Articles | Volume 37, issue 1
https://doi.org/10.5194/ejm-37-111-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-37-111-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tungsten solubility and speciation in hydrothermal solutions revealed by in situ X-ray absorption spectroscopy
Manuela Borchert
Institut für Mineralogie, Universität Münster, Corrensstrasse 24, 48149 Münster, Germany
Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
Maria A. Kokh
Institut für Mineralogie, Universität Münster, Corrensstrasse 24, 48149 Münster, Germany
Institut für Geowissenschaften, Universität Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
Marion Louvel
Institut für Mineralogie, Universität Münster, Corrensstrasse 24, 48149 Münster, Germany
Institut des Sciences de la Terre d'Orléans, CNRS–BRGM–Univ. Orléans, 1A rue de la Ferollerie, 45100 Orléans, France
Elena F. Bazarkina
Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), P.O. Box 510119, 01314 Dresden, Germany
The Rossendorf Beamline, European Synchrotron Radiation Facility (ESRF), CS40220, 38043 Grenoble CEDEX 9, France
Anselm Loges
Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstr. 74–100, 12249 Berlin, Germany
Edmund Welter
Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
Denis Testemale
Université Grenoble Alpes, CNRS, Institut Néel, 38000 Grenoble, France
Rami Al Abed
Institut für Geowissenschaften, Universität Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
Stephan Klemme
Institut für Mineralogie, Universität Münster, Corrensstrasse 24, 48149 Münster, Germany
Institut für Geowissenschaften, Universität Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
Related authors
No articles found.
Donna L. Whitney, Max Wilke, Sara E. Hanel, Florian Heidelbach, Olivier Mathon, and Angelika D. Rosa
Eur. J. Mineral., 37, 143–149, https://doi.org/10.5194/ejm-37-143-2025, https://doi.org/10.5194/ejm-37-143-2025, 2025
Short summary
Short summary
The Earth recycles water and other elements in a vast system that involves the oceans, minerals, magma, and the atmosphere. We studied the part of the system that involves minerals, specifically, lawsonite and epidote because they contain both water and iron. Iron in these minerals is usually assumed to be Fe3+, but we discovered an unexpected amount of Fe2+. Reactions involving different states of Fe and water in minerals affect many processes related to element cycling in the Earth.
Roman Botcharnikov, Max Wilke, Jan Garrevoet, Maxim Portnyagin, Kevin Klimm, Stephan Buhre, Stepan Krasheninnikov, Renat Almeev, Severine Moune, and Gerald Falkenberg
Eur. J. Mineral., 36, 195–208, https://doi.org/10.5194/ejm-36-195-2024, https://doi.org/10.5194/ejm-36-195-2024, 2024
Short summary
Short summary
The new spectroscopic method, based on the syncrotron radiation, allows for determination of Fe oxidation state in tiny objects or in heterogeneous samples. This technique is expected to be an important tool in geosciences unraveling redox conditions in rocks and magmas as well as in material sciences providing constraints on material properties.
Stamatis Flemetakis, Christian J. Renggli, Paul Pangritz, Jasper Berndt, and Stephan Klemme
Eur. J. Mineral., 36, 173–181, https://doi.org/10.5194/ejm-36-173-2024, https://doi.org/10.5194/ejm-36-173-2024, 2024
Short summary
Short summary
Boron is a common additive in industrial glasses used for a wide variety of applications and in experimental degassing studies regarding exoplanet atmospheres. It is therefore important to constrain the behavior of this component in the melt phase. For this reason we investigated experimentally the evaporation of B2O3 from Ca- and Mg-bearing aluminoborosilicate melts at different temperatures, as a function of time and oxygen fugacity.
Dirk Spengler, Adam Włodek, Xin Zhong, Anselm Loges, and Simon J. Cuthbert
Eur. J. Mineral., 35, 1125–1147, https://doi.org/10.5194/ejm-35-1125-2023, https://doi.org/10.5194/ejm-35-1125-2023, 2023
Short summary
Short summary
Rock lenses from the diamond stability field (>120 km depth) within ordinary gneiss are enigmatic. Even more when these lenses form an alternating exposure pattern with ordinary lenses. We studied 10 lenses from W Norway and found that many of them have a hidden history. Tiny needles of quartz enclosed in old pyroxene cores are evidence for a rock origin at great depth. These needles survived the rocks' passage to the surface that variably obscured the mineral chemistry – the rocks' memory.
Anselm Loges, Gudrun Scholz, Nader de Sousa Amadeu, Jingjing Shao, Dina Schultze, Jeremy Fuller, Beate Paulus, Franziska Emmerling, Thomas Braun, and Timm John
Eur. J. Mineral., 34, 507–521, https://doi.org/10.5194/ejm-34-507-2022, https://doi.org/10.5194/ejm-34-507-2022, 2022
Short summary
Short summary
We investigated the effect that fluoride and protons have on each other as structural neighbors in the mineral topaz. This was done using spectroscopic methods, which measure the interaction of electromagnetic radiation with matter. The forces between atoms distort the spectroscopic signals, and this distortion can thus be used to understand the corresponding forces and their effect on the physical properties of the mineral.
Melanie J. Sieber, Max Wilke, Oona Appelt, Marcus Oelze, and Monika Koch-Müller
Eur. J. Mineral., 34, 411–424, https://doi.org/10.5194/ejm-34-411-2022, https://doi.org/10.5194/ejm-34-411-2022, 2022
Short summary
Short summary
Carbonates reduce the melting point of the mantle, and carbonate melts produced in low-degree melting of a carbonated mantle are considered the precursor of CO2-rich magmas. We established experimentally the melting relations of carbonates up to 9 GPa, showing that Mg-carbonates melt incongruently to periclase and carbonate melt. The trace element signature of carbonate melts parental to kimberlites is approached by melting of Mg-rich carbonates.
Gerhard Franz, Martin Kutzschbach, Eleanor J. Berryman, Anette Meixner, Anselm Loges, and Dina Schultze
Eur. J. Mineral., 33, 401–423, https://doi.org/10.5194/ejm-33-401-2021, https://doi.org/10.5194/ejm-33-401-2021, 2021
Short summary
Short summary
Metamorphic rocks contain information about their original rocks and thus provide insight into the earlier stages of a region of interest. Here, we used the whole-rock chemical composition and stable boron isotopes of a suite of rocks from the Alps (Italy–Austria), which were deposited in a restricted intramontane basin before the Alpine orogeny. It is possible to reconstruct the depositional conditions for these sediments, which are now common metamorphic rocks such as schists and gneisses.
Nicole Biedermann, Elena Bykova, Wolfgang Morgenroth, Ilias Efthimiopoulos, Jan Mueller, Georg Spiekermann, Konstantin Glazyrin, Anna Pakhomova, Karen Appel, and Max Wilke
Eur. J. Mineral., 32, 575–586, https://doi.org/10.5194/ejm-32-575-2020, https://doi.org/10.5194/ejm-32-575-2020, 2020
Short summary
Short summary
Carbonates play a key role in the chemistry and dynamics of our planet. The role of SrCO3 in the deep mantle has received little attention due to its low abundance. However, knowing the high-pressure phase behaviour of natural carbonates across its full compositional range is essential to evaluate effects of chemical substitution in the system of deep-Earth carbonates. We performed powder and single-crystal X-ray diffraction up to 49 GPa and observed a phase transition in SrCO3 at around 26 GPa.
Related subject area
Ore deposits and mineral resources
Insights from the compositional evolution of a multi-coloured, zoned tourmaline from the Cruzeiro pegmatite, Minas Gerais, Brazil
Micro- to nano-sized solid inclusions in magnetite record skarn reactions
First in situ Lu–Hf garnet date for a lithium–caesium–tantalum (LCT) pegmatite from the Kietyönmäki Li deposit, Somero–Tammela pegmatite region, SW Finland
Mineralogy and mineral chemistry of detrital platinum-group minerals and gold particles from the Elbe, Germany
Multistage fluorite mineralization in the southern Black Forest, Germany: evidence from rare earth element (REE) geochemistry
Vibrational spectroscopic study of three Mg–Ni mineral series in white and greenish clay infillings of the New Caledonian Ni-silicate ores
New data on gersdorffite and associated minerals from the Peloritani Mountains (Sicily, Italy)
A remarkable discovery of electrum on the island of Sylt, northern Germany, and its Scandinavian origin
Giovanni B. Andreozzi, Claudia Gori, Henrik Skogby, Ulf Hålenius, Alessandra Altieri, and Ferdinando Bosi
Eur. J. Mineral., 37, 1–12, https://doi.org/10.5194/ejm-37-1-2025, https://doi.org/10.5194/ejm-37-1-2025, 2025
Short summary
Short summary
The compositional variation in a multi-coloured, zoned tourmaline from the Cruzeiro pegmatite, Brazil, reflects melt chemical evolution during the entire pegmatite differentiation. In uncontaminated granitic pegmatite systems such as that of Cruzeiro, the compositional evolution of tourmaline progresses from schorl to fluor-elbaite, rather than directly from schorl to elbaite, to reflect co-enrichment in Li and F during fractional crystallization.
Igor González-Pérez, José María González-Jiménez, Lola Yesares, Antonio Acosta-Vigil, Jordi Llopís, and Fernando Gervilla
Eur. J. Mineral., 36, 925–941, https://doi.org/10.5194/ejm-36-925-2024, https://doi.org/10.5194/ejm-36-925-2024, 2024
Short summary
Short summary
This study examines solid nano-inclusions in magnetite from the La Víbora magnesian skarn, Spain, revealing insights into mineral formation. We found two types of inclusions: representing fossilized skarn reactions and precipitated from supersaturated fluids. Nano-inclusions provide valuable clues about the Fe mineralization event, highlighting the significance of nano-inclusions in understanding geological processes and resource exploration.
Krisztián Szentpéteri, Kathryn Cutts, Stijn Glorie, Hugh O'Brien, Sari Lukkari, Radoslaw M. Michallik, and Alan Butcher
Eur. J. Mineral., 36, 433–448, https://doi.org/10.5194/ejm-36-433-2024, https://doi.org/10.5194/ejm-36-433-2024, 2024
Short summary
Short summary
In situ Lu–Hf geochronology of garnet is applied to date a Finnish lithium–caesium–tantalum (LCT) pegmatite from the Somero–Tammela pegmatite region. The age obtained was 1801 ± 53 Ma, which is consistent with zircon ages of 1815–1740 Ma obtained from the same pegmatite. We show the in situ Lu–Hf method is a fast way of obtaining reliable age dates from LCT pegmatites.
Malte Junge, Simon Goldmann, and Hermann Wotruba
Eur. J. Mineral., 35, 439–459, https://doi.org/10.5194/ejm-35-439-2023, https://doi.org/10.5194/ejm-35-439-2023, 2023
Short summary
Short summary
The analysis by electron microprobe of platinum-group minerals, gold and cinnabar particles from heavy mineral concentrates of the Elbe showed a broad compositional variation of Os–Rus–Irs–(Pt) alloys as well as Pts–Fe alloys. The comparison with the literature showed that different sources account for the heavy mineral concentrate. This compositional variation of the alloys is also of interest for other placers of platinum-group minerals worldwide.
Robin Hintzen, Wolfgang Werner, Michael Hauck, Reiner Klemd, and Lennart A. Fischer
Eur. J. Mineral., 35, 403–426, https://doi.org/10.5194/ejm-35-403-2023, https://doi.org/10.5194/ejm-35-403-2023, 2023
Short summary
Short summary
The diversity of chemical patterns in multi-stage fluorite mineralization from two neighbouring deposits in the Black Forest is investigated. From over 70 samples, 7 fluorite groups and 3 hydrothermal events are identified after chemical and mathematical classification. The relative chronology and features suggest different mineralization histories and source aquifers for both deposits despite their proximity. Genetic differences are likely controlled by different behaviours of their host rocks.
Emmanuel Fritsch, Etienne Balan, Sabine Petit, and Farid Juillot
Eur. J. Mineral., 33, 743–763, https://doi.org/10.5194/ejm-33-743-2021, https://doi.org/10.5194/ejm-33-743-2021, 2021
Short summary
Short summary
The study presents and discusses mid- and near-infrared spectra of three Mg–Ni mineral series (serpentine-like and talc-like minerals, sepiolite) commonly found in reactivated faults and sequences of clay infillings of the New Caledonian Ni-silicate deposits. This spectroscopic study sheds light on the nature of the residual mineral phases found in the clay infillings (serpentine-like minerals) and reveals the aptitude of the newly formed minerals (talc-like minerals and sepiolite) to store Ni.
Daniela Mauro, Cristian Biagioni, and Federica Zaccarini
Eur. J. Mineral., 33, 717–726, https://doi.org/10.5194/ejm-33-717-2021, https://doi.org/10.5194/ejm-33-717-2021, 2021
Short summary
Short summary
This work reports the full crystal-chemical characterization of gersdorffite from Contrada Zillì (Peloritani Mountains, Sicily, Italy). The structural type shown by gersdorffite (ordered polytype 213) and its chemistry agree with low-temperature crystallization conditions. Moreover, the chemical zoning of the studied crystals recorded changes in the crystallization physicochemical conditions. This zoning may be due to a multistage crystallization, related to the evolution of the ore deposits.
Jochen Schlüter, Stephan Schuth, Raúl O. C. Fonseca, and Daniel Wendt
Eur. J. Mineral., 33, 373–387, https://doi.org/10.5194/ejm-33-373-2021, https://doi.org/10.5194/ejm-33-373-2021, 2021
Short summary
Short summary
On the west coast of the German North Sea island of Sylt, an electrum–quartz pebble weighing 10.4 g was discovered in a cliff of Saalian glaciogenic sediments. This is an unusually large and rare precious metal to find. Within our paper we document and characterize this discovery. An attempt to investigate its provenance points towards a southern Norwegian origin. This leads to the conclusion that ice advance events were involved in transporting this pebble from Norway to Germany.
Cited articles
Akinfiev, N. N. and Diamond, L. W.: Thermodynamic description of aqueous nonelectrolytes at infinite dilution over a wide range of state parameters, Geochim. Cosmochim. Acta, 67, 613–629, 2003.
Barin, I. (Ed.): Thermochemical Data of Pure substances. VCH Verlagsgesellschaft mbH, Weinheim, Germany, ISBN 3-527-28745-0, 1995.
Barin, I. and Knacke, O. (Eds.): Thermochemical properties of inorganic substances: Berlin, Springer-Verlag, 921 pp., 1973.
Bianconi, A., DelliìAriccia, M., Gargano, A., and Natoli, C. R.: Bond length determination using XANES, in: EXAFS and Near Edge Structure, edited by: Bianconi, A., Incoccia, L., and Stilpcich, S., Springer Series in Chemistry and Physics, Berlin, 27, 57–61, 1983.
Borchert, M., Kokh, M. A., Louvel, M., Bazarkina, E. F., Loges, A., Testemale, D., Al Abed, R., Klemme, S., and Wilke, M.: Tungsten concentrations and tungsten EXAFS and XANES data in hydrothermal solutions, GFZ Data Services [data set], https://doi.org/10.5880/fidgeo.d.2024.002, 2024.
Borg, S., Liu, W., Etschmann, B., Tian, Y., and Brugger, J.: An XAS study of molybdenum speciation in hydrothermal chloride solutions from 25–385 °C and 600 bar, Geochim. Cosmochim. Acta, 92, 292–307, 2012.
Brugger, J., Liu, W., Etschmann, B., Mei, Y., Sherman, D. M., and Testemale, D.: A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits?, Chem. Geol., 447, 219–253, 2016.
Bryzgalin, O. V. and Rafal'sky, R. P.: Estimation of instability constants for ore-element complexes at elevated temperatures, Geochem. Intern., 19, 839–849, 1982.
Bychkov, A. Y. and Zuykov, V. V.: Solubility of tungstic acid and forms of tungsten transport in sodium chloride solutions at 25 °C, Dokladi akademii nauk, 400, 69–71, 2005.
Carocci, E., Truche, L., Cathelineau, M., Caumon, M. C., and Bazarkina, E. F.: Tungsten (VI) speciation in hydrothermal solutions up to 400 °C as revealed by in situ Raman spectroscopy, Geochim. Cosmochim. Acta, 317, 306–324, 2022.
Crerar, D. A., Wood, S., Brantley, S., and Bocarsly, A.: Chemical controls on solubility of ore-forming minerals in hydrothermal systems, Can. Mineral., 23, 333–352, 1985.
Dewan, J. C. and Kepert, D. L.: Rapid Acidification of Solutions containing Tungstate Anions, J. Chem. Soc., Dalton Transactions, 224–225, 1973.
Diehl, R., Brandt, G., and Salje, E.: The crystal structure of triclinic WO3, Acta Cryst., B34, 1105–1111, 1978.
Driesner, T.: The System H2O-NaCl. II. Correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000 degrees C, 1 to 5000 bar, and 0 to 1 XNaCl, Geochim. Cosmochim. Acta, 71, 4902–4919, 2007.
Driesner, T. and Heinrich, C. A.: The System H2O-NaCl. I. Correlation Formulae for Phase Relations in Temperature-Pressure-Composition Space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl, Geochim. Cosmochim. Acta, 71, 4880–4901, 2007.
Elam, W. T., Ravel, B. D., and Sieber, J. R.: A new atomic database for X-ray spectroscopic calculations, Rad. Phys. Chem., 63, 121–128, 2002.
Farrugia, L. J.: Sodium tungstate dihydrate: a redetermination, Acta Cryst., E63, i142, https://doi.org/10.1107/S1600536807023355, 2007.
Franck, E. U., Rosenzweig, S., and Christoforakos, M.: Calculation of the dielectric constant of water to 1000 °C and very high pressures, Bunsen-Ges. Phys. Chem., 94, 199–203, 1990.
Fuggle, J. C. and Mårtensson, N.: Core-level binding energies in metals, J. Electron. Spectrosc. Relat. Phenom., 21, 275–281, https://doi.org/10.1016/0368-2048(80)85056-0, 1980.
Gibert, F., Moine, B., Schott, J., and Dandurand, J. L.: Modeling of the transport and deposition of tungsten in the scheelite-bearing calc-silicate gneisses of the Montagne Noire, France, Contrib. Mineral. Petrol., 112, 371–384, 1992.
Han, B., Khoroshilov, A., Tyurin, A., Baranchikov, A., Razumov, M., Ivanova, O., Gavrichev, K., and Ivanov, V.: WO3 thermodynamic properties at 80–1256 K revisited, Chem. J. Therm. Anal. Calo., 142, 1533–1543, 2020.
Han, Z., Golev, A., and Edraki, M.: A Review of Tungsten Resources and Potential Extraction from Mine Waste, Minerals, 11, 701, https://doi.org/10.3390/min11070701, 2021.
Heinrich, C. A.: The chemistry of hydrothermal tin (-tungsten) ore deposits, Econ. Geol., 85, 457–481, 1990.
Helgeson, H. C. and Kirkham, D. H.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; I, Summary of the thermodynamic/electrostatic properties of the solvent, Am. J. Sci., 274, 1089–1198, 1974.
Helgeson, H. C., Kirkham, D. H., and Flowers, G. C.: Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high temperatures and pressures. IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 5 kb and 600 °C, Am. J. Sci., 281, 1249–1516, 1981.
Hoffmann, M. M., Darab, J. G., Heald, S. M., Yonker C. R., and Fulton J. L.: New experimental developments for in situ XAFS studies of chemical reactions under hydrothermal conditions, Chem. Geol., 167, 89–103, 2000.
Hulsbosch, N., Boiron, M.-Ch., Dewaele, S., and Muchez, P.: Fluid fractionation of tungsten during granite-pegmatite differentiation and the metal source of peribatholitic W quartz veins: Evidence from the Karagwe-Ankole Belt (Rwanda), Geochim. Cosmochim. Acta, 175, 299–318, 2016.
Ivanova, G. F. and Khodakovskiy, I. L.: Chemical forms of tungsten transport in hydrothermal solutions, Geokhimiya, 8, 426, 1968 (in Russian).
Ivanova, G. F. and Khodakovskiy, I. L.: About chemical state of tungsten in hydrothermal solutions, Geokhimiya, 11, 1426–1433, 1972 (in Russian).
Johnson, J. W., Oelkers, E. H., and Helgeson, H. C.: SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C, Comput. Geosci., 18, 899–947, 1992.
Kestin, J., Sengers, J. V., Kamgar-Parsi, B., and Sengers J. M. H. L.: Thermophysical properties of fluid H2O, J. Phys. Chem. Ref. Data, 13, 175–183, 1984.
Klemme, S., Feldhaus, M., Potapkin, V., Wilke, M., Borchert, M., Louvel, M., Loges, A., Rohrbach, A., Weitkamp, P., Welter, E., Kokh, M., Schmidt, C., and Testemale, D.: A hydrothermal apparatus for x-ray absorption spectroscopy of hydrothermal fluids at DESY, Rev. Sci. Instrum., 92, 063903, https://doi.org/10.1063/5.0044767, 2021.
Klimek, P., Obersteiner, M., and Thurner, S.: Systemic trade risk of critical resources, Sci. Adv., 1, e1500522, https://doi.org/10.1126/sciadv.1500522, 2015.
Korges, M., Weis, P., Lüders, V., and Laurent, O.: Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation, Geology, 46, 75–78, 2018.
Kozlik, M. and Raith, J.: Variscan metagranitoids in the central Tauern Window (Eastern Alps, Austria) and their role in the formation of the Felbertal scheelite deposit, Lithos, 278–281, 303–320, 2017.
Kwak, T. A. P.: W-Sn skarn deposits and related metamorphic skarns and granitoids, in: Developments in Economic Geology, 24, Amsterdam, Elsevier Science, 468 pp., 1987.
Lecumberri-Sanchez, P., Vieira, R., Heinrich, C. A., Pinto, F., and Wälle, M.: Fluid-rock interaction is decisive for the formation of tungsten deposits, Geology, 45, 579–582, 2017.
Lemmon, E. W., McLinden, M. O., and Friend, D. G.: Thermophysical Properties of Fluid Systems, in: NIST Chemistry WebBook, edited by: Linstrom, P. J. and Mallard, W. G., NIST Standard Reference Database. National Institute of Standards and Technology, Gaithersburg MD, https://doi.org/10.18434/T4D303, 2019.
Li, G., Bridges, F., and Brown, G. S.: Multielectron X-ray photoexcitation observations in X-ray-absorption fine-structure background, Phys. Rev. Lett., 68, 1609–1612, 1992.
Marshall, W. L. and Franck, E. U.: Ion product of water substance, 0–1000 °C, 1–10,000 bars new international formulation and its background, J. Phys. Chem. Ref. Data, 10, 295–304, 1981.
Mei, Y., Liu, W., Guan, O., Brugger, J., Etschmann, B., Siégel, C., Wykes, J., and Ram, R.: Tungsten speciation in hydrothermal fluids, Geochim. Cosmochim. Acta, https://doi.org/10.1016/j.gca.2024.06.030, in press, 2024.
Minubaeva, Z.: UV Spectroscopic Studies of the Hydrothermal Geochemistry of Molybdenum and Tungsten, PhD Thesis, ETH Zurich, 142 pp., https://doi.org/10.3929/ethz-a-005557770, 2007.
Naumov, V. B., Dorofeev, V. A., and Mironova, O. F.: Physicochemical parameters of the formation of hydrothermal deposits: A fluid inclusion study. I. Tin and tungsten deposits, Geochem. Int., 49, 1002–1021, 2011.
Oelkers, E. H. and Helgeson, H. C.: Triple-ion anions and polynuclear complexing in supercritical electrolyte solutions, Geochim. Cosmochim. Acta, 54, 727–738, 1990.
Oelkers, E. H. and Helgeson, H. C.: Calculation of activity coefficients and degrees of formation of neutral ion pairs in supercritical electrolyte solutions, Geochim. Cosmochim. Acta, 55, 1235–1251, 1991.
Ordosch, A., Raith, J. G., Schmidt, S., and Aupers, K.: Polyphase scheelite and stanniferous silicates in a W-(Sn) skarn close to Felbertal tungsten mine, Eastern Alps, Mineral. Petrol., 113, 703–725, 2019.
Pearson, R. G.: Hard and soft acids and bases, Am. Chem. Soc. J., 85, 3533–3539, 1963.
Perrin, D. D.: Dissociation constants of inorganic acids and bases in aqueous solution, Butterworth & Co., London, 112 pp., ISBN 978-0408700153, 1969.
Pokrovski, G. S., Schott, J., and Sergeyev, A. S.: Experimental determination of the stability constants of NaSO and NaB(OH) in hydrothermal solutions using a new high-temperature sodium-selective glass electrode – Implications for boron isotopic fractionation, Chem. Geol., 124, 253–265, 1995.
Pokrovski, G. S., Roux, J., Hazemann, J.-L., and Testemale, D.: An X-ray absorption spectroscopy study of argutite solubility and aqueous Ge(IV) speciation in hydrothermal fluids to 500 °C and 400 bar, Chem. Geol., 217, 127–145, 2005.
Proux, O., Biquard, X., Lahera, E., Menthonnex, J.-J., Prat, A., Ulrich, O., Soldo, Y., Trevisson, P., Kapoujyan, G., Perroux, G., Taunier, P., Grand, D., Jeantet, P., Deleglise, M., Roux, J.-P., and Hazemann, J.-L.: FAME: a new beamline for X-ray absorption investigations of very diluted systems of environmental, material and biological interests, Phys. Scr., T115, 970–973, 2005.
Proux, O., Nassif, V., Prat, A., Ulrich, O., Lahera, E., Biquard, X., Menthonnex, J.-J., and Hazemann, J.-L.: Feedback system of a liquid-nitrogen-cooled double-crystal monochromator: design and performances, J. Synchrotron Rad., 13, 59–68, 2006.
Qiao, S., Loges, A., and John, T.: Formation of topaz-greisen by a boiling fluid: a case study from the Sn-W-Li deposit, Zinnwald/Cínovec, Econ. Geol., 119, 805–828, 2024.
Rafal'sky, R. P., Bryzgalin, O. V., and Fedorov, P. L.: Transport of tungsten and scheelite deposition under hydrothermal conditions, Geochem. Intern., 5, 611–624, 1984.
Rehr, J. J., Kas, J. J., Vila, F. D., Prange, M. P., and Jorissen, K.: Parameter-free calculations of x-ray spectra with FEFF9, Phys. Chem. Chem. Phys., 12, 5503–5513, 2010.
Robie, R. A. and Hemingway, B. S.: Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures, U.S., Geological Survey Bulletin, 2131, 1995.
Ryzhenko, B. N., Bryzgalin, O. V., Artamkina, I. Y., Spasennykh, M. Y., and Shapkin, A. I.: An electrostatic model for the electrolytic dissociation of inorganic substances dissolved in water, Geochem. Int., 22, 128–144, 1985.
Seward, T. M.: Metal complex formation in aqueous solutions at elevated temperatures and pressures, Phys. Chem. Earth, 13–14, 113–132, 1981.
Seward, T. M. and Barnes, H. L.: Metal transport by hydrothermal ore fluids, in: Geochemistry of Hydrothermal Ore Deposits, edited by: Barnes, H. L., John Wiley & Sons, New York, 435–486, https://doi.org/10.5860/choice.35-2126, 1997.
Shock, E. L., Sassani, D. C., Willis, M., and Sverjensky, D. A.: Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes, Geochim. Cosmochim. Acta, 61, 907–950, 1997.
Shvarov, Y. V.: HCh: new potentialities for the thermodynamic simulation of geochemical systems offered by Windows, Geochem. Intern., 46, 834–839, 2008.
Shvarov, Y. V.: A suite of programs, OptimA, OptimB, OptimC, and OptimS compatible with the Unitherm database, for deriving the thermodynamic properties of aqueous species from solubility, potentiometry and spectroscopy measurements, Appl. Geochem., 55, 17–27, 2015.
Shvarov, Y. V. and Bastrakov, E.: HCh: a software package for geochemical equilibrium modelling, User’s Guide, Australian Geological Survey Organization, record 25, 1999.
Sirbescu, M.-L., Krukowski, E. G., Schmidt, C., Thomas, R., Samson, I. M., and Bodnar, R. J.: Analysis of boron in fluid inclusions by microthermometry, laser ablation ICP-MS, and Raman spectroscopy: Application to the Cryo-Genie Pegmatite, San Diego County, California, USA, Chem. Geol., 342, 138–150, 2013.
Sverjensky, D. A., Shock, E. L., and Helgeson H. C.: Prediction of the thermodynamic properties of aqueous metal complexes to 1000 °C and 5 kb, Geochim. Cosmochim. Acta, 61, 1359–1412, 1997.
Sverjensky, D. A., Harrison, B., and Azzolini, D.: Water in the deep Earth: the dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 C, Geochim. Cosmochim. Acta, 129, 125–145, 2014.
Tagirov, B. R., Zotov, A. V., and Akinfiev, N. N.: Experimental study of dissociation of HCl from 350 to 500 °C and from 500 to 2500 bars: Thermodynamic properties of HCl0 (aq), Geochim. Cosmochim. Acta, 61, 4267–4280, 1997.
Tanger, J. C. and Helgeson, H. C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures; revised equations of state for the standard partial molal properties of ions and electrolytes, Am. J. Sci., 288, 19–98, 1988.
Testemale, D., Argoud, R., Geaymond, O., and Hazemann, J.-L.: High pressure/high temperature cell for x-ray absorption and scattering techniques, Rev. Sci. Instrum., 76, 043905, https://doi.org/10.1063/1.1884188, 2005.
Testemale, D., Brugger, J., Liu, W., Etschmann, B., and Hazemann. J.-L.: In-situ X-ray absorption study of Iron (II) speciation in brines up to supercritical conditions, Chem. Geol., 264, 295–310, 2009.
Testemale, D., Prat, A., Lahera, E., and Hazemann, J.-L.: Novel high-pressure windows made of glass-like carbon for x-ray analysis, Rev. Sci. Instrum., 87, 075115, https://doi.org/10.1063/1.4959110, 2016.
Testemale, D., Pokrovski, G.S., Lahera, E., Prat, A., Kieffer, I., Delnet, W., Proux, O., Louvel, M., Sanchez-Valle, C., and Hazemann, J. L.: In situ X-ray absorption spectroscopy using the FAME autoclave: a window into fluid-mineral-melt interactions in the Earth's crust, High Pressure Res., 44, 277–293, 2024.
Wang, X., Qui, Y., Chou, I.-M., Zhang, R., Li, G., and Zhong, R.: Effects of pH and salinity on the hydrothermal transport of tungsten: insights from in situ Raman spectroscopic characterization of K2WO4-NaCl-HCl-CO2 solutions at temperatures up to 400 °C, Geofluids, 2020, 2978984, https://doi.org/10.1155/2020/2978984, 2020a.
Wang, X., Qui, Y., Lu, J., Chou, I.-M., Zhang, W., Li, G., Hu, W., Li, Z., and Zhong, R.: In situ Raman spectroscopic investigation of the hydrothermal speciation of tungsten: implication for the ore-forming process, Chem. Geol., 532, 119299, https://doi.org/10.1016/j.chemgeo.2019.119299, 2020b.
Wang, X. S., Timofeev, A., Williams-Jones, A. E., Shang, L. B., and Bi, X. W.: An experimental study of the solubility and speciation of tungsten in NaCl-bearing aqueous solutions at 250, 300, and 350 °C, Geochim. Cosmochim. Acta, 265, 313–329, 2019.
Wang, X. S., Williams-Jones, A. E., Hu, R. Z., Shang, L. B., and Bi, X. W.: The role of fluorine in granite-related hydrothermal tungsten ore genesis: Results of experiments and modeling, Geochim. Cosmochim. Acta, 292, 170–187, 2021.
Welter, E., Chernikov, R., Herrmann, M., and Nemausat, R.: A beamline for bulk sample X-ray absorption spectroscopy at a high brilliance storage ring PETRA III, AIP Conf. Prog., 2054, 040002, https://doi.org/10.1063/1.5084603, 2019.
Wesolowski, D., Drummond, S. E., Mesmer, R. E., and Ohmoto, H.: Hydrolysis equilibria of tungsten (VI) in aqueous sodium-chloride solutions to 300 °C, Inorg. Chem., 23, 1120–1132, 1984.
Wilke, M., Farges, F., Partzsch, G. M., Schmidt, C., and Behrens, H.: Speciation of Fe in silicate glasses and melts by in situ XANES spectroscopy, Am. Mineral., 92, 44–56, 2007.
Winterer, M.: xafsX: a program to process, analyse and reduce X-ray absorption fine structure spectra (XAFS), in: International Tables for Crystallography, Vol I: X-ray Absorption Spectroscopy and Related Techniques, edited by: Chantler, C. T., Bunker, B., and Boscherini, F., https://doi.org/10.1107/s1574870720003481, 2022.
Wood, S. A.: Experimental determination of the solubility of WO3 (s) and the thermodynamic properties of H2WO4 (aq) in the range 300–600 °C at 1 kbar: calculation of scheelite solubility, Geochim. Cosmochim. Acta, 56, 1827–1836, 1992.
Wood, S. A. and Samson, I. M.: The hydrothermal geochemistry of tungsten in granitoid environments: I. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and m NaCl, Econ. Geol., 95, 143–182, 2000.
Wood, S. A. and Vlassopoulos, D.: Experimental determination of the hydrothermal solubility and speciation of tungsten at 500 °C and 1 kbar, Geochim. Cosmochim. Acta, 53, 303–312, 1989.
Xiao, L., Ji, L., Yin, C., Chen, A., Chen, X., Liu, X., Li, J., Sun, F., and Zhao, Z.: Tungsten extraction from scheelite hydrochloric acid decomposition residue by hydrogen peroxide, Miner. Eng., 179, 107461, https://doi.org/10.1016/j.mineng.2022.107461, 2022.
Zalkin, A. and Templeton, D. H.: X-ray diffraction refinement of the calcium tungstate structure, J. Chem. Phys., 40, 501–504, 1964.
Zhang, Y., Gao, J.-F., Ma, D., and Pan, J.: The role of hydrothermal alteration in tungsten mineralization at the Dahutang tungsten deposit, South China, Ore Geol. Rev., 95, 1008–1027, 2018.
Zhidikova, A. P. and Khodakovskiy, I. L.: Thermodynamic properties of ferberite, hubnerite, scheelite and powellite, in: Physicochemical models of petrogenesis and ore formation, edited by: Tauson, L. V., Nauka, Novosibirsk, 145–156, 1984.
Short summary
Tungsten (W) concentrations in fluids in equilibrium with crystalline tungsten oxide are used to improve constraints of thermodynamic parameters for W solubility. W species in the hydrothermal fluids are further characterized by X-ray spectroscopy. Improved thermodynamic properties for a set of W fluid species are provided that cover a wide range of fluid compositions, necessary for understanding and describing the complex processes of W enrichment and mineralization in hydrothermal systems.
Tungsten (W) concentrations in fluids in equilibrium with crystalline tungsten oxide are used to...