Beck, A., Darbha, D., and Schloessin, H.: Lattice conductivities of
single-crystal and polycrystalline materials at mantle pressures and
temperatures, Phys. Earth Planet. Int., 17, 35–53,
https://doi.org/10.1016/0031-9201(78)90008-0, 1978.
a
Berman, R.: Thermal conduction in solids, Clarendon Press, Oxford, 1976. a
Birch, F.: Physics of the Crust, Geol. Soc. America., 62, 101–118, 1955. a
Blakemore, J. S.: Solid state physics, Saunders, Philadelphia, 2nd edn., 1974. a
Branlund, J. M. and Hofmeister, A. M.: Thermal diffusivity of quartz to
1,000
∘C: effects of impurities and the
α-
β phase
transition, Phys. Chem. Min., 34, 581–595,
https://doi.org/10.1007/s00269-007-0173-7,
2007.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n,
o,
p,
q,
r,
s,
t,
u,
v,
w,
x,
y,
z,
aa,
ab,
ac,
ad
Breuer, S. and Schilling, F.: Quartz single crystal thermal diffusivity
measurements by laser flash method: from
−120 ∘C through the
α-
β phase transition to 800
∘C, dataset,
KITopenData,
https://doi.org/10.5445/IR/1000119716, 2020.
a
Breuer, S. and Schilling, F. R.: Improving Thermal Diffusivity
Measurements by Including Detector Inherent Delayed Response in
Laser Flash Method, Int. J. Thermophys., 40, 95,
https://doi.org/10.1007/s10765-019-2562-9, 2019.
a
Buntebarth, G.: Geothermics: An Introduction, Universitext,
Springer-Verlag, Berlin Heidelberg, 1984. a
Cernuschi, F., Lorenzoni, L., Bianchi, P., and Figari, A.: The effects of
sample surface treatments on laser flash thermal diffusivity measurements,
Infrared Phys. Technol., 43, 133–138,
https://doi.org/10.1016/S1350-4495(02)00131-7,
2002.
a
Chase, M. W. (Ed.): NIST-JANAF Thermochemical Tables, American Chemical
Society and the American Institute of Physics for the National Institute of
Standards and Technology, Woodbury, New York, 4th edn., 1998. a
Clauser, C. and Huenges, E.: Thermal Conductivity of Rocks and Minerals,
in: Rock Physics and Phase Relations: A Handbook of Physical
Constants, edited by: Ahrens, T., pp. 105–126, American Geophysical Union, Washington D.C.,
1995. a
Debye, P. J. W.: Vortraege ueber die kinetische Theorie der Materie und der
Elektrizitaet: Zustandsgleichung und Quantenhypothese, Goettingen,
1914. a
Dekura, H. and Tsuchiya, T.: Ab initio Lattice Thermal Conductivity of
MgO from a Complete Solution of the Linearized Boltzmann
Transport Equation, Phys. Rev. B, 95, 184303,
https://doi.org/10.1103/PhysRevB.95.184303, 2017.
a
DIN EN/IEC 60584-1: Thermocouples – Part 1: EMF specifications and
tolerances, Norm, CENELEC European Committee for Electrotechnical
Standardization, CLC/TC 65X Industrial-process measurement, control and
automation, Brussels, 2013.
a,
b
DIN EN/IEC 60758: Synthetic quartz crystal – Specifications and
guidelines for use, Norm, IEC International Electrotechnical Commission,
IEC/TC 49 Piezoelectric devices for frequency control and selection, Brussels, 2016. a
Dolino, G., Bachheimer, J., and Zeyen, C.: Observation of an intermediate phase
near the
α-
β transition of quartz by heat capacity and neutron
scattering measurements, Solid State Commun., 45, 295–299,
https://doi.org/10.1016/0038-1098(83)90485-4, 1983.
a
Esfarjani, K., Chen, G., and Stokes, H. T.: Heat Transport in Silicon
From First-Principles Calculations, Phys. Rev. B, 84, 085204,
https://doi.org/10.1103/PhysRevB.84.085204, 2011.
a
Gibert, B., Schilling, F. R., Gratz, K., and Tommasi, A.: Thermal diffusivity
of olivine single crystals and a dunite at high temperature: Evidence for
heat transfer by radiation in the upper mantle, Phys. Earth
Planet. Int., 151, 129–141,
https://doi.org/10.1016/j.pepi.2005.02.003, 2005.
a
Giura, P., Paulatto, L., He, F., Lobo, R. P. S. M., Bosak, A., Calandrini, E.,
Paolasini, L., and Antonangeli, D.: Multiphonon Anharmonicity of MgO,
Phys. Rev. B, 99, 220304,
https://doi.org/10.1103/PhysRevB.99.220304, 2019.
a
Hasselman, D. P. H. and Donaldson, K. Y.: Effects of detector nonlinearity and
specimen size on the apparent thermal diffusivity of NIST 8425 graphite,
Int. J. Thermophys., 11, 573–585,
https://doi.org/10.1007/BF00500847, 1990.
a
Hoefler, J. J. and Taylor, R. E.: Effects of infrared detector nonlinearity on
thermal diffusivity measurements using the flash method, Int. J. Thermophys.,
11, 1099–1110,
https://doi.org/10.1007/BF00500563, 1990.
a
Höfer, M. and Schilling, F.: Heat transfer in quartz, orthoclase, and
sanidine at elevated temperature, Phys. Chem. Min., 29, 571–584,
https://doi.org/10.1007/s00269-002-0277-z, 2002.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n,
o,
p,
q,
r,
s,
t,
u,
v,
w,
x
Hofmeister, A. M.: Measurements, mechanisms, and models of heat transport,
Elsevier, Philadelphia, PA, 1st edn., 2019.
a,
b,
c
Hofmeister, A. M., Branlund, J. M., and Pertermann, M.: 2.19 – Properties of
Rocks and Minerals – Thermal Conductivity of the Earth,
in: Treatise on Geophysics, edited by: Schubert, G., Elsevier,
Amsterdam, 543–577,
https://doi.org/10.1016/B978-044452748-6.00048-1, 2007.
a,
b
Hofmeister, A. M., Dong, J., and Branlund, J. M.: Thermal diffusivity of
electrical insulators at high temperatures: Evidence for diffusion of bulk
phonon-polaritons at infrared frequencies augmenting phonon heat conduction,
J. Appl. Phys., 115, 163517,
https://doi.org/10.1063/1.4873295, 2014.
a,
b,
c,
d
Kammer, E. W., Pardue, T. E., and Frissel, H. F.: A Determination of the
Elastic Constants for Beta-Quartz, J. Appl. Phys., 19, 265–270,
https://doi.org/10.1063/1.1715056, 1948.
a,
b
Kanamori, H., Fujii, N., and Mizutani, H.: Thermal diffusivity measurement of
rock-forming minerals from 300
∘ to 1100
∘K, J. Geophys. Res., 73, 595–605,
https://doi.org/10.1029/JB073i002p00595, 1968.
a,
b,
c,
d,
e,
f,
g,
h,
i
Kittel, C.: Introduction to solid state physics, Wiley, Hoboken, NJ, 8th edn.,
2005.
a,
b,
c,
d,
e
Klumbach, S.: Elasticity and Viscoelasticity of Solid SiO2 as a
Function of Frequency and Temperature, PhD thesis, Karlsruhe
Institute of Technology, Karlsruhe, 2015.
a,
b
Lim, K.-H., Kim, S.-K., and Chung, M.-K.: Improvement of the thermal
diffusivity measurement of thin samples by the flash method, Thermochim.
Ac., 494, 71–79,
https://doi.org/10.1016/j.tca.2009.04.019, 2009.
a
Loebich, O.: The Optical Properties of Gold, Gold Bulletin, 5, 2–10,
1972. a
Lord, R. C. and Morrow, J. C.: Calculation of the Heat Capacity of
α
Quartz and Vitreous Silica from Spectroscopic Data, The Journal of
Chemical Physics, 26, 230–232,
https://doi.org/10.1063/1.1743274, 1957.
a,
b
Marquardt, D. W.: An Algorithm for Least-Squares Estimation of
Nonlinear Parameters, J. Soc. Ind. Appl. Math., 11, 431–441,
https://doi.org/10.1137/0111030, 1963.
a
McMasters, R., Harth, Z. J., Taylor, R. P., and Brooke, G. M.: Testing
extremely small samples using the flash diffusivity method, International
Journal of Numerical Methods for Heat and Fluid Flow, 27, 551–560,
https://doi.org/10.1108/HFF-03-2016-0094, 2017.
a
Mehling, H., Hautzinger, G., Nilsson, O., Fricke, J., Hofmann, R., and Hahn,
O.: Thermal Diffusivity of Semitransparent Materials Determined by
the Laser-Flash Method Applying a New Analytical Model, Int. J. Thermophys., 19, 941–949, 1998.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n,
o
Nye, J. F.: Physical properties of crystals: their representation by tensors
and matrices, Clarendon Press, Oxford University Press, Oxford, New York,
1985. a
Parker, W. J., Jenkins, R. J., Butler, C. P., and Abbott, G. L.: Flash Method
of Determining Thermal Diffusivity, Heat Capacity, and Thermal
Conductivity, J. Appl. Phys., 32, 1679–1684,
https://doi.org/10.1063/1.1728417, 1961.
a,
b,
c,
d,
e,
f,
g
Pertermann, M., Whittington, A. G., Hofmeister, A. M., Spera, F. J., and Zayak,
J.: Transport properties of low-sanidine single-crystals, glasses and melts
at high temperature, Contrib. Mineral. Petrol., 155, 689–702,
https://doi.org/10.1007/s00410-007-0265-x, 2008.
a
Raz, U., Girsperger, S., and Thompson, A. B.: Thermal expansion,
compressibility and volumetric changes of quartz obtained by single crystal
dilatometry to 700
∘C and 3.5 kilobars (0.35 GPa), Tech. rep.,
ETH Zürich,
https://doi.org/10.3929/ethz-a-004392716, 2002.
a,
b
Ronov, A. B. and Yaroshevsky, A. A.: Chemical Composition of the Earth's
Crust, in: Geophysical Monograph Series, edited by: Hart, P. J., pp.
37–57, American Geophysical Union, Washington, D.C.,
https://doi.org/10.1029/GM013p0037, 1969.
a
Ross, R. G., Andersson, P., Sundqvist, B., and Backstrom, G.: Thermal
conductivity of solids and liquids under pressure, Rep. Prog. Phys., 47,
1347–1402,
https://doi.org/10.1088/0034-4885/47/10/002, 1984.
a
Schilling, F. R.: Mineralphysik – Ein mineralogischer Ansatz, Habilitation,
Freie Universität Berlin, Berlin, 1998. a
Shankland, T., Nitsan, U., and Duba, A.: Optical absorption and radiative heat
transport in olivine at high temperature, J. Geophys. Res., 84, 1603–1610,
https://doi.org/10.1029/JB084iB04p01603, 1979.
a
Siegesmund, S.: The Significance of rock fabrics for the geological
interpretation of geophysical anisotropies, no. 85 in Geotektonische
Forschungen, Schweizerbart Science Publishers, Stuttgart, Germany, 1996. a
Stryczniewicz, W., Zmywaczyk, J., and Panas, A. J.: Inverse problem solution
for a laser flash studies of a thin layer coatings, International Journal of
Numerical Methods for Heat and Fluid Flow, 27, 698–710,
https://doi.org/10.1108/HFF-03-2016-0100, 2017.
a
Swank, W. D. and Windes, W. E.: Specimen Size Effects in the
Determination of Nuclear Grade Graphite Thermal Diffusivity, in:
Graphite Testing for Nuclear Applications: The Significance of
Test Specimen Volume and Geometry and the Statistical
Significance of Test Specimen Population, edited by Tzelepi, N. and
Carroll, M., no. STP 1578 in Selected Technical Papers, ASTM
International, West Conshohocken,
https://doi.org/10.1520/STP1578-EB, 2014.
a,
b
Taylor, R. E. and Kelsic, B. H.: Parameters Governing Thermal Diffusivity
Measurements of Unidirectional Fiber-Reinforced Composites, J. Heat Transf., 108, 161–165,
https://doi.org/10.1115/1.3246881, 1986.
a
Touloukian, Y., Powell, R. W., Ho, C., and Nicolaou, M.: Thermal Diffusivity,
in: Thermophysical Properties of Matter-The TPRC Data Series, volume 10,
Plenum Publishing Corporation, New York, 1973.
a,
b
Yaroshevsky, A. A. and Bulakh, A. G.: The Mineral Composition of the
Earth's Crust, Mantle, Meteorites, Moon, and
Planets, in: Advanced Mineralogy: Volume 1 Composition, Structure,
and Properties of Mineral Matter: Concepts, Results, and
Problems, edited by: Marfunin, A. S., Springer Berlin
Heidelberg, Berlin, Heidelberg, 27–36, 1994. a
Zoth, G. and Haenel, R.: Appendix, in: Handbook of Terrestrial Heat-Flow
Density Determination, edited by: Haenel, R., Stegena, L., and Rybach, L.,
Solid Earth Sciences Library, Springer, the Netherlands, 449–466, 1988. a
Zubov, V. G. and Firsova, M. M.: Elastic properties of quartz near the
α-
β transition, Sov. Phys. Cryst., 7, 374–376, 1962.
a,
b