral., 34, 411–424, https://doi.org/10.5194/ejm-34-411-2022, https://doi.org/10.5194/ejm-34-411-2022, 2022
Short summary
Short summary
Carbonates reduce the melting point of the mantle, and carbonate melts produced in low-degree melting of a carbonated mantle are considered the precursor of CO2-rich magmas. We established experimentally the melting relations of carbonates up to 9 GPa, showing that Mg-carbonates melt incongruently to periclase and carbonate melt. The trace element signature of carbonate melts parental to kimberlites is approached by melting of Mg-rich carbonates.
Roxane Buso, Didier Laporte, Federica Schiavi, Nicolas Cluzel, and Claire Fonquernie
Eur. J. Mineral., 34, 325–349, https://doi.org/10.5194/ejm-34-325-2022, https://doi.org/10.5194/ejm-34-325-2022, 2022
Short summary
Short summary
Magmas transport large amounts of CO2 from Earth's mantle into the atmosphere and thus contribute significantly to the global carbon cycle. We have developed an experimental method to homogenize at high pressure small liquid droplets trapped in magmatic crystals to gain access to the initial composition of the parental magma (major and volatile elements). With this technique, we show that magmas produced by melting of the subcontinental mantle contain several weight percent of CO2.
Carla Tiraboschi, Francesca Miozzi, and Simone Tumiati
Eur. J. Mineral., 34, 59–75, https://doi.org/10.5194/ejm-34-59-2022, https://doi.org/10.5194/ejm-34-59-2022, 2022
Short summary
Short summary
This review provides an overview of ex situ carbon-saturated COH fluid experiments at upper-mantle conditions. Several authors experimentally investigated the effect of COH fluids. However, fluid composition is rarely tackled as a quantitative issue, and rather infrequently fluids are analyzed as the associated solid phases in the experimental assemblage. Recently, improved techniques have been proposed for analyses of COH fluids, leading to significant advancement in fluid characterization.
Enrico Cannaò, Massimo Tiepolo, Giulio Borghini, Antonio Langone, and Patrizia Fumagalli
Eur. J. Mineral., 34, 35–57, https://doi.org/10.5194/ejm-34-35-2022, https://doi.org/10.5194/ejm-34-35-2022, 2022
Short summary
Short summary
Amphibole–liquid partitioning of elements of geological relevance is experimentally derived at conditions compatible with those of the Earth's upper mantle. Experiments are carried out at different oxygen fugacity conditions and variable Cl content in order to investigate their influence on the amphibole–liquid partition coefficients. Our results point to the capability of amphibole to act as filter for trace elements at upper-mantle conditions, oxidized conditions, and Cl-rich environments.
Enrico Cannaò, Federica Schiavi, Giulia Casiraghi, Massimo Tiepolo, and Patrizia Fumagalli
Eur. J. Mineral., 34, 19–34, https://doi.org/10.5194/ejm-34-19-2022, https://doi.org/10.5194/ejm-34-19-2022, 2022
Short summary
Short summary
Detailed knowledge of the mechanisms ruling water incorporation in amphibole is essential to understand how much water can be fixed at upper-mantle conditions by this mineral. We provide the experimental evidence of the Cl effect on the oxo-substitution and the incorporation of water in amphibole. Finally, we highlight the versatility of confocal micro-Raman spectroscopy as an analytical tool to quantify water in amphibole.
Michael C. Jollands, Hugh St.C. O'Neill, Andrew J. Berry, Charles Le Losq, Camille Rivard, and Jörg Hermann
Eur. J. Mineral., 33, 113–138, https://doi.org/10.5194/ejm-33-113-2021, https://doi.org/10.5194/ejm-33-113-2021, 2021
Short summary
Short summary
How, and how fast, does hydrogen move through crystals? We consider this question by adding hydrogen, by diffusion, to synthetic crystals of olivine doped with trace amounts of chromium. Even in a highly simplified system, the behaviour of hydrogen is complex. Hydrogen can move into and through the crystal using various pathways (different defects within the crystal) and hop between these pathways too.
Giulio Borghini and Patrizia Fumagalli
Eur. J. Mineral., 32, 251–264, https://doi.org/10.5194/ejm-32-251-2020, https://doi.org/10.5194/ejm-32-251-2020, 2020
Alan B. Woodland, Andrei V. Girnis, Vadim K. Bulatov, Gerhard P. Brey, and Heidi E. Höfer
Eur. J. Mineral., 32, 171–185, https://doi.org/10.5194/ejm-32-171-2020, https://doi.org/10.5194/ejm-32-171-2020, 2020
Short summary
Short summary
We experimentally explored direct entrapment of breyite (CaSiO3) by diamond at upper-mantle conditions in a model subducted sediment rather than formation by retrogression of CaSiO3 perovskite, implying a deeper origin. Anhydrous low-T melting of CaCO3+SiO2 precludes breyite formation. Under hydrous conditions, reduction of melt results in graphite with breyite. Thus, breyite inclusions in natural diamond may form from aragonite + coesite or carbonate melt at 6–8 GPa via reduction with water.
Cited articles
Beyer, C., Dohmen, R., Rogalla, D., Becker, H. W., Marquardt, K., Vollmer,
C., Hagemann, U., Hartmann, N., and Chakraborty, S.: Lead diffusion in CaTiO3: A
combined study using Rutherford backscattering and TOF-SIMS for depth
profiling to reveal the role of lattice strain in diffusion processes, Am.
Mineral., 104, 557–568, https://doi.org/10.2138/am-2019-6730, 2019.
Boulesteix, R., Maître, A., Baumard, J. F., Rabinovitch, Y., Sallé,
C., Weber, S., and Kilo, M.: The effect of silica doping on neodymium
diffusion in yttrium aluminum garnet ceramics: implications for sintering
mechanisms, J. Eur. Ceram. Soc., 29, 2517–2526,
https://doi.org/10.1016/j.jeurceramsoc.2009.03.003, 2009.
Brady, J. B. and Cherniak D. J.: Diffusion in Minerals: An Overview of
Published Experimental Diffusion Data, Rev. Mineral. Geochem., 72, 899–920,
https://doi.org/10.2138/rmg.2010.72.20, 2010.
Bruker Nano GmbH: QUANTAX Microanalysis based on energy-dispersive
spectrometry, User Manual, Bruker Nano GmbH, Berlin, Germany, 2011.
Campell, G. H.: Σ5 (210)/[001] Symmetric tilt grain boundary in
yttrium aluminum garnet, J. Am. Ceram. Soc., 79, 2883–2891,
https://doi.org/10.1111/j.1151-2916.1996.tb08722.x, 1996.
Caslavsky, J. L. and Viechnicki, D. J.: Melting behaviour and metastability
of yttrium aluminium garnet (YAG) and YAlO3 determined by optical
differential thermal analysis, J. Mater. Sci., 15, 1709–1718,
https://doi.org/10.1007/BF00550589, 1980.
Chadwick, G. A. and Smith, D. A. (Eds.): Grain boundary structure and
properties. Academic Press, London/ New York/ San Francisco, 1976.
Cheo, P. K. (Ed.): Handbook of Solid-State Lasers, CRC Press, New York,
1988.
Cherniak, D. J.: Rare earth element and gallium diffusion in yttrium
aluminum garnet, Phys. Chem. Miner., 26, 156–163,
https://doi.org/10.1007/s002690050172, 1998.
Cheung, T. J. and Sankur, H.: Growth of thin films by laser-induced
evaporation, Crit. Rev. Solid State Mater. Sci., 15, 63–109,
https://doi.org/10.1080/10408438808244625, 1988.
Crank, J.: The Mathematics of Diffusion, Oxford University Press, New York, 1975.
Czochralski, J.: Ein neues Verfahren zur Messung der
Kristallisationsgeschwindigkeit der Metalle, Zeitschrift für Phys.
Chemie, 92U, 219–221, https://doi.org/10.1515/zpch-1918-9212, 1918.
de Jong, A. F. and Van Dyck, D.: Ultimate resolution and information in
electron microscopy II. The information limit of transmission electron
microscopes, Ultramicroscopy, 49, 66–80,
https://doi.org/10.1016/0304-3991(93)90213-H, 1993.
De With, G. and van Dijk, H. J. A.: Translucent Y3Al5O12 ceramics, Mater.
Res. Bull., 19, 1669–1674,
https://doi.org/10.1016/0025-5408(84)90245-9, 1984.
Dohmen, R. and Chakraborty, S.: Mechanism and kinetics of element and
isotopic exchange mediated by a fluid phase, Am. Mineral., 88,
1251–1270, https://doi.org/10.2138/am-2003-8-908, 2003.
Dohmen, R. and Milke, R.: Diffusion in polycrystalline materials: grain
boundaries, Mathematical Models, and Experimental Data, Rev. Mineral.
Geochem., 72, 921–970, https://doi.org/10.2138/rmg.2010.72.21, 2010.
Dohmen, R., Becker, H.-W., Meißner, E., Etzel, T., and Chakraborty, S.:
Production of silicate thin films using pulsed laser deposition (PLD) and
applications to studies in mineral kinetics, Eur. J. Mineral., 14,
1155–1168, https://doi.org/10.1127/0935-1221/2002/0014-1155, 2002.
Dohmen, R., Chakraborty, S., Palme, H., and Rammensee, W.: Role of element
solubility on the kinetics of element partitioning: In situ observations and
a thermodynamic kinetic model. J. Geophys. Res.-Sol. Ea., 108, 2157,
https://doi.org/10.1029/2001JB000587, 2003.
Drouin, D., Couture, A. R., Joly, D., Tastet, X., Aimez, V., and Gauvin, R.:, CASINO V2.42 – A Fast and Easy‐to‐use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users, Scanning, 29, 92–101, https://doi.org/10.1002/sca.20000, 2007.
Esin, V. A. and Bokstein, B. S.: Effect of atomic interaction on grain
boundary diffusion in the B regime, Acta Mater., 60, 5109–5116,
https://doi.org/10.1016/j.actamat.2012.06.011, 2012.
Fabrichnaya, O., Zinkevich, M., and Aldinger, F.: Thermodynamic assessment
of the systems La2O3-Al2O3 and La2O3-Y2O3, Int. J. Mater. Res., 97,
1495–1501, https://doi.org/10.3139/146.101411, 2006.
Fisher, J. C.: Calculation of diffusion penetration curves for surface and
grain boundary diffusion, J. Appl. Phys., 22, 74–77,
https://doi.org/10.1063/1.1699825, 1951.
Fujioka, K., Sugiyama, A., Fujimoto, Y., Kawanaka, J., and Miyanaga, N.: Ion
diffusion at the bonding interface of undoped YAG/Yb:YAG composite ceramics,
Opt. Mater., 46, 542–547, https://doi.org/10.1016/j.optmat.2015.05.023,
2015.
Ganguly, J., Bhattacharya, R. N., and Chakraborty, S.: Convolution effect in
the determination of compositional profiles and diffusion coefficients by
microprobe step scans, Am. Mineral., 73, 901–909, 1988.
Geusic, J. E., Marcos, H. M., and Van Uitert, L. G.: Laser oscillations in
Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets, Appl.
Phys. Lett., 4, 182–184, https://doi.org/10.1063/1.1753928, 1964.
Gibbs, G. B.: Grain boundary impurity diffusion, Phys. status solidi, 16,
K27–K29, https://doi.org/10.1002/pssb.19660160143, 1966.
Gleiter, H. and Chalmers, B.: Grain-boundary diffusion, Prog. Mater. Sci.,
16, 77–112, 1972.
Goldstein, J. I.: Quantitative X-ray analysis in the electron microscope,
Scanning Electron Microsc., 3rd edn., 315–324, ISBN 978-1-4615-0215-9, 1977.
Gösele, U., Tong, Q.-Y., Schumacher, A., Kräuter, G., Reiche, M.,
Plößl, A., Kopperschmidt, P., Lee, T.-H., and Kim, W.-J.: Wafer
bonding for microsystems technologies, Sensors Actuators A Phys., 74,
161–168, https://doi.org/10.1016/S0924-4247(98)00310-0, 1999.
Grabke: Surface and grain boundary segregation on and in iron and steels,
ISIJ Int., 29, 529–538,
https://doi.org/10.2355/isijinternational.29.529, 1989.
Guttmann, M.: Thermochemical interactions versus site competition in grain
boundary segregation and embrittlement in multicomponent systems, Le J.
Phys. IV, 5, 85–96, https://doi.org/10.1051/jp4:1995707, 1995.
Haneda, H., Miyazawa, Y., and Shirasaki, S.: Oxygen diffusion in single
crystal yttrium aluminum garnet, J. Cryst. Growth, 68, 581–588,
https://doi.org/10.1016/0022-0248(84)90465-2, 1984.
Hart, E. W.: On the role of dislocations in bulk diffusion, Acta Metall.,
5, 597, https://doi.org/10.1016/0001-6160(57)90127-X, 1957.
Hartmann, K., Wirth, R., and Heinrich, W.: Synthetic near Σ5
(210)/[100] grain boundary in YAG fabricated by direct bonding: Structure
and stability, Phys. Chem. Miner., 37, 291–300,
https://doi.org/10.1007/s00269-009-0333-z, 2010.
Hayden, L. A. and Watson, E. B.: A diffusion mechanism for core–mantle interaction, Nature, 450, 709–711, 2007.
Hayden, L. A. and Watson, E. B.: Grain boundary mobility of carbon in Earth's mantle: a possible carbon flux from the core, P. Natl. Acad. Sci. USA, 105, 8537–8541, 2008.
Heinemann, S., Wirth, R., Gottschalk, M., and Dresen, G.: Synthetic [100]
tilt grain boundaries in forsterite: 9.9 to 21.5∘, Phys. Chem.
Miner., 32, 229–240, https://doi.org/10.1007/s00269-005-0448-9, 2005.
Herzig, C. and Mishin, Y.: Grain boundary diffusion in metals, in: Diffusion
in condensed Matter, edited by: Heitjans, P. and Kärger, J.,
Springer-Verlag, Berlin, Heidelberg, Germany, 337–366, 2005.
Hiraga, T. and Kohlstedt, D. L.: Equilibrium interface segregation in the
diopside-forsterite system I: Analytical techniques, thermodynamics, and
segregation characteristics, Geochim. Cosmochim. Ac., 71, 1266–1280,
https://doi.org/10.1016/j.gca.2006.11.019, 2007.
Hiraga, K., Yasuda, H. Y., and Sakka, Y.: The tensile creep behavior of
superplastic tetragonal zirconia doped with small amounts of SiO2, Mater.
Sci. Eng. A, 234–236, 1026–1029,
https://doi.org/10.1016/S0921-5093(97)00339-0, 1997.
Hiraga, T., Anderson, I. M., and Kohlstedt, D. L.: Chemistry of grain
boundaries in mantle rocks, Am. Mineral., 88, 1015–1019,
https://doi.org/10.1038/nature02259, 2003.
Hiraga, T., Anderson, I. M., and Kohlstedt, D. L.: Grain boundaries as
reservoirs of incompatible elements in the Earth's mantle, Nature,
427, 699–703, https://doi.org/10.1038/nature02259, 2004.
Hiraga, T., Hirschmann, M. M., and Kohlstedt, D. L.: Equilibrium interface
segregation in the diopside-forsterite system II: Applications of interface
enrichment to mantle geochemistry, Geochim. Cosmochim. Ac., 71,
1281–1289, https://doi.org/10.1016/j.gca.2006.11.020, 2007.
Hofmann, S.: Thermodynamics of interfacial segregation in metals and
ceramics, J. Chim. Phys., 84, 141–147,
https://doi.org/10.1051/jcp/1987840141, 1987.
Hofmann, S.: Atomic mixing, surface roughness and information depth in
high-resolution AES depth profiling of a GaAs/AlAs superlattice structure,
Surf. Interface Anal., 21, 673–678,
https://doi.org/10.1002/sia.740210912, 1994.
Hofmann, S. and Leiĉek, P.: Solute segregation at grain boundaries,
Interface Sci., 3, 241–267, https://doi.org/10.1007/BF00194704, 1996.
Holloway, W. W. and Kestigian, M.: Optical properties of cerium-activated
garnet crystals, J. Opt. Soc. Am., 59, 60–63,
https://doi.org/10.1364/JOSA.59.000060, 1969.
Huang, X. and Raether, F.: Role of impurities in the sintering behavior and
properties of lead zirconate titanate ceramics, J. Am. Ceram. Soc., 92,
2011–2016, https://doi.org/10.1111/j.1551-2916.2009.03155.x, 2009.
Ikesue, A. and Aung, Y. L.: Synthesis and performance of advanced ceramic
lasers, J. Am. Ceram. Soc., 89, 1936–1944,
https://doi.org/10.1111/j.1551-2916.2006.01043.x, 2006.
Ikesue, A. and Aung, Y. L.: Ceramic laser materials, Nat. Photonics, 2,
721–727, https://doi.org/10.1038/nphoton.2008.243, 2008.
Ikesue, A. and Aung, Y. L.: Synthesis of Yb:YAG ceramics without sintering
additives and their performance, J. Am. Ceram. Soc., 100, 26–30,
https://doi.org/10.1111/jace.14588, 2017.
Ikesue, A., Kinoshita, T., Kamata, K., and Yoshida, K.: Fabrication and
optical properties of high-performance polycrystalline Nd:YAG ceramics for
solid-state lasers, J. Am. Ceram. Soc., 78, 1033–1040,
https://doi.org/10.1111/j.1151-2916.1995.tb08433.x, 1995.
Ikesue, A., Aung, Y. L., Taira, T., Kamimura, T., Yoshida, K., and Messing,
G. L.: Progress in ceramic lasers, Annu. Rev. Mater. Res., 36, 397–429,
https://doi.org/10.1146/annurev.matsci.36.011205.152926, 2006.
Ikuhara, Y., Yoshida, H., and Sakuma, T.: Impurity effects on grain boundary
strength in structural ceramics, Mater. Sci. Eng. A, 319–321, 24–30,
https://doi.org/10.1016/S0921-5093(01)01035-8, 2001.
Irifune, T., Kawakami, K., Arimoto, T., Ohfuji, H., Kunimoto, T., and
Shinmei, T.: Pressure-induced nano-crystallization of silicate garnets from
glass, Nat. Commun., 7, 13753, https://doi.org/10.1038/ncomms13753, 2016.
Jiménez-Melendo, M., Haneda, H., and Nozawa, H.: Ytterbium cation
diffusion in yttrium aluminum garnet (YAG) – implications for creep
mechanisms, J. Am. Ceram. Soc., 84, 2356–2360,
https://doi.org/10.1111/j.1151-2916.2001.tb01014.x, 2004.
Kaur, I., Mishin, Y., and Gust, W. (Eds.): Fundamentals of grain and
interphase boundary diffusion, Wiley, Chichester, UK, 1995.
Kingery, W. D.: Plausible concepts necessary and sufficient for
interpretation of ceramic grain-boundary phenomena: II, solute segregation,
grain-boundary diffusion, and general discussion, J. Am. Ceram. Soc.,
57, 74–83, https://doi.org/10.1111/j.1151-2916.1974.tb10818.x, 1974.
Klimm, D., Ganschow, S., Pajączkowska, A., and Lipińska, L.: On the
solubility of Nd3+ in Y3Al5O12, J. Alloys Compd., 436, 204–208,
https://doi.org/10.1016/j.jallcom.2006.07.001, 2007.
Korzhik, M. V., Livshits, M. G., Minkov, B. I., and Pavlenko, V. B.:
Influence of Fe3+ impurity ions on the lasing characteristics of
crystals, Sov. J. Quantum Electron., 22, 24–26,
https://doi.org/10.1070/QE1992v022n01ABEH003328, 1992.
Kramers, H. A.: XCIII. On the theory of X-ray absorption and of the
continuous X-ray spectrum, London, Edinburgh, Dublin Philos. Mag. J. Sci.,
46, 836–871, https://doi.org/10.1080/14786442308565244, 1923.
Krasko, G. L.: Site competition effect of impurities and grain boundary
stability in iron and tungsten, Scr. Metall. Mater., 28, 1543–1548,
https://doi.org/10.1016/0956-716X(93)90589-K, 1993.
Kvapil, J., Kvapil, J., Kubelka, J., and Autrata, R.: The role of iron ions
in YAG and YAP, Cryst. Res. Technol., 18, 127–131,
https://doi.org/10.1002/crat.2170180120, 1983.
Le Claire, A. D.: The analysis of grain boundary diffusion measurements, Br.
J. Appl. Phys., 14, 351–356, https://doi.org/10.1088/0508-3443/14/6/317,
1963.
Li, Y., Zhou, S., Lin, H., Hou, X., Li, W., Teng, H., and Jia, T.:
Fabrication of Nd:YAG transparent ceramics with TEOS, MgO and compound
additives as sintering aids, J. Alloys Compd., 502, 225–230,
https://doi.org/10.1016/j.jallcom.2010.04.151, 2010.
Li, Z., Liu, B., Wang, J., Sun, L., Wang, J., and Zhou, Y.: Mechanism of
intrinsic point defects and oxygen diffusion in yttrium aluminum garnet:
First-principles investigation, J. Am. Ceram. Soc., 95, 3628–3633,
https://doi.org/10.1111/j.1551-2916.2012.05440.x, 2012.
Linares, R. C.: Growth of garnet laser crystals, Solid State Commun., 2,
229–231, https://doi.org/10.1016/0038-1098(64)90369-2, 1964.
Liu, W., Li, J., Jiang, B., Zhang, D., and Pan, Y.: Effect of La2O3 on
microstructures and laser properties of Nd:YAG ceramics, J. Alloys Compd.,
512, 1–4, https://doi.org/10.1016/j.jallcom.2011.09.038, 2012.
Marfunin, A. S. (Ed.): Spectroscopy, Luminescence and Radiation Centers in
Minerals, Springer-Verlag, Berlin, Heidelberg, 1979.
Marquardt, K., Petrishcheva, E., Abart, R., Gardés, E., Wirth, R.,
Dohmen, R., Becker, H.-W., and Heinrich, W.: Volume diffusion of ytterbium
in YAG: thin-film experiments and combined TEM-RBS analysis, Phys. Chem.
Miner., 37, 751–760, https://doi.org/10.1007/s00269-010-0373-4, 2010.
Marquardt, K., Petrishcheva, E., Gardés, E., Wirth, R., Abart, R., and
Heinrich, W.: Grain boundary and volume diffusion experiments in yttrium
aluminium garnet bicrystals at 1,723 K: a miniaturized study,
Mineral. Petrol., 162, 739–749,
https://doi.org/10.1007/s00410-011-0622-7, 2011a.
Marquardt, K., Ramasse, Q. M., Kisielowski, C., and Wirth, R.: Diffusion in
yttrium aluminium garnet at the nanometer-scale: Insight into the effective
grain boundary width, Am. Mineral., 96, 1521–1529,
https://doi.org/10.2138/am.2011.3625, 2011b.
Mei, S. and Kohlstedt, D. L.: Influence of water on plastic deformation of
olivine aggregates: 1. Diffusion creep regime, J. Geophys. Res.-Sol. Ea.,
105, 21457–21469, https://doi.org/10.1029/2000JB900179, 2000.
Meissner, E., Sharp, T. G., and Chakraborty, S.: Quantitative measurement of
short compositional profiles using analytical transmission electron
microscopy, Am. Mineral., 83, 546–552,
https://doi.org/10.2138/am-1998-5-614, 1998.
Mishin, Y. and Herzig, C.: Grain boundary diffusion: recent progress and
future research, Mater. Sci. Eng. A, 260, 55–71,
https://doi.org/10.1016/S0921-5093(98)00978-2, 1999.
Mishin, Y. M. and Razumovskii, I. M.: Analysis of an asymmetrical model for
boundary diffusion, Acta Metall. Mater., 40, 597–606,
https://doi.org/10.1016/0956-7151(92)90409-8, 1992.
Mishin, Y., Herzig, C., Bernardini, J., and Gust, W.: Grain boundary
diffusion: fundamentals to recent developments, Int. Mater. Rev., 42,
155–178, https://doi.org/10.1179/095066097790093226, 1997.
Mortlock, A. J.: The effect of segregation on the solute diffusion
enhancement due to the presence of dislocations, Acta Metall., 8,
132–134, https://doi.org/10.1016/0001-6160(60)90099-7, 1960.
Müller, G.: Review: The Czochralski method – Where we are 90 years after
Jan Czochralski's invention, Cryst. Res. Technol., 42, 1150–1161,
https://doi.org/10.1002/crat.200711001, 2007.
Muñoz-García, A. B., Pascual, J. L., Barandiarán, Z., and
Seijo, L.: Structural effects and 4f-5d transition shifts induced by la
codoping in Ce-doped yttrium aluminum garnet: First-principles study, Phys.
Rev. B, 82, 1–8,
https://doi.org/10.1103/PhysRevB.82.064114, 2010.
Mütschele, T. and Kirchheim, R.: Segregation and diffusion of hydrogen
in grain boundaries of palladium, Scr. Metall., 21, 135–140,
https://doi.org/10.1016/0036-9748(87)90423-6, 1987.
Nakagawa, T., Sakaguchi, I., Shibata, N., Matsunaga, K., Mizoguchi, T.,
Yamamoto, T., Haneda, H., and Ikuhara, Y.: Yttrium doping effect on oxygen
grain boundary diffusion in α-Al2O3, Acta Mater., 55,
6627–6633, https://doi.org/10.1016/j.actamat.2007.08.016, 2007.
Overwijk, M. H. F.: Novel scheme for the preparation of transmission
electron microscopy specimens with a focused ion beam, J. Vac. Sci. Technol.
B, 11, 2021–2024,
https://doi.org/10.1116/1.586537, 1993.
Peters, M. I. and Reimanis, I. E.: Grain boundary grooving studies of
yttrium aluminum garnet (YAG), J. Am. Ceram. Soc., 72, 2002–2004,
https://doi.org/10.1111/j.1151-2916.2003.tb03390.x, 2003.
Phaneuf, M. W.: Applications of focused ion beam microscopy to materials
science specimens, Micron, 30, 277–288,
https://doi.org/10.1016/S0968-4328(99)00012-8, 1999.
Plößl, A. and Kräuter, G.: Wafer direct bonding: Tailoring
adhesion between brittle materials, Mater. Sci. Eng. R Reports, 25, 1–88,
https://doi.org/10.1016/S0927-796X(98)00017-5, 1999.
Prasad, N. S., Trivedi, S., Kutcher, S., Wang, C.-C., Kim, J.-S., Hommerich,
U., Shukla, V., and Sadangi, R.: Development of ceramic solid state laser
host materials, in: Proceedings Volume 7193, Solid State Lasers XVIII:
Technology and Devices, edited by: Clarkson, W. A., Hodgson, N., and
Shori, R. K., Proc. SPIE 7193, Solid State Lasers XVIII: Technology and Devices, 71931X (28 February 2009), p. 71931X, https://doi.org/10.1117/12.813785, 2009.
Raabe, D., Herbig, M., Sandlöbes, S., Li, Y., Tytko, D., Kuzmina, M.,
Ponge, D., and Choi, P. P.: Grain boundary segregation engineering in
metallic alloys: A pathway to the design of interfaces, Curr. Opin. Solid
State Mater. Sci., 18, 253–261,
https://doi.org/10.1016/j.cossms.2014.06.002, 2014.
Reiche, M.: Semiconductor wafer bonding, Phys. status solidi, 203,
747–759, https://doi.org/10.1002/pssa.200564509, 2006.
Robertson, J. M., van Tol, M. W., Smits, W. H., and Heynen, J. P. H.:
Colorshift of the Ce3+ emission in monocrystalline epitaxially grown
garnet layers, Philips J. Res., 36, 15–30, 1981.
Ronchi, V.: Forty years of history of a grating interferometer, Appl. Optics,
3, 437, https://doi.org/10.1364/AO.3.000437, 1964.
Sadiki, N., Coutures, J. P., Fillet, C., and Dussossoy, J. L.:
Crystallization of lanthanum and yttrium aluminosilicate glasses, J.
Nuclear Mater., 348, 70–78,
https://doi.org/10.1016/j.jnucmat.2005.09.003, 2006.
Sakaguchi, I., Haneda, H., Tanaka, J., and Yanagitani, T.: Effect of
composition on the oxygen tracer diffusion in transparent yttrium aluminium
garnet (YAG) ceramics, J. Am. Ceram. Soc., 79, 1627–1632,
https://doi.org/10.1111/j.1151-2916.1996.tb08774.x, 1996.
Sanghera, J., Kim, W., Villalobos, G., Shaw, B., Baker, C., Frantz, J.,
Sadowski, B., and Aggarwal, I.: Ceramic Laser Materials, Materials, 5,
258–277, https://doi.org/10.3390/ma5020258, 2012.
Sankur, H. and Hall, R. L.: Thin-film deposition by laser-assisted
evaporation, Appl. Optics, 24, 3343–3347,
https://doi.org/10.1364/AO.24.003343, 1985.
Schlossmacher, P., Klenov, D. O., Freitag, B., Von Harrach, S., and
Steinbach, A.: Nanoscale chemical compositional analysis with an innovative
S/TEM-EDX system, Microsc. Anal. Nanotechnol. Suppl., 24, S5–S8, 2010.
Seah, M. P. and Lea, C.: Surface segregation and its relation to grain
boundary segregation, Philos. Mag., 31, 627–645,
https://doi.org/10.1080/14786437508226543, 1975.
Sekita, M., Haneda, H., Shirasaki, S., and Yanagitani, T.: Optical spectra
of undoped and rare-earth-(=Pr, Nd, Eu, and Er) doped transparent ceramic
Y3Al5O12, J. Appl. Phys., 69, 3709–3718,
https://doi.org/10.1063/1.348959, 1991.
Shannon, R. D.: Revised effective ionic radii and systematic studies of
interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect.
A, 32, 751–767, https://doi.org/10.1107/S0567739476001551, 1976.
Taira, T.: RE3+-ion-doped YAG ceramic lasers, IEEE J. Sel. Top. Quantum
Electron., 13, 798–809, https://doi.org/10.1109/JSTQE.2007.897174, 2007.
Thompson, C. V.: Solid-state dewetting of thin films, Annu. Rev. Mater.
Res., 42, 399–434, https://doi.org/10.1146/annurev-matsci-070511-155048,
2012.
Tong, Q. Y., Gösele, U., Martini, T., and Reiche, M.: Ultrathin
single-crystalline silicon on quartz (SOQ) by 150 ∘C wafer
bonding, Sensors Actuators A Phys., 48, 117–123,
https://doi.org/10.1016/0924-4247(94)00984-P, 1995.
Van Cappellen, E. and Doukhan, J. C.: Quantitative transmission X-ray
microanalysis of ionic compounds, Ultramicroscopy, 53, 343–349,
https://doi.org/10.1016/0304-3991(94)90047-7, 1994.
Van Dyck, D. and de Jong, A. F.: Ultimate resolution and information in
electron microscopy: general principles, Ultramicroscopy, 47,
266–281, https://doi.org/10.1016/0304-3991(92)90202-U, 1992.
Whipple, R. T. P.: Concentration contours in grain boundary diffusion,
London, Edinburgh, Dublin Philos. Mag. J. Sci., 45, 1225–1236,
https://doi.org/10.1080/14786441208561131, 1954.
Wirth, R.: Focused Ion Beam (FIB): A novel technology for advanced
application of micro- and nanoanalysis in geosciences and applied
mineralogy, Eur. J. Mineral., 16, 863–876,
https://doi.org/10.1127/0935-1221/2004/0016-0863, 2004.
Yasuda, S., Yoshida, H., Yamamoto, T., and Sakuma, T.: Improvement of
high-temperature creep resistance in polycrystalline Al2O3 by cations
co-doping, Mater. Trans., 45, 2078–2082,
https://doi.org/10.2320/matertrans.45.2078, 2004.
Zisner, T. and Tagai, H.: High-temperature creep of polycrystalline
magnesia: I, effect of simultaneous grain growth, J. Am. Ceram. Soc.,
51, 303–310, https://doi.org/10.1111/j.1151-2916.1968.tb15943.x, 1968.
Short summary
Grain boundary diffusion is orders of magnitude faster compared to volume diffusion. We studied this fast transport process in a well-defined garnet grain boundary. State-of-the-art microscopy was used for quantification. A dedicated numerical diffusion model shows that iron diffusion requires the operation of two diffusion modes, one fast, one slow. We conclude that impurity bulk diffusion in garnet aggregates is always dominated by grain boundary diffusion.
Grain boundary diffusion is orders of magnitude faster compared to volume diffusion. We studied...