Articles | Volume 32, issue 6
https://doi.org/10.5194/ejm-32-675-2020
https://doi.org/10.5194/ejm-32-675-2020
Research article
 | 
23 Dec 2020
Research article |  | 23 Dec 2020

Grain boundary diffusion and its relation to segregation of multiple elements in yttrium aluminum garnet

Joana Polednia, Ralf Dohmen, and Katharina Marquardt

Related subject area

Experimental petrology
Chemical interdiffusion between Na-series tephritic and phonolitic melts with different H2O content, temperature, and oxygen fugacity values
Diego González-García, Florian Pohl, Felix Marxer, Stepan Krasheninnikov, Renat Almeev, and François Holtz
Eur. J. Mineral., 36, 623–640, https://doi.org/10.5194/ejm-36-623-2024,https://doi.org/10.5194/ejm-36-623-2024, 2024
Short summary
Re-equilibration of quartz inclusions in garnet
Benjamin A. Pummell and Jay B. Thomas
Eur. J. Mineral., 36, 581–597, https://doi.org/10.5194/ejm-36-581-2024,https://doi.org/10.5194/ejm-36-581-2024, 2024
Short summary
H2 mobility and redox control in open vs. closed hydrothermal oceanic systems – evidence from serpentinization experiments
Colin Fauguerolles, Teddy Castelain, Johan Villeneuve, and Michel Pichavant
Eur. J. Mineral., 36, 555–579, https://doi.org/10.5194/ejm-36-555-2024,https://doi.org/10.5194/ejm-36-555-2024, 2024
Short summary
A brief history of solid inclusion piezobarometry
Ross J. Angel, Matteo Alvaro, and Silvio Ferrero
Eur. J. Mineral., 36, 411–415, https://doi.org/10.5194/ejm-36-411-2024,https://doi.org/10.5194/ejm-36-411-2024, 2024
Short summary
Li–Na interdiffusion and diffusion-driven lithium isotope fractionation in pegmatitic melts
Christian R. Singer, Harald Behrens, Ingo Horn, Martin Oeser, Ralf Dohmen, and Stefan Weyer
Eur. J. Mineral., 35, 1009–1026, https://doi.org/10.5194/ejm-35-1009-2023,https://doi.org/10.5194/ejm-35-1009-2023, 2023
Short summary

Cited articles

Beyer, C., Dohmen, R., Rogalla, D., Becker, H. W., Marquardt, K., Vollmer, C., Hagemann, U., Hartmann, N., and Chakraborty, S.: Lead diffusion in CaTiO3: A combined study using Rutherford backscattering and TOF-SIMS for depth profiling to reveal the role of lattice strain in diffusion processes, Am. Mineral., 104, 557–568, https://doi.org/10.2138/am-2019-6730, 2019. 
Boulesteix, R., Maître, A., Baumard, J. F., Rabinovitch, Y., Sallé, C., Weber, S., and Kilo, M.: The effect of silica doping on neodymium diffusion in yttrium aluminum garnet ceramics: implications for sintering mechanisms, J. Eur. Ceram. Soc., 29, 2517–2526, https://doi.org/10.1016/j.jeurceramsoc.2009.03.003, 2009. 
Brady, J. B. and Cherniak D. J.: Diffusion in Minerals: An Overview of Published Experimental Diffusion Data, Rev. Mineral. Geochem., 72, 899–920, https://doi.org/10.2138/rmg.2010.72.20, 2010. 
Bruker Nano GmbH: QUANTAX Microanalysis based on energy-dispersive spectrometry, User Manual, Bruker Nano GmbH, Berlin, Germany, 2011. 
Campell, G. H.: Σ5 (210)/[001] Symmetric tilt grain boundary in yttrium aluminum garnet, J. Am. Ceram. Soc., 79, 2883–2891, https://doi.org/10.1111/j.1151-2916.1996.tb08722.x, 1996. 
Download
Short summary
Grain boundary diffusion is orders of magnitude faster compared to volume diffusion. We studied this fast transport process in a well-defined garnet grain boundary. State-of-the-art microscopy was used for quantification. A dedicated numerical diffusion model shows that iron diffusion requires the operation of two diffusion modes, one fast, one slow. We conclude that impurity bulk diffusion in garnet aggregates is always dominated by grain boundary diffusion.