Articles | Volume 37, issue 4
https://doi.org/10.5194/ejm-37-517-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/ejm-37-517-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
When colour makes minerals unique: the case of the green dolomite from Malentrata (Pomarance, Tuscany, Italy)
Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy
Matteo Ardit
Dipartimento di Geoscienze, Università di Padova, Padua, Italy
Costanza Bonadiman
Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy
Michele Dondi
Istituto di Scienze, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici, Consiglio Nazionale delle Ricerche, Faenza, Italy
Maura Mancinelli
Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy
Giovanni Orazio Lepore
Dipartimento di Scienze della Terra, Università di Firenze, Florence, Italy
Elena Spagnoli
Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy
Luca Nodari
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, Consiglio Nazionale delle Ricerche, Padua, Italy
Renzo Tassinari
Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy
Alfonso Zoleo
Dipartimento di Scienze Chimiche, Università di Padova, Padua, Italy
Giordano Montegrossi
Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche, Florence, Italy
Francesco Di Benedetto
Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy
Related authors
No articles found.
Luca Bindi, Paola Bonazzi, Laura Chelazzi, Matteo M. N. Franceschini, Giovanni O. Lepore, Marta Morana, Giovanni Pratesi, Alice Taddei, Matteo Zoppi, and Silvio Menchetti
Eur. J. Mineral., 36, 615–622, https://doi.org/10.5194/ejm-36-615-2024, https://doi.org/10.5194/ejm-36-615-2024, 2024
Short summary
Short summary
The As4S6 molecule was missing in the reported structures of crystalline As chalcogenides. Here we report the first occurrence of the As4S6 molecule together with the other known As4Sn (n = 3, 4, 5) molecules randomly replacing each other in the crystalline structure of a new monoclinic product obtained by the light-induced alteration of the mineral alacranite, As8S9.
Related subject area
Crystal chemistry
Fibrous tourmaline from San Piero in Campo (Elba, Italy)
Crystal chemistry of Belgian ardennites
Evidence of the existence of the As4S6 molecule produced by light exposure of alacranite, As8S9
Incorporation and substitution of ions and H2O in the structure of beryl
Crystal chemistry and molar volume of potassic-chloro-hastingsite
Pilanesbergite: a new rock-forming mineral occurring in nepheline syenite from the Pilanesberg Alkaline Complex, South Africa
Thermodynamics of vivianite-group arsenates M3(AsO4)2 ⋅ 8H2O (M is Ni, Co, Mg, Zn, Cu) and chemical variability in the natural arsenates of this group
Trace and ultratrace elements in spinel subgroup minerals of ultramafic rocks from the Voltri Massif (NW Italy): the influence of microstructure and texture
Genetic model for the color anomalies at the termination of pegmatitic gem tourmaline crystals from the island of Elba, Italy
Fe-bearing vanadium dioxide–paramontroseite: structural details and high-temperature transformation
Cation and anion ordering in synthetic lepidolites and lithian muscovites: influence of the OH ∕ F and Li ∕ Al ratios on the mica formation studied by NMR (nuclear magnetic resonance) spectroscopy and X-ray diffraction
Tin weathering experiment set by nature for 300 years: natural crystals of the anthropogenic mineral hydroromarchite from Creussen, Bavaria, Germany
New secondary phosphate mineral occurrences and their crystal chemistry, at the Hagendorf Süd pegmatite, Bavaria
Na-feldspar: temperature, pressure and the state of order
Giovanni B. Andreozzi, Dario Di Giuseppe, Alessandro F. Gualtieri, Valentina Scognamiglio, Laura Fornasini, Danilo Bersani, Tommaso Giovanardi, Federico Lugli, and Federico Pezzotta
Eur. J. Mineral., 37, 437–453, https://doi.org/10.5194/ejm-37-437-2025, https://doi.org/10.5194/ejm-37-437-2025, 2025
Short summary
Short summary
An unusual tourmaline was studied using a multi-analytical approach. The sample comes from a granitic pegmatite on the island of Elba and consists of three generations of tourmaline: green prismatic tourmaline, a dark fibrous cap, and colourless acicular single crystals. The most likely scenario for its formation involves the miarolitic cavity fracturing due to mechanical shock, the subsequent circulation of the highly reactive cavity fluids, and the leaching of accessory biotite in the surrounding pegmatite.
Martin Depret, Frédéric Hatert, Michel Blondieau, Stéphane Puccio, Muriel M. L. Erambert, Fabrice Dal Bo, and Florent Bomal
Eur. J. Mineral., 36, 687–708, https://doi.org/10.5194/ejm-36-687-2024, https://doi.org/10.5194/ejm-36-687-2024, 2024
Short summary
Short summary
Ardennite is a rare Mn-rich aluminosilicate that was originally described in Salmchâteau, Belgium. In the last few years, new samples of ardennites have been found at several localities close to Salmchâteau. These samples were analysed by electron microprobe, single-crystal X-ray diffraction, and infrared spectroscopy. The results given in this paper allow us to identify the main substitution mechanisms that occur in Belgian ardennites and to discuss the nomenclature of the ardennite group.
Luca Bindi, Paola Bonazzi, Laura Chelazzi, Matteo M. N. Franceschini, Giovanni O. Lepore, Marta Morana, Giovanni Pratesi, Alice Taddei, Matteo Zoppi, and Silvio Menchetti
Eur. J. Mineral., 36, 615–622, https://doi.org/10.5194/ejm-36-615-2024, https://doi.org/10.5194/ejm-36-615-2024, 2024
Short summary
Short summary
The As4S6 molecule was missing in the reported structures of crystalline As chalcogenides. Here we report the first occurrence of the As4S6 molecule together with the other known As4Sn (n = 3, 4, 5) molecules randomly replacing each other in the crystalline structure of a new monoclinic product obtained by the light-induced alteration of the mineral alacranite, As8S9.
Carina Silke Hanser, Tobias Häger, and Roman Botcharnikov
Eur. J. Mineral., 36, 449–472, https://doi.org/10.5194/ejm-36-449-2024, https://doi.org/10.5194/ejm-36-449-2024, 2024
Short summary
Short summary
The structure of beryl has been a topic of research for decades but is still not entirely understood. This especially applies to substitutions by Fe ions and the occupation of the channels of beryl by H2O and alkalis. The growing amount of studies makes it difficult to gain an overview on these topics. Therefore, this article reviews the current consensus and debates found in the literature.
Jared P. Matteucci, David M. Jenkins, and M. Darby Dyar
Eur. J. Mineral., 36, 247–266, https://doi.org/10.5194/ejm-36-247-2024, https://doi.org/10.5194/ejm-36-247-2024, 2024
Short summary
Short summary
To explore the compositional constraints on Cl incorporation into amphiboles, which can be used to characterize transient brines, amphiboles were synthesized with a broad range of Cl concentrations. Amphibole Cl was found to be dependent on the Fe2+,3+ content, but not the tetrahedral Al content or K / Na ratio. Cl incorporation was found to contract the unit cell along a and expand it along b and c. Molar volumes were derived for endmember Cl-amphiboles using multivariate regressions.
Fabrice Dal Bo, Henrik Friis, Marlina A. Elburg, Frédéric Hatert, and Tom Andersen
Eur. J. Mineral., 36, 73–85, https://doi.org/10.5194/ejm-36-73-2024, https://doi.org/10.5194/ejm-36-73-2024, 2024
Short summary
Short summary
We report the description and the characterization of a new mineral species, found in a rock sample from the geological formation called the Pilanesberg Complex, South Africa. This is a silicate mineral that contains a significant amount of sodium, calcium, iron, titanium and fluorine. Its atomic structure shows that it is related to other wöhlerite-group minerals. This work provides new insights into the crystallization conditions that ruled the formation of the Pilanesberg complex.
Juraj Majzlan, Anna Reichstein, Patrick Haase, Martin Števko, Jiří Sejkora, and Edgar Dachs
Eur. J. Mineral., 36, 31–54, https://doi.org/10.5194/ejm-36-31-2024, https://doi.org/10.5194/ejm-36-31-2024, 2024
Short summary
Short summary
Minerals formed by weathering of toxic materials, of either natural or human origin, act as storage containers for toxic elements. In this work, we investigated properties of common minerals which store and release arsenic in the environment. The data presented here will allow for improved modeling of the polluted sites and for better remediation strategies that could be applied to minimize the impact of the pollution on the environment.
Silvia Fornasaro, Paola Comodi, Laura Crispini, Sandro Zappatore, Azzurra Zucchini, and Pietro Marescotti
Eur. J. Mineral., 35, 1091–1109, https://doi.org/10.5194/ejm-35-1091-2023, https://doi.org/10.5194/ejm-35-1091-2023, 2023
Short summary
Short summary
Using an innovative multi-analytical approach, we investigated the trace elements composition of spinel-group minerals in different ultramafic rocks from the Voltri Massif (Central Liguria, NW Italy). The knowledge of the trace elements within these minerals has an interesting implication both in petrological, mineralogical, and geochemical studies as well as environmental fields, since these elements can be potentially toxic and released into the environment during weathering processes.
Alessandra Altieri, Federico Pezzotta, Giovanni B. Andreozzi, Henrik Skogby, and Ferdinando Bosi
Eur. J. Mineral., 35, 755–771, https://doi.org/10.5194/ejm-35-755-2023, https://doi.org/10.5194/ejm-35-755-2023, 2023
Short summary
Short summary
Elba tourmaline crystals commonly display a sharp transition to dark colors at the analogous termination, but the mechanisms leading to the formation of such terminations are unclear. Here we propose a general genetic model in which, as a consequence of a pocket rupture event, chemical alteration of early formed Fe-/Mn-rich minerals in the enclosing pegmatite was responsible for the release of Fe and/or Mn in the geochemical system, allowing the formation of the late-stage dark terminations.
Nadia Curetti and Alessandro Pavese
Eur. J. Mineral., 35, 373–382, https://doi.org/10.5194/ejm-35-373-2023, https://doi.org/10.5194/ejm-35-373-2023, 2023
Short summary
Short summary
Paramontroseite is a V dioxide (a = 4.8960(14) Å, b = 9.395(3) Å, c = 2.9163(5) Å, V = 134.14(6) Å3; space group Pbnm). The sample under investigation (Prachovice mine, Czech Republic) bears 20 wt % of Fe2O3, and the Fe atoms occupy tetrahedral sites arranged in the
emptychannel along z. Thermal expansion is anisotropic. At T > 350 °C, paramontroseite decomposes and two new phases form: V2O5 (V-pentoxide) and V4Fe2O13 (Fe-tetrapolyvanadate).
Lara Sulcek, Bernd Marler, and Michael Fechtelkord
Eur. J. Mineral., 35, 199–217, https://doi.org/10.5194/ejm-35-199-2023, https://doi.org/10.5194/ejm-35-199-2023, 2023
Short summary
Short summary
Synthetic lepidolites and Li-muscovites were characterised by nuclear magnetic resonance (NMR) spectroscopy and X-ray diffraction. Both Li and F / OH content influence the occurrence of the impurity phases. A solid solution series exists for lepidolites with polylithionite and trilithionite as endmembers but does not between trilithionite and muscovite. NMR investigations indicate there is a preference for incorporating fluorine and OH groups near Li-rich and Al-rich environments, respectively.
Natalia Dubrovinskaia, Maria Messingschlager, and Leonid Dubrovinsky
Eur. J. Mineral., 34, 563–572, https://doi.org/10.5194/ejm-34-563-2022, https://doi.org/10.5194/ejm-34-563-2022, 2022
Short summary
Short summary
In this work we report a new locality for the rare mineral hydroromarchite, Sn3O2(OH)2. It was found not in a submarine environment but in soil at the Saint James Church archaeological site in Creussen, Germany. A tin artefact (a tin button) was exposed to weathering in soil for about 300 years. We solved and refined its structure based on single-crystal X-ray diffraction analysis.
Erich Keck, Ian E. Grey, Colin M. MacRae, Stephanie Boer, Rupert Hochleitner, Christian Rewitzer, William G. Mumme, A. Matt Glenn, and Cameron Davidson
Eur. J. Mineral., 34, 439–450, https://doi.org/10.5194/ejm-34-439-2022, https://doi.org/10.5194/ejm-34-439-2022, 2022
Short summary
Short summary
First occurrences of the secondary phosphate minerals kenngottite, Mn32+Fe43+(PO4)4(OH)6(H2O)2; allanpringite, Fe33+(PO4)2(OH)3·5H2O; iangreyite, Ca2Al7(PO4)2(PO3OH)2(OH,F)15·8H2O; and nizamoffite, MnZn2(PO4)2(H2O)4, from the Hagendorf Süd pegmatite are reported, with characterisation of their crystal chemistry and phase associations.
Herbert Kroll, Hans Ulrich Bambauer, and Horst Pentinghaus
Eur. J. Mineral., 32, 427–441, https://doi.org/10.5194/ejm-32-427-2020, https://doi.org/10.5194/ejm-32-427-2020, 2020
Short summary
Short summary
Feldspars constitute about 60 % of the earth's crust. Na-feldspar, Na[AlSi3O8], is central to this mineral group. Its structural response to changing conditions of temperature and pressure is complicated. In particular, this applies to the distribution of Al and Si on the atomic sites of its crystal structure. We clarify how this distribution varies in thermodynamic equilibrium with external conditions and provide procedures that allow easy determination of the atomic distribution.
Cited articles
Ankudinov, A. L., Ravel, B., Rehr, J. J., and Conradson, S. D.: Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure, Phys. Rev. B, 58, 7565–7576, https://doi.org/10.1103/PhysRevB.58.7565, 1998.
Antao, S. M., Mulder, W. M., Hassan, I., Richton, W. A., and Parise, J. B.: Cation disorder in dolomite, CaMg(CO3)2, and its influence on the aragonite + magnesite > dolomite reaction boundary, Am. Mineral., 89, 1142–1147, 2004.
Bayyareddy, J. and Frost, R. L.: Electronic and vibrational spectra of gaspeite, Neues Jahrb. Mineral. Abh., 11, 525–536, 2004.
Beran, A. and Zemann, J.: Refinement and comparison of the crystal structures of a dolomite and of an Fe-rich ankerite, Tschermaks Mineral. Petrogr. Mitteilungen, 24, 279–286, https://doi.org/10.1007/BF01081130, 1977.
Boschi, C., Dini, A., Dallai, L., Ruggieri, G., and Gianelli, G.: Enhanced CO2-mineral sequestration by cyclic hydraulic fracturing and Si-rich fluid infiltration into serpentinites at Malentrata (Tuscany, Italy), Chem. Geol., 265, 209–226, https://doi.org/10.1016/j.chemgeo.2009.03.016, 2009.
Burns, P.: Mineralogical Applications of Crystal Field Theory, Cambridge Topics in Mineral Physics and Chemistry, Cambridge University Press, https://www.cambridge.org/core/books/mineralogical-applications-of-crystal-field-theory/CDF9711F1C9F946772EC5ADE2C896522 (last access: 24 July 2025), 1993.
Cai, W. K., Liu, J. H., Zhou, C. H., Keeling, J., and Glasmacher, U. A.: Structure, genesis and resources efficiency of dolomite: New insights and remaining enigmas, Chem. Geol., 573, 120191, https://doi.org/10.1016/j.chemgeo.2021.120191, 2021.
Carbone, C., Di Benedetto, F., Sangregorio, C., Marescotti, P., Pardi, L. A., and Sorace, L.: Multifrequency EMR and Magnetic Characterization of Synthetic Powdered Hematite, J. Phys. Chem. C, 112, 9988–9995, https://doi.org/10.1021/jp712045s, 2008.
Cheary, R. W. and Coelho, A.: A fundamental parameters approach to X-ray line-profile fitting, J. Appl. Crystallogr., 25, 109–121, https://doi.org/10.1107/S0021889891010804, 1992.
Cheary, R. W., Coelho, A. A., and Cline, J. P.: Fundamental parameters line profile fitting in laboratory diffractometers, J. Res. Natl. Inst. Stand. Technol., 109, 1, https://doi.org/10.6028/jres.109.002, 2004.
Cole, R. D., Liu, J.-H., Smith, G. V., Hinckley, C. C., and Saporoschenko, M.: Iron partitioning in oil shale of the Green River Formation, Colorado: A preliminary Mössbauer study, Fuel, 57, 514–520, 1978.
d'Acapito, F., Lepore, G. O., Puri, A., Laloni, A., La Manna, F., Dettona, E., De Luisa, A., and Martin, A.: The LISA beamline at ESRF, J. Synchrotron Radiat., 26, 551–558, https://doi.org/10.1107/S160057751801843X, 2019.
Davidson, P. M., Symmes, G. H., Cohen, B. A., Reeder, R. J., and Lindsley, D. H.: Synthesis of the new compound CaFe(CO3)2 and experimental constraints on the (Ca,Fe)CO3 join, Geochim. Cosmochim. Ac., 57, 5105–5109, 1993.
Di Benedetto, F., Andreozzi, G., Baldi, G., Barzanti, A., Bernardini, G. P., Faso, V., Pardi, L. A., and Romanelli, M.: HF2EPR spectroscopy of Fe(III) impurities in a blue hercynite-based pigment, J. Eur. Ceram. Soc., 26, 2301–2305, https://doi.org/10.1016/j.jeurceramsoc.2005.04.007, 2006.
Frost, R. L., Reddy, B. J., Wain, D. L., and Hales, M. C.: An application of near infrared spectroscopy to the study of carbonate minerals – smithsonite, rhodochrosite, sphaerocobaltite and cadmium smithsonite, J. Infrared Spectrosc., 14, 317–324, 2006.
Gagné, O. C. and Hawthorne, F. C.: Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater., 71, 562–578, https://doi.org/10.1107/S2052520615016297, 2015.
Gregg, J. M., Bish, D. L., Kaczmarek, S. E., and Machel, H. G.: Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review, Sedimentology, 62, 1749–1769, https://doi.org/10.1111/sed.12202, 2015.
Gunasekaran, S. and Ambalagan, G.: Optical absorption and EPR studies on some natural carbonate minerals, Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 69, 383–390, 2008.
Gunasekaran, S. and Anbalagan, G.: Thermal decomposition of natural dolomite, Bull. Mater. Sci., 30, 339–344, https://doi.org/10.1007/s12034-007-0056-z, 2007a.
Gunasekaran, S. and Anbalagan, G.: Spectroscopic study of phase transitions in dolomite mineral, J. Raman Spectrosc., 38, 846–852, https://doi.org/10.1002/jrs.1718, 2007b.
Iwafuchi, K., Watanabe, C., and Otsuka, R.: Thermal decomposition of ferromanganoan dolomite, Thermochim. Acta, 66, 105–125, https://doi.org/10.1016/0040-6031(93)85024-4, 1983.
Kurešević, L., Vušović, O., and Delić-Nikolić, I.: VUČKOVICA Carbonate-silica gemstone deposit (Central Serbia): geologic properties, genetic processes and deposition, Geol. Maced., 36, 105–118, https://doi.org/10.46763/GEOL22362105k, 2022.
Lachance, G. R. and Traill, R. J.: Practical Solution to the Matrix Problem in X-Ray Analysis, Can. Spectrosc., 11, 43–48, 1966.
Lagarek, K. and Rancourt, D. G.: RECOIL, Mössbauer spectral analysis software for windows (version 1.0), University of Ottawa, 1998.
Markgraf, S. A. and Reeder, R. J.: High-temperature structure refinements of calcite and magnesite, Am. Mineral., 70, 590–600, 1985.
Milodowski, A. E. and Morgan, D. J.: Thermal Analysis Studies of the dolomite-ferroan dolomite-ankerite Series. II. Decomposition Mechamism in Flowing CO2 Atmosphere, Thermochim. Acta, 152, 279–297, 1989.
mindat.org: Taraspite, https://www.mindat.org/ (last access: 20 May 2025), 2024.
Moukarika, A., O'Brien, F., Coey, M. D., and Resende, M.: Development of magnetic soil from ferroan dolomite, Geophys. Res. Lett., 18, 2043–2046, 1991.
Orlandi, P.: Siti di Interesse Minerario e Mineralogico del Territorio della Provincia di Pisa, Piano Territoriale di Coordinamento, Provincial Council Resolution no. 100 dated 27/07/2006, Provincia di Pisa, https://sit.provincia.pisa.it/sites/pisaprovincia/files/ptcp/qc007_siti_interesse_minerario_mineralogico_rid.pdf (last access: 23 July 2025), 2006.
Otsuka, R.: Recent studies on the decomposition of the dolomite group by thermal analysis, Thermochim. Acta, 100, 69–80, https://doi.org/10.1016/0040-6031(86)87051-4, 1986.
Pertlik, F.: Structures of hydrothermally synthesized cobalt(II) carbonate and nickel(II) carbonate, Acta Crystallogr., C42, 4–5, 1986.
Prissok, F. and Lehmann, G.: An EPR study of Mn2+ and Fe3+ in dolomites, Phys. Chem. Miner., 13, 331–336, https://doi.org/10.1007/BF00308350, 1986.
Ravel, B. and Newville, M.: ATHENA and ARTEMIS Interactive Graphical Data Analysis using IFEFFIT, Phys. Scr., 2005, 1007, https://doi.org/10.1238/Physica.Topical.115a01007, 2005.
Reddy, B. J. and Frost, R. L.: Electronic and vibrational spectra of gaspeite, Neues Jahrb. Für Mineral. – Monatshefte, 2004, 525–536, https://doi.org/10.1127/0028-3649/2004/2004-0525, 2004.
Reddy, R. R., Reddy, S. L., Reddy, G. S., and Reddy, B. J.: Optical absorption and EPR spectra of magnesite mineral, Radiat. Eff. Defects Solids, 153, 53–58, https://doi.org/10.1080/10420150008211834, 2000.
Reddy, S. L., Frost, R. L., Sowjanya, G., Reddy, N. C. G., Reddy, G. S., and Reddy, B. J.: EPR, UV-Visible, and Near-Infrared Spectroscopic Characterization of Dolomite, Adv. Condens. Matter Phys., 2008, 1–8, https://doi.org/10.1155/2008/175862, 2008.
Reeder, R. J. and Dollase, W. A.: Structural variation in the dolomite-ankerite solid-solution series: an X-ray, Mossbauer and TEM study, Am. Mineral., 74, 1159–1167, 1989.
Reeder, R. J. and Wenk, H. R.: Structure refinements of some thermally disordered dolomites, Am. Mineral., 68, 769–776, 1983.
Resio, L. C.: Dolomite thermal behaviour: A short review, Phys. Chem. Miner., 51, 19, https://doi.org/10.1007/s00269-024-01272-x, 2024.
Rielli, A., Boschi, C., and Dini, A.: Tectonically driven carbonation of serpentinite by mantle CO2: Genesis of the Castiglioncello magnesite deposit in the Ligurian ophiolite of central Tuscany (Italy), Ore Geol. Rev., 149, 105022, https://doi.org/10.1016/j.oregeorev.2022.105022, 2022.
Rietveld, H. M.: A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 2, 65–71, https://doi.org/10.1107/S0021889869006558, 1969.
Rietveld, H. M.: Line profiles of neutron powder-diffraction peaks for structure refinement, Acta Crystallogr., 22, 151–152, https://doi.org/10.1107/S0365110X67000234, 1967.
Ristić, M., Krehula, S., Reissner, M., and Musić, S.: 57Fe Mössbauer, XRD, FT-IR, FE SEM Analyses of Natural Goethite, Hematite and Siderite, Croat. Chem. Acta, 90, 499–507, 2017.
Rossman, G. R.: Optical spectra of siderite (Tsumeb, Namibia) and ankerite (Styria, Austria) from the Mineral Spectroscopy Server of the California Institute of Technology, Pasadena, California, USA, 2024.
Rozenson, I., Zak, I., and Spiro, B.: The distribution and behavior of iron in sequences of dolomites, clays and oxides, Chem. Geol., 31, 83–96, 1980.
Shannon, R. D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Found. Crystallogr., 32, 751–767, 1976.
Shepherd, R. A. and Graham, W. R. M.: EPR of Mn2+ in polycrystalline dolomite, J. Chem. Phys., 81, 6080–6084, https://doi.org/10.1063/1.447612, 1984.
Taran, M. N., Muller, J., Friedrich, A., and Koch-Muller, M.: High-pressure optical spectroscopy study of natural siderite, Phys. Chem. Miner., 44, 537–546, 2017.
Zemann, J.: Zür Stereochemie der Karbonate, Fortschritte Mineral., 59, 95–116, 1981.
Short summary
A thorough multimethod characterisation of the green dolomite sampled at the Malentrata magnesite mine has been carried out. We observed (1) a peculiar reduction of the cell volume and (2) the origin of the peculiar green colour, mainly determined by the Fe electronic transitions, probably in combination with those of Cr. In fact, the green dolomite of Malentrata contains aliquots of a number of environmentally relevant elements, in particular Mn, Cr, and Ni.
A thorough multimethod characterisation of the green dolomite sampled at the Malentrata...