Articles | Volume 34, issue 5
Eur. J. Mineral., 34, 493–506, 2022
https://doi.org/10.5194/ejm-34-493-2022
Eur. J. Mineral., 34, 493–506, 2022
https://doi.org/10.5194/ejm-34-493-2022
Research article
21 Oct 2022
Research article | 21 Oct 2022

Weathering of stannite–kësterite [Cu2(Fe,Zn)SnS4] and the environmental mobility of the released elements

Patrick Haase et al.

Related authors

Chapmanite [Fe2Sb(Si2O5)O3(OH)]: thermodynamic properties and formation in low-temperature environments
Juraj Majzlan, Stefan Kiefer, Kristina Lilova, Tamilarasan Subramani, Alexandra Navrotsky, Edgar Dachs, and Artur Benisek
Eur. J. Mineral., 33, 357–371, https://doi.org/10.5194/ejm-33-357-2021,https://doi.org/10.5194/ejm-33-357-2021, 2021
Short summary
Thermodynamic properties, crystal structure and phase relations of pushcharovskite [Cu(AsO3OH)(H2O) ⋅ 0.5H2O], geminite [Cu(AsO3OH)(H2O)] and liroconite [Cu2Al(AsO4)(OH)4 ⋅ 4H2O]
Alexandra M. Plumhoff, Jakub Plášil, Edgar Dachs, Artur Benisek, Jiří Sejkora, Martin Števko, Mike S. Rumsey, and Juraj Majzlan
Eur. J. Mineral., 32, 285–304, https://doi.org/10.5194/ejm-32-285-2020,https://doi.org/10.5194/ejm-32-285-2020, 2020
Marine and freshwater micropearls: biomineralization producing strontium-rich amorphous calcium carbonate inclusions is widespread in the genus Tetraselmis (Chlorophyta)
Agathe Martignier, Montserrat Filella, Kilian Pollok, Michael Melkonian, Michael Bensimon, François Barja, Falko Langenhorst, Jean-Michel Jaquet, and Daniel Ariztegui
Biogeosciences, 15, 6591–6605, https://doi.org/10.5194/bg-15-6591-2018,https://doi.org/10.5194/bg-15-6591-2018, 2018
Short summary
Calcium carbonates: induced biomineralization with controlled macromorphology
Aileen Meier, Anne Kastner, Dennis Harries, Maria Wierzbicka-Wieczorek, Juraj Majzlan, Georg Büchel, and Erika Kothe
Biogeosciences, 14, 4867–4878, https://doi.org/10.5194/bg-14-4867-2017,https://doi.org/10.5194/bg-14-4867-2017, 2017
Short summary
Taking nature into lab: biomineralization by heavy metal-resistant streptomycetes in soil
E. Schütze, A. Weist, M. Klose, T. Wach, M. Schumann, S. Nietzsche, D. Merten, J. Baumert, J. Majzlan, and E. Kothe
Biogeosciences, 10, 3605–3614, https://doi.org/10.5194/bg-10-3605-2013,https://doi.org/10.5194/bg-10-3605-2013, 2013

Related subject area

Electron microscopy of minerals and rocks
The hierarchical internal structure of labradorite
Emilia Götz, Hans-Joachim Kleebe, and Ute Kolb
Eur. J. Mineral., 34, 393–410, https://doi.org/10.5194/ejm-34-393-2022,https://doi.org/10.5194/ejm-34-393-2022, 2022
Short summary
Automatic element and mineral detection in thin sections using hyperspectral transmittance imaging microscopy (HyperTIM)
Helge L. C. Daempfling, Christian Mielke, Nicole Koellner, Melanie Lorenz, Christian Rogass, Uwe Altenberger, Daniel E. Harlov, and Michael Knoper
Eur. J. Mineral., 34, 275–284, https://doi.org/10.5194/ejm-34-275-2022,https://doi.org/10.5194/ejm-34-275-2022, 2022
Short summary
Vanadium carbides in shungite
Vladimir V. Kovalevski and Igor A. Moshnikov
Eur. J. Mineral., 34, 131–141, https://doi.org/10.5194/ejm-34-131-2022,https://doi.org/10.5194/ejm-34-131-2022, 2022
Short summary
Multi-scale characterization of glaucophane from Chiavolino (Biella, Italy): implications for international regulations on elongate mineral particles
Ruggero Vigliaturo, Sabrina M. Elkassas, Giancarlo Della Ventura, Günther J. Redhammer, Francisco Ruiz-Zepeda, Michael J. O'Shea, Goran Dražić, and Reto Gieré
Eur. J. Mineral., 33, 77–112, https://doi.org/10.5194/ejm-33-77-2021,https://doi.org/10.5194/ejm-33-77-2021, 2021
Investigating crystal orientation patterns of foraminiferal tests by electron backscatter diffraction analysis
Stephanie Pabich, Christian Vollmer, and Nikolaus Gussone
Eur. J. Mineral., 32, 613–622, https://doi.org/10.5194/ejm-32-613-2020,https://doi.org/10.5194/ejm-32-613-2020, 2020
Short summary

Cited articles

Abraitis, P. K., Pattrick, R. A. D., and Vaughan, D. J.: Variations in the compositional, textural and electrical properties of natural pyrite: a review, Int. J. Miner. Process., 74, 41–59, https://doi.org/10.1016/j.minpro.2003.09.002, 2004. 
Balboni, E., Smith, K. F., Moreau, L. M., Li, T. T., Maloubier, M., Booth, C. H., Kersting, A. B., and Zavarin, M.: Transformation of ferrihydrite to goethite and the fate of plutonium, ACS Earth Space Chem., 4, 1993–2006, https://doi.org/10.1021/acsearthspacechem.0c00195, 2020. 
Bao, Z., Al, T., Couillard, M., Poirier, G., Bain, J., Shrimpton, H.K., Finfrock, Y. Z., Lanzirotti, A., Paktunc, D., Saurette, E., Hu, Y., Ptacek, C. J., and Blowes, D. W.: A cross scale investigation of galena oxidation and controls on mobilization of lead in mine waste rock, J. Hazard. Mater., 412, 125130, https://doi.org/10.1016/j.jhazmat.2021.125130, 2021. 
Berger, R. and Bucur, R. V.: Diffusion in copper sulphides – an experimental study of chalcocite, chalcopyrite and bornite, Report to the Swedish Nuclear Power Inpsectorate, Uppsala University Sweden, 36 pp., SKI-R-96-3, ISSN 1104-1374, 1996. 
Bosson, C. J., Birch, M. T., Halliday, D. P., Tang, C. C., Kleppe, A. K., and Hatton, P. D.: Polymorphism in Cu2ZnSnS4 and new off-stoichiometric crystal structure types, Chem. Mater., 29, 9829–9839, https://doi.org/10.1021/acs.chemmater.7b04010, 2017. 
Download
Short summary
Stannite decomposition leads to the precipitation of an amorphous and metastable Sn–Fe–As-rich phase. With ageing, goethite and cassiterite crystallize from the precursor and mark the end of the weathering cycle. Other elements are lost in the initial stage of weathering (e.g. Zn, S) or after full oxidation of the sulfidic material (e.g. Cu, Ag). Electron microprobe (EMP) and transmission electron microscopy (TEM) analyses were performed to witness the mobility of the released elements.