Caye, R., Laurent, Y., Picot, P., and Pierrot, R.: La hocartite,
Ag
2SnFeS
4, une novelle espèce minérale, B. Mineral., 91, 383–387, 1968.
Černý, P., Masau, M., Ercit, T. S., Chapman, R., and Chackowsky,
L.E.: Stannite and kësterite from the Peerless pegmatite, Black Hills,
South Dakota, USA, J. Geosci-Czech., 46, 27–33, 2001.
Chandra A. P. and Gerson, A. R.: The mechanisms of pyrite oxidation and
leaching: A fundamental perspective, Surf. Sci. Rep., 65, 293–315,
https://doi.org/10.1016/j.surfrep.2010.08.003, 2010.
Chen, S.-C., Yu, J.-J., Bi, M.-F., and Lehmann, B.: Tin-bearing minerals at
the Furong tin deposit, South China: Implications for tin mineralization,
Chem. Erde-Geochem., 82, 125856,
https://doi.org/10.1016/j.chemer.2021.125856, 2022.
Coleman, L. C.: Mineralogy of the Yellowknife Bay Area, N.W.T., Am. Mineral.,
38, 506–527, 1953.
Cook, N. J., Spry, P. G., and Vokes, F. M.: Mineralogy and textural
relationships among sulphosalts and related minerals in the Bleikvassli
Zn-Pb-(Cu) deposit, Nordland, Norway, Miner. Deposita., 34, 35–56,
https://doi.org/10.1007/s001260050184, 1998.
Courtin-Nomade, A., Bril, H., Neel, C., and Lenain, J.-F.: Arsenic in iron
cements developed within tailings of a former metalliferous mine –
Enguialès, Aveyron, France, Appl. Geochem., 18, 395–408,
https://doi.org/10.1016/S0883-2927(02)00098-7, 2003.
Courtin-Nomade, A., Bril, H., Bény, J.-M., Kunz, M., and Tamura, N.:
Sulfide oxidation observed using micro-Raman spectroscopy and micro-X-ray
diffraction: The importance of water
rock ratios and pH conditions, Am.
Mineral., 95, 582–591, https://doi.org/10.2138/am.2010.3331, 2010.
Dobrovol'skaya, M. G., Genkin, A. D., Bortnikov, N. S., and Golovanova, T. I.:
Unusual sphalerite, chalcopyrite, and stannite intergrowths at tin deposits,
Geol. Ore Deposits, 50, 75–85, https://doi.org/10.1134/S1075701508010042,
2008.
Drahota, P. and Filippi, M.: Secondary arsenic minerals in the environment:
A review, Environ. Int., 35, 1243–1255,
https://doi.org/10.1016/j.envint.2009.07.004, 2009.
Drahota, P., Raus, K., Rychlíková, E., and Rohovec, J.:
Bioaccessibility of As, Cu, Pb, and Zn in mine waste, urban soil, and road
dust in the historical mining village of Kaňk, Czech Republic, Environ.
Geochem. Health, 40, 1495–1512, https://doi.org/10.1007/s10653-017-9999-1,
2018.
Durant, B. K. and Parkinson, B. A.: Photovoltaic response of natural
Kesterite crystals, Sol. Energ. Mat. Sol. C., 144, 586–591,
https://doi.org/10.1016/j.solmat.2015.09.055, 2016.
Ettler, V., Sejkora, J., Drahota, P., Litochleb, J., Pauliš, P., Zeman,
J., Novák, M., and Pašava J.: Příbram and Kutná Hora
mining districts – from historical mining to recent environmental impact,
IMA 2010, Budapest, Acta Mineral.-Petrogr. Field Guide Ser., 7, 1–23, 2010.
Eugster, H. P.: Granites and hydrothermal ore deposits: a geochemical
framework, Mineral. Mag., 49, 7–23,
https://doi.org/10.1180/minmag.1985.049.350.02, 1984.
Filippi, M., Drahota, P., Machovič, V., Böhmová, V., and
Mihaljevič, M.: Arsenic mineralogy and mobility in the arsenic-rich
historical mine waste dump, Sci. Total Environ., 536, 713–728,
https://doi.org/10.1016/j.scitotenv.2015.07.113, 2015.
Ford, R.: Rates of hydrous ferric oxide crystallization and the influence on
coprecipitated arsenate, Environ. Sci. Technol., 36, 2459–2463,
https://doi.org/10.1021/es015768d, 2002.
Gadde, R. R. and Laitinen, H. A.: Studies of heavy metal adsorption by
hydrous iron and manganese oxides, Anal. Chem., 46, 2022–2026,
https://doi.org/10.1021/ac60349a004, 1974.
Gena, K., Chiba, H., and Kase, K.: Tin-bearing chalcopyrite and
platinum-bearing bismuthinite in the active Tiger chimney, Yonaguni Knoll IV
seafloor hydrothermal system, South Okinawa Trough, Japan, Okayama Univ.
Earth Sci. Rep., 12, 1–5, doi.org/10.18926/ESR/13850, 2005.
Ghoneimy, H. F., Morcos, T. N., and Misak, N. Z.: Adsorption of Co
2+ and
Zn
2+ ions on hydrous Fe(III), Sn(IV) and mixed Fe(III)
Sn(IV) oxides,
Part I. Characteristics of the hydrous oxides, apparent capacity and some
equilibria measurements, Colloid. Surface. A, 122, 13–26,
https://doi.org/10.1016/S0927-7757(96)03854-X, 1997.
Guidry, M. W. and Mackenzie, F. T.: Apatite weathering and the Phanerozoic
phosphorous cycle, Geology, 28, 631–634,
https://doi.org/10.1130/0091-7613(2000)28<631:AWATPP>2.0.CO;2, 2000.
Haase, P., Christensen, H. G., Nielsen, U. G., Koch, C. B., Galazka, Z., and
Majzlan, J.: Stability and solubility of members of tin perovskites in the
schoenfliesite subgroup,
□2(BSn
4+)(OH,O)
6(B
= Ca,
Fe
3+, Mg, Mn
2+, Zn, Cu), Chem. Thermodyn. Therm. Anal., 1/2,
100005, doi.org/10.1016/j.ctta.2021.100005, 2021.
Harris, W. G.: Phosphate minerals, in: Soil mineralogy with environmental
applications, edited by: Dixon, J. B. and Schulze, D. G., SSSA book series 7,
Madison, USA, Soil Sci. Soc. Am., 637–665, ISBN 0891188398, 2002.
Harvey, M. C., Schreiber, M. E., Rimstidt, J. D., and Griffith, M. M.: Scorodite
dissolution kinetics: Implications for arsenic release, Envrion. Sci.
Technol., 40, 6709–6714, https://doi.org/10.1021/es061399f, 2006.
Jambor, J. L. and Dutrizac, J. E.: Occurrence and constitution of natural and
synthetic ferrihydrite, a widespread iron oxyhydroxide, Chem. Rev., 98,
2549–2585, https://doi.org/10.1021/cr970105t, 1998.
Johan, Z. and Picot, P.: La pirquitasite Ag
2ZnSnS
4, un nouveau
member du groupe de la stannite, B. Mineral., 105, 229–235, 1982.
Kalin, M. and Harris, B.: Chemical precipitation within pyritic waste rock,
Hydrometallurgy, 78, 209-225,
https://doi.org/10.1016/j.hydromet.2005.03.008, 2005.
Kase, K.: Tin-bearing chalcopyrite from the Izumo vein, Toyoha mine,
Hokkaido, Japan, Can. Mineral., 25, 9–13, 1987.
Kissin, S. A., Owens, D. R., and Roberts, W. L.: Černýite, a
copper-cadmium-tin sulfide with the stannite structure, Can. Mineral., 16, 139–146, 1978.
Kocourková-Víšková, E., Loun, J., and Sracek, O.: Secondary
arsenic minerals and arsenic mobility in a historical waste rock pile at
Kaňk near Kutná Hora, Czech Republic, Miner. Petrol., 109, 17–33,
https://doi.org/10.1007/s00710-014-0356-0, 2015.
Kosmulski, M.: Surface charging and points of zero charge, CRC Press, Boca
Raton, Florida, USA, 1092 p., Taylor & Francis Group, https://doi.org/10.1201/9781420051896, 2009a.
Kosmulski, M.: Compilation of PZC and IEP of sparingly soluble metal oxides
and hydroxides from literature, Adv. Colloid Interfac., 152, 14–25,
https://doi.org/10.1016/j.cis.2009.08.003, 2009b.
Krause, E. and Ettel, V. A.: Solubilities and stabilities of ferric arsenate
compounds, Hydrometallurgy, 22, 311–337,
https://doi.org/10.1016/0304-386X(89)90028-5, 1989.
Landes, K. K.: Sequence of mineralization in the Keystone, South Dakota,
pegmatites, Am. Mineral., 13, 537–558, 1928.
Lottermoser, B. G. and Ashley, P. M.: Mobility and retention of trace
elements in hardpan-cemented cassiterite tailings, North Queensland,
Australia, Environ. Geol., 50, 835–846,
https://doi.org/10.1007/s00254-006-0255-8, 2006.
Majzlan, J., Kiefer, S., Herrmann, J., Števko, M., Sejkora, J., Chovan,
M., Lánczos, T., Lazarov, M., Gerdes, A., Langenhorst, F., Radková,
A. B., Jamieson, H., and Milovský, R.: Synergies in elemental mobility
during weathering of tetrahedrite [(Cu,Fe,Zn)
12(Sb,As)
4S
13]:
Field observations, electron microscopy, isotopes of Cu, C, O, radiometric
dating, and water geochemistry, Chem. Geol., 488, 1–20,
https://doi.org/10.1016/j.chemgeo.2018.04.021, 2018.
Moncur, M. C., Jambor, J. L., Ptacek, C. J., and Blowes, D. W.: Mine drainage
from the weathering of sulfide minerals and magnetite, Appl. Geochem., 24, 2362–2373, https://doi.org/10.1016/j.apgeochem.2009.09.013, 2009.
Müller, B.: Some aspects of the geochemistry of tin in hydrothermal
solutions, Doctoral Thesis, ETH Zürich, Switzerland, 96 pp.,
https://doi.org/10.3929/ethz-a-003877734, 1999.
Murciego, A., Álvarez-Ayuso, E., Pellitero, E., Rodriguez, M. A.,
García-Sánchez, A., Tamayo, A., Rubio, J., Rubio, F., and Jubin,
J.: Study of arsenopyrite weathering products in mine wastes from abandoned
tungsten and tin exploitations, J. Hazard. Mater., 186, 590–601,
https://doi.org/10.1016/j.jhazmat.2010.11.033, 2011.
Neiva, A. M. R.: Geochemistry of tin-bearing granitic rocks, Chem. Geol., 43, 241–256, https://doi.org/10.1016/0009-2541(84)90052-4, 1984.
Nekrasov, I. J., Sorokin, V. I., and Osadchii, E. G.: Fe and Zn partitioning
between stannite and sphalerite and its application in geothermometry, Phys.
Chem. Earth, 11, 739–742, https://doi.org/10.1016/0079-1946(79)90069-7, 1979.
Nickel, E. H.: The mineralogy and geochemistry of the weathering profile of
the Teutonic Bore Cu-Pb-Zn-Ag sulphide deposit, J. Geochem. Explor., 22, 239–264, https://doi.org/10.1016/0375-6742(84)90014-1, 1984.
Nugent, M. A., Brantley, S. L., Pantano, C. G., and Maurice, P. A.: The
influence of natural mineral coatings on feldspar weathering, Nature, 396,
527–622, https://doi.org/10.1038/26951, 1998.
Ondruš, P., Veselovský, F., Gabašová, A., Drábek, M.,
Dobeš, P., Malý, K., Hloušek, J., and Sejkora, J.: Ore-forming
processes and mineral paragenesis of the Jáchymov ore district, J.
Geosci-Czech., 48, 157–192, 2003.
Paktunc, D., Dutrizac, J., and Gertsman, V.: Synthesis and phase
transformations involving scorodite, ferric arsenate and arsenical
ferrihydrite: Implications for arsenic mobility, Geochim. Cosmochim. Ac., 72, 2649–2672, https://doi.org/10.1016/j.gca.2008.03.012, 2008.
Rai, D., Yui, M., and Schaef, H. T.: Thermodynamic model for SnO
2(cr)
and SnO
2(am) solubility in the aqueous
Na
+-H
+-OH–Cl–H
2O system, J. Solution Chem., 40, 1155,
https://doi.org/10.1007/s10953-011-9723-1, 2011.
Rimstidt, J. D. and Vaughan, D. J.: Pyrite oxidation: A state-of-the-art
assessment of the reaction mechanism, Geochim. Cosmochim. Ac., 67,
873–880, https://doi.org/10.1016/S0016-7037(02)01165-1, 2003.
Rios, L. E. V., Neldner, K., Gurieva, G., and Schorr, S.: Existence of
off-stoichiometric single phase kësterite, J. Alloy Compd., 657,
408–413, https://doi.org/10.1016/j.jallcom.2015.09.198, 2016.
Romero, F. M., Canet, C., Alfonso, P., Zambrana, R. N., and Soto, N.: The role
of cassiterite controlling arsenic mobility in an abandoned stanniferous
tailings impoundment at Llallagua, Bolivia, Sci. Total Environ., 481,
100–107, https://doi.org/10.1016/j.scitotenv.2014.02.002, 2014.
Schaller, J., Frei, S., Rohn, L., and Gilfedder, B.S.: Amorphous silica
controls water storage capacity and phosphorous mobility in soils, Front.
Environ. Sci., 8, 94, 12 pp., https://doi.org/10.3389/fenvs.2020.00094, 2020.
Schmidt, C.: Formation of hydrothermal tin deposits: Raman spectroscopic
evidence for an important role of aqueous Sn(IV) species, Geochim.
Cosmochim. Ac., 220, 499–511, https://doi.org/10.1016/j.gca.2017.10.011,
2018.
Smeds, S.-A.: Trace elements in in potassium-feldspar and muscovite as a
guide in the prospecting for lithium- and tin-bearing pegmatites in Sweden,
J. Geochem. Explor., 42, 351–369,
https://doi.org/10.1016/0375-6742(92)90032-4, 1992.
Springer, G.: Electronprobe analyses of stannite and related tin minerals,
Mineral. Mag., 36, 1045–1051,
https://doi.org/10.1180/minmag.1968.036.284.02, 1968.
Thornber, M. R.: Supergene alteration of sulphides, VII. Distribution of
elements during the gossan-forming process, Chem. Geol., 53, 279–301,
https://doi.org/10.1016/0009-2541(85)90075-0, 1985.
Tiberg, C., Sjöstedt, C., Persson, I., and Gustafsson, J. P.: Phosphate
effects on copper(II) and lead(II) sorption to ferrihydrite, Geochim.
Cosmochim. Ac., 120, 140–157, https://doi.org/10.1016/j.gca.2013.06.012,
2013.
Usman, M., Abdelmoula, M., Faure, P., Ruby, C., and Hanna, K.:
Transformation of various kinds of goethite into magnetite: Effect of
chemical and surface properties, Geoderma, 197/198, 9–16,
https://doi.org/10.1016/j.geoderma.2012.12.015, 2013.
Welch, S. A. and Ullman, W. J.: Feldspar dissolution in acidic and organic
solutions: Compositional and pH dependence of dissolution rate, Geochim.
Cosmochim. Ac., 60, 2939–2948,
https://doi.org/10.1016/0016-7037(96)00134-2, 1996.
Zillner, E., Paul, A., Jutimoosik, J., Chandarak, S., Monnor, T., Rujirawat,
S., Yimnirum, R., Lin, X. Z., Ennaoui, A., Dittrich, T., and Lux-Steiner,
M.: Lattice positions of Sn in Cu
2ZnSnS
4 nanoparticles and thin
films studied by synchrotron X-ray absorption near edge structure analysis,
Appl. Phys. Lett., 102, 221908, https://doi.org/10.1063/1.4809824, 2013.