Articles | Volume 32, issue 6
https://doi.org/10.5194/ejm-32-675-2020
https://doi.org/10.5194/ejm-32-675-2020
Research article
 | 
23 Dec 2020
Research article |  | 23 Dec 2020

Grain boundary diffusion and its relation to segregation of multiple elements in yttrium aluminum garnet

Joana Polednia, Ralf Dohmen, and Katharina Marquardt

Related subject area

Experimental petrology
CO2 diffusion in dry and hydrous leucititic melt
Lennart Koch and Burkhard C. Schmidt
Eur. J. Mineral., 35, 117–132, https://doi.org/10.5194/ejm-35-117-2023,https://doi.org/10.5194/ejm-35-117-2023, 2023
Short summary
Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9 GPa – a proxy for melting of carbonated mantle lithologies
Melanie J. Sieber, Max Wilke, Oona Appelt, Marcus Oelze, and Monika Koch-Müller
Eur. J. Mineral., 34, 411–424, https://doi.org/10.5194/ejm-34-411-2022,https://doi.org/10.5194/ejm-34-411-2022, 2022
Short summary
High-pressure homogenization of olivine-hosted CO2-rich melt inclusions in a piston cylinder: insight into the volatile content of primary mantle melts
Roxane Buso, Didier Laporte, Federica Schiavi, Nicolas Cluzel, and Claire Fonquernie
Eur. J. Mineral., 34, 325–349, https://doi.org/10.5194/ejm-34-325-2022,https://doi.org/10.5194/ejm-34-325-2022, 2022
Short summary
Carbon-saturated COH fluids in the upper mantle: a review of high-pressure and high-temperature ex situ experiments
Carla Tiraboschi, Francesca Miozzi, and Simone Tumiati
Eur. J. Mineral., 34, 59–75, https://doi.org/10.5194/ejm-34-59-2022,https://doi.org/10.5194/ejm-34-59-2022, 2022
Short summary
The influence of oxygen fugacity and chlorine on amphibole–liquid trace element partitioning at upper-mantle conditions
Enrico Cannaò, Massimo Tiepolo, Giulio Borghini, Antonio Langone, and Patrizia Fumagalli
Eur. J. Mineral., 34, 35–57, https://doi.org/10.5194/ejm-34-35-2022,https://doi.org/10.5194/ejm-34-35-2022, 2022
Short summary

Cited articles

Beyer, C., Dohmen, R., Rogalla, D., Becker, H. W., Marquardt, K., Vollmer, C., Hagemann, U., Hartmann, N., and Chakraborty, S.: Lead diffusion in CaTiO3: A combined study using Rutherford backscattering and TOF-SIMS for depth profiling to reveal the role of lattice strain in diffusion processes, Am. Mineral., 104, 557–568, https://doi.org/10.2138/am-2019-6730, 2019. 
Boulesteix, R., Maître, A., Baumard, J. F., Rabinovitch, Y., Sallé, C., Weber, S., and Kilo, M.: The effect of silica doping on neodymium diffusion in yttrium aluminum garnet ceramics: implications for sintering mechanisms, J. Eur. Ceram. Soc., 29, 2517–2526, https://doi.org/10.1016/j.jeurceramsoc.2009.03.003, 2009. 
Brady, J. B. and Cherniak D. J.: Diffusion in Minerals: An Overview of Published Experimental Diffusion Data, Rev. Mineral. Geochem., 72, 899–920, https://doi.org/10.2138/rmg.2010.72.20, 2010. 
Bruker Nano GmbH: QUANTAX Microanalysis based on energy-dispersive spectrometry, User Manual, Bruker Nano GmbH, Berlin, Germany, 2011. 
Campell, G. H.: Σ5 (210)/[001] Symmetric tilt grain boundary in yttrium aluminum garnet, J. Am. Ceram. Soc., 79, 2883–2891, https://doi.org/10.1111/j.1151-2916.1996.tb08722.x, 1996. 
Download
Short summary
Grain boundary diffusion is orders of magnitude faster compared to volume diffusion. We studied this fast transport process in a well-defined garnet grain boundary. State-of-the-art microscopy was used for quantification. A dedicated numerical diffusion model shows that iron diffusion requires the operation of two diffusion modes, one fast, one slow. We conclude that impurity bulk diffusion in garnet aggregates is always dominated by grain boundary diffusion.