

Supplement of

Tungsten solubility and speciation in hydrothermal solutions revealed by in situ X-ray absorption spectroscopy

Manuela Borchert et al.

Correspondence to: Max Wilke (wilkem@uni-potsdam.de)

The copyright of individual parts of the supplement might differ from the article licence.

Reaction	Pressure	Temperature	$\Delta G^{o}_{i,T,P}$ for aq. species	Error for	OptimA program		OptimC	program
	[bar]	[°C]	$(\mathrm{H_{3}WO_{4}^{+}},\mathrm{HWO_{4}^{-}},$	$\Delta \mathrm{G}^{\mathrm{o}}{}_{i,T,P}$,	log ₁₀ K	log ₁₀ K error	log ₁₀ K	log ₁₀ K error*
			NaWO ₄ ⁻), [kJ/mol]	[kJ/mol]	_	-	-	-
$WO_4^{2-} + 3H^+ = H_3WO_4^+$	400	100	-989.2	1.0	10.43	0.14	10.18	0.24
		200	-1000.5	1.3	9.61	0.14	10.29	0.67
		300	-1030.0	0.6	11.39	0.05	11.17	0.22
		350	-1045.4	0.5	12.65	0.04	12.12	0.53
		400	-1057.9	0.3	13.85	0.02	14.16	0.38
$WO_4^{2-} + H^+ = HWO_4^-$	500	100	-948.6	1.8	5.04	0.01	4.78	0.26
		150	-955.5	0.4	5.11	0.01	5.07	0.04
		200	-962.4	2.2	5.65	0.01	5.41	0.24
		250	-969.1	1.2	5.95	0.01	5.83	0.12
		300	-975.7	0.3	6.34	0.01	6.37	0.03
$WO_4^{2-} + Na^+ = NaWO_4^-$	400	100	-1210.665	3.0	4.16	0.01	4.10	0.06
		200	-1225.431	3.8	3.92	0.01	4.17	0.25
		300	-1237.679	4.7	4.97	0.01	4.56	0.41
		350	-1240.357	9.2	4.74	0.01	4.96	0.22

Table S1. Optimization results for experiments in water (WO₃), NaCl (WO_{2.7} +/ – quartz) and HCl solutions (WO₃ and WO_{2.7}).

Supplement. Additional information about thermodynamic modeling of tungsten speciation at hydrothermal conditions.

* errors for equilibrium constants were calculated with OptimA; and as a difference between values of log₁₀K optimized with OptimA and OptimC.

Source	Solid phase	T range, [°C]	$\Delta_f G^{0}_{298}$	$\Delta_{f}H^{0}_{298}$	S^{0}_{298}	C_p
			$[kJ mol^{-1}]$	$[kJ mol^{-1}]$	[J K ⁻¹ mol ⁻¹]	$[J K^{-1} mol^{-1}]$
Zhidikova &	CaWO _{4 scheelite}	25 - 799.85	-1533.762	-1623.0	126.4	$123.1 + (37.7 \times 10^{-3} \text{ T}) - ((17.87 \times 10^{5}) / \text{T}^2)$
Khodakovskiy, 1984						
Zhidikova &	FeWO ₄ ferberite	25 - 1100	-1072.161		132.26	$29.40966 + (11.9001 \times 10^{-3} \text{ T}) - ((4.710803 \times 10^{5}) / \text{T}^{2})$
Khodakovskiy, 1984						
Barin, 1995	WO _{2.72}	25 - 926.85	-708.627	-781.153	68.408	$84.5025 + (12.179 \times 10^{-3}\text{T}) - ((18.08661 \times 10^{5})/\text{T}^{2}) - $
						$((5.5807 \times 10^{-2}) / \sqrt[2]{T})$
Han et al., 2020	$WO_{3 \text{ monoclinic}(\gamma)}$	25 - 326.4	-764.057	-842.909	75.910	$87.54 + (16.35 \times 10^{-3} \text{ T}) - ((17.46 \times 10^{5}) / \text{T}^2)$
	WO _{3 orthorhombic}	326.4 - 779.2				$87.59 + (15.92 \times 10^{-3} \text{ T}) - ((17.64 \times 10^{5}) / \text{T}^2)$
SUPCRT, 2007	C graphite	25 - 2226.85	0	0	5.740	$1.686152 + (4.76976 \times 10^{-3} \text{ T}) - ((8.53536 \times 10^{5}) / \text{T}^2)$
Robie &	SiO ₂ trigonal quartz	25 - 573.85	-856.3	-910.857	41.5	$81.145 + (18.28 \times 10^{-3} \text{ T}) - ((1.81 \times 10^{5}) / \text{T}^2) - ((6.985) / \text{T}^2)$
Hemingway, 1995						$(\times 10^2) / \sqrt[2]{T} + (5.406 \times 10^{-6} \text{ T}^2)$

Table S2. Thermodynamic data for solid phases used in this study and corresponding Maier-Kelly and Holland-Powell equations.

Table S3. Association constants (log₁₀ K) for tungsten species under ambient conditions (25 °C, P_{sat}) defined in previous studies.

Equation/ Reference	Yatsimirskii and Romanov, 1965	Perrin,	Shock et al.,	Bychkov and	Wang et al.,	BR model,
-	Yatsimirskii and Prik, 1964	1969	1997	Zuykov, 2005	2019	this study
$WO_4^{2-} + 2H^+ = H_2WO_4^0$ (aq)	5.851	8.1		11.14 +/- 0.55	6.570	8.140
$HWO_{4^{-}} + H^{+} = H_{2}WO_{4^{0}} (aq)$	2.194	3.5		4.76 +/- 0.15	3.157	3.403
$WO_4^{2-} + H^+ = HWO_4^-$	3.658	4.6	3.592	6.38 +/- 0.40	3.413	4.737
$HWO_{4}^{-} + Na^{+} = NaHWO_{4}^{0} (aq)$				-5.11 +/- 0.55		-3.480
$WO_4^{2-} + H^+ + Na^+ = NaHWO_4^0 (aq)$				1.27 +/- 0.15		1.257

	T [°C]	100	200	250	300	350	400	500	600	P [MPa]	Method	Reference
log ₁₀ K _{III}	$H_2WO_4^0 + H^+ =$	2.15	1.52	1.27	1.02	0.74				Sat.	BR model	this study
-	$H_3WO_4^+$	2.17	1.55	1.30	1.08	0.87	0.63			50	BR model	this study
		2.19	1.57	1.33	1.12	0.93	0.75	0.39	0.11	100	BR model	this study
log ₁₀ K _{II}	$HWO_4^- + H^+ =$	2.80	2.63	2.63	2.71	2.96				Sat.	BR model	Wang et al., 2019
	$H_2WO_4^0$		4.20	4.10	3.90	3.90				Sat.	Calculation	Heinrich, 1990
					4.30					Sat.	Calculation	Gibert et al., 1992
			3.85	3.68	3.70	4.25				Sat.	BR model	Wood and Samson, 2000
		3.26	3.39	3.56	3.84	4.44				Sat.	BR model	this study
			3.56		3.39		3.96			50	Calculation	Wood and Samson, 2000
		2.76	2.57	2.55	2.57	2.66	2.87			50	BR model	Wang et al., 2019
		3.18	3.26	3.39	3.57	3.86	4.36			50	BR model	this study
								5.50		100	Calculation	Gibert et al., 1992
			3.37		3.08		3.14	3.57	4.16	100	Calculation	Wood and Samson, 2000
		2.72	2.52	2.48	2.48	2.51	2.59	2.88	3.31	100	BR model	Wang et al., 2019
		3.11	3.17	3.26	3.39	3.57	3.81	4.54	5.50	100	BR model	this study
log ₁₀ K _I	$WO_4^{2-} + H^+ =$	3.96	4.96	5.60	6.47	8.00				Sat.	BR model	Wang et al., 2019
	$\rm HWO_4^-$		5.34	6.07	6.89					Sat.	Potentiometric study	Wesolowski et al., 1984
			6.31	6.79						Sat.	UV-vis spectroscopy	Minubaeva, 2007
			5.40	6.10	6.90	7.70				Sat.	Calculation	Heinrich, 1990
					6.90					Sat	Calculation	Gibert et al., 1992
		4.15	5.29	6.00	6.85	8.04				Sat.	HKF model	Shock et al., 1997
		4.96	5.67	6.20	6.95	8.36				Sat.	BR model	this study
			5.15		6.48		8.10			50	HKF model	Wood and Samson, 2000
		4.05	5.14	5.78	6.48	7.31	8.10			50	HKF model	Shock et al., 1997
		4.78	5.41	5.83	6.37	7.11	8.28			50	BR model	this study
								8.10		100	Calculation	Gibert et al., 1992
			5.03		6.23		7.58	9.17	11.10	100	HKF model	Wood and Samson, 2000
		3.98	5.02	5.61	6.23	6.88	7.58	9.17	11.09	100	HKF model	Shock et al., 1997
		3.61	4.47	4.93	5.44	6.03	6.73	8.63	10.98	100	BR model	Wang et al., 2019
		4.63	5.20	5.56	5.97	6.47	7.09	8.82	11.01	100	BR model	this study

Table S4. Association constants ($log_{10} K$) for tungsten species at hydrothermal *TP* derived from this and previous studies.

		T [°C]	100	200	250	300	350	400	500	600	P [MPa]	Method	Reference
log ₁₀ K _a	$Na^+ + HWO_4^-$	=	-2.60	-1.41	-0.83	-0.22	0.47	1.26			50	Approximated	Wood and
	NaHWO ₄ ⁰		-2.66	-1.49	-0.94	-0.40	0.15	0.73	2.15	4.03	100	by the logK's	Samson,
log ₁₀ K _b	$Na^{+} + WO_{4}^{2-} =$:		1.82		2.72		3.90			50	for K ⁺ –HSO ₄ ^{2–}	2000
	$NaWO_4^-$			1.77		2.50		3.41	4.59	6.11	100	/SO4 ²⁻ reactions	
			4.18	4.29	4.49	4.83	5.55				Sat.		this study
			4.08	4.14	4.28	4.50	4.84	5.45			50		
			3.99	4.03	4.12	4.27	4.48	4.77	5.65	7.61	100		

Table S5. Association constants for ion pairs of tungsten species with sodium derived from this and previous studies.

Table S6. Solubility products for tungsten species derived from this and previous studies ($pK = -log_{10}K$), exp. = experiment.

	Т	[°C] 100	200	250	300	350	400	500	600	Р	Method	Reference
										[MPa]		
pK_1	$WO_3^{cryst} + H_2O = H_2WO_4^0$	6.90	5.63	5.26	4.98	4.62				Sat.	BR model, exp.	Wang et al., 2019
				3.81	3.61	3.29				Sat.	BR model	Wood and Samson, 2000
		5.43	4.16	3.74	3.36	2.79				Sat.	BR model	this study
								2.55		100	Solubility exp.	Wood and Vlassopoulos, 1989
					4.00		3.40	3.10	2.70	100	Solubility exp.	Wood, 1992
								2.55		100	Calculation	Gibert et al., 1992
		7.02	5.77	5.42	5.17	4.97	4.80	4.50	4.60	100	BR model	Wang et al., 2019
		5.61	4.38	4.01	3.73	3.47	3.20	2.55	2.18	100	BR model	this study
pK_2	$WO_3^{cryst} + H_2O = HWO_4^- + 1$	H ⁺ 9.51	7.93	7.50	7.31	7.54				Sat.	HKF model	Shock et al., 1997
		9.70	8.26	7.89	7.69	7.58				Sat.	BR model, exp.	Wang et al., 2019
		8.70	7.55	7.30	7.21	7.23				Sat.	BR model	this study
		9.38	7.73	7.22	6.86	6.63	6.54	6.83	7.81	100	HKF model	Shock et al., 1997
		9.74	8.29	7.90	7.65	7.49	7.39	7.38	7.92	100	BR model	Wang et al., 2019
		8.72	7.55	7.27	7.12	7.05	7.01	7.09	7.67	100	BR model	this study

Figure S1: Equilibrium constants optimized using the OptimC program. Data points represent the values optimized on the experimental data of this study from Table S1. Lines were calculated using the Bryzgalin-Ryzhenko model (Eq. 4) using the parameters listed in Table 4. The model for the reaction $SO_4^{2-} + Na^+ = NaSO_4^{-}$ by Pokrovski et al. (1995) is provided for comparison together with data points.

References:

Yatsimirskii, K.B., and Prik, K.E.: Kinetics of catalytic oxidation of iodide ion with hydrogen peroxide in the presence of tungsten (VI). Russ. J. Inorg. Chem., 9, 1838-1844, 1964.

Yatsimirskii K.B., and Romanov, V.F.: Complexation between tungsten and molybdenum. Russ. J. Inorg. Chem., 10, 1613-1617, 1965.

All other references see main text.