Bali, E., Bolfan-Casanova, N., and Koga, K. T.: Pressure and temperature
dependence of H solubility in forsterite: An implication to water activity
in the Earth interior, Earth Planet. Sc. Lett., 268, 354–363, https://doi.org/10.1016/j.epsl.2008.01.035, 2008.
Béjina, F., Jaoul, O., and Liebermann, R. C.: Diffusion in minerals at
high pressure: a review, Phys. Earth Planet. In., 139, 3–20, https://doi.org/10.1016/S0031-9201(03)00140-7, 2003.
Bell, D. R., Rossman, G. R., Maldener, J., Endisch, D., and Rauch, F.:
Hydroxide in olivine: a quantitative determination of the absolute amount
and calibration of the IR spectrum, J. Geophys. Res., 108, 2105,
https://doi.org/10.1029/2001JB000679, 2003.
Benz, H. M. and Vidale, J. E.: Sharpness of upper-mantle discontinuities
determined from high-frequency reflections, Nature, 365, 147–150,
https://doi.org/10.1038/365147a0, 1993.
Bercovici, D. and Karato, S. I.: Whole mantle convection and the transition
zone water filter, Nature, 425, 39–44, https://doi.org/10.1038/nature01918,
2003.
Berry, A. J., Hermann, J., O'Neill, H. S. C., and Foran, G. J.:
Fingerprinting the water site in mantle olivine, Geology, 33, 869–872,
https://doi.org/10.1130/G21759.1, 2005.
Brady, J. B. and Cherniak, D. J.: Diffusion in minerals: an overview of
published experimental data, Rev. Mineral. Geochem., 72, 899–920,
https://doi.org/10.2138/rmg.2010.72.20, 2010.
Buchen, J., Marquardt, H., Speziale, S., Kawazoe, T., Ballaran, T. B., and
Kurnosov, A.: High-pressure single-crystal elasticity of wadsleyite and the
seismic signature of water in the shallow transition zone, Earth Planet. Sc. Lett., 498, 77–87, https://doi.org/10.1016/j.epsl.2018.06.027,
2018.
Caricchi, L., Gaillard, F., Mecklenburgh, J., and Le Trong, E.: Experimental
determination of electrical conductivity during deformation of melt-bearing
olivine aggregates: implications for electrical anisotropy in the oceanic
low velocity zone, Earth Planet. Sc. Lett., 302, 81–94, https://doi.org/10.1016/j.epsl.2010.11.041, 2011.
Caracas, R. and Panero, W. R.: Hydrogen mobility in transition zone
silicates, Prog. Earth Planet. Sci., 4, 9, https://doi.org/10.1186/s40645-017-0119-8, 2017.
Carrez, P., Cordier, P., Mainprice, D., and Tommasi, A.: Slip systems and
plastic shear anisotropy in Mg2SiO4 ringwoodite: insights from
numerical modelling, Eur. J. Mineral., 18, 149–160, https://doi.org/10.1127/0935-1221/2006/0018-0149, 2006.
Chakraborty, S.: Diffusion in silicate melts, in: Structure, Dynamics and
Properties of Silicate Melts, Rev. Mineral. Geochem., 32, 411–503,
https://doi.org/10.1515/9781501509384-012, 1995.
Chakraborty, S.: Diffusion in solid silicates – a tool to track timescales
of processes comes of age, Annu. Rev. Earth Planet. Sci., 36, 153–190,
https://doi.org/10.1146/annurev.earth.36.031207.124125, 2008.
Chakraborty, S.: Diffusion coefficients in olivine, wadsleyite and
ringwoodite, Rev. Mineral. Geochem., 72, 603–639, https://doi.org/10.2138/rmg.2010.72.13, 2010.
Chang, Y. Y., Hsieh, W. P., Tan, E., and Chen, J.: Hydration-reduced lattice
thermal conductivity of olivine in Earth's upper mantle, P. Natl. Acad.
Sci. USA, 114, 4078–4081, https://doi.org/10.1073/pnas.1616216114,
2017.
Chantel, J., Mahtilake, G., Andrault, D., Novella, D., Yu, T., and Wang, Y.:
Experimental evidence supports mantle partial melting in the asthenosphere,
Sci. Adv., 2, e1600246, https://doi.org/10.1126/sciadv.1600246, 2016.
Cherniak, D. J. and Watson, E. B.: Diffusion of helium in olivine at 1 atm
and 2.7 GPa, Geochim. Cosmochim. Ac., 84, 269–279, https://doi.org/10.1016/j.gca.2012.01.042, 2012.
Clauser, C.: Thermal storage and transport properties of rocks, I: Heat
capacity and latent heat, Encyclopedia of Solid Earth Geophysics, Springer,
the Netherlands, 1423–1431,
https://doi.org/10.1007/978-90-481-8702-7_238, 2011.
Clauser, C. and Huenges, E.: Thermal conductivity of rocks and minerals,
Rock Phys. Phase Rel., 3, 105–126, https://doi.org/10.1029/RF003p0105, 1995.
Coble, R. L.: A model for boundary diffusion-controlled creep in
polycrystalline materials, J. Appl. Phys., 34, 1679–1682, https://doi.org/10.1063/1.1702656, 1963.
Constable, S.: SEO3: a new model of electrical conductivity, Geophys. J.
Inter., 166, 435–437, https://doi.org/10.1111/j.1365-246X.2006.03041.x, 2006.
Costa, F. and Chakraborty, S.: The effect of water on Si and O diffusion
rates in olivine and implications for transport properties and processes in
the upper mantle, Phys. Earth Planet. In., 166, 11–29, https://doi.org/10.1016/j.pepi.2007.10.006, 2008.
Dai, L. and Karato, S. I.: Electrical conductivity of wadsleyite at high
pressures and high temperatures, Earth Planet. Sc. Lett., 287, 277–283,
https://doi.org/10.1016/j.epsl.2009.08.012, 2009.
Dai, L. and Karato, S. I.: High and highly anisotropic electrical
conductivity of the asthenosphere due to hydrogen diffusion in olivine,
Earth Planet. Sc. Lett., 408, 79–86, https://doi.org/10.1016/j.epsl.2014.10.003, 2014.
Dai, L. and Karato, S. I.: Reply to comment on “High and highly anisotropic
electrical conductivity of the asthenosphere due to hydrogen diffusion in
olivine” by Dai and Karato [Earth Planet. Sc. Lett. 408 (2014) 79-86],
Earth Planet. Sc. Lett., 427, 300–302, https://doi.org/10.1016/j.epsl.2015.06.042, 2015.
Darling, K. L., Gwanmesia, G. D., Kung, J., Li, B., and Liebermann, R. C.:
Ultrasonic measurements of the sound velocities in polycrystalline San
Carlos olivine in multi-anvil, high-pressure apparatus, Phys. Earth Planet. In., 143, 19–31, https://doi.org/10.1016/j.pepi.2003.07.018, 2004.
de Koker, N. and Stixrude, L.: Theoretical computation of diffusion in
minerals and melts, Rev. Mineral. Geochem., 72, 971–996, https://doi.org/10.2138/rmg.2010.72.22, 2010.
Demouchy, S.: Diffusion of hydrogen in olivine grain boundaries and
implications for the survival of water-rich zones in the Earth's mantle,
Earth Planet. Sc. Lett., 295, 305–313, https://doi.org/10.1016/j.epsl.2010.04.019, 2010.
Demouchy, S. and Bolfan-Casanova, N.: Distribution and transport of hydrogen
in the lithospheric mantle: A review, Lithos, 240–243, 402–425, https://doi.org/10.1016/j.lithos.2015.11.012, 2016.
Demouchy, S. and Mackwell, S. J.: Mechanisms of hydrogen incorporation and
diffusion in iron-bearing olivine, Phys. Chem. Mineral., 33, 347–355,
https://doi.org/10.1007/s00269-006-0081-2, 2006.
Demouchy, S., Schneider, S. E., Mackwell, S. J., Zimmerman, M. E., and
Kohlstedt, D. L.: Experimental deformation of olivine single crystals at
lithospheric temperatures, Geophys. Res. Lett., 36, L04304, https://doi.org/10.1029/2008GL036611, 2009.
Demouchy, S., Tommasi, A., Barou, F., Mainprice, D., and Cordier, P.:
Deformation of olivine in torsion under hydrous conditions, Phys. Earth
Planet. In., 202, 56–70, https://doi.org/10.1016/j.pepi.2012.05.001, 2012.
Demouchy, S., Tommasi, A., Boffa Ballaran, T., and Cordier, P.: Low strength
of Earth's uppermost mantle inferred from tri-axial deformation experiments
on dry olivine crystals, Phys. Earth Planet. In., 220, 37–49, https://doi.org/10.1016/j.pepi.2013.04.008, 2013.
Demouchy, S., Mussi, A., Barou, F., Tommasi, A., and Cordier, P.:
Viscoplasticity of polycrystalline olivine experimentally deformed at high
pressure and 900 ∘C, Tectonophysics, 623, 123–135, https://doi.org/10.1016/j.tecto.2014.03.022, 2014.
Demouchy, S., Thoraval, C., Bolfan-Casanova, N., and Manthilake, G.:
Diffusivity of hydrogen in iron-bearing olivine at 3 GPa, Phys. Earth Planet.
In., 260, 1–13, https://doi.org/10.1016/j.pepi.2016.08.005,
2016.
Dohmen, R., Becker, H. W., and Chakraborty, S.: Fe-Mg diffusion in olivine
I: experimental determination between 700 and 1200 ∘C as a function
of composition, crystal orientation and oxygen fugacity, Phys. Chem.
Mineral., 34, 389–407, https://doi.org/10.1007/s00269-007-0157-7, 2007.
Dohmen, R., Kasemann, S. A., Coogan, L., and Chakraborty, S.: Diffusion of
Li in olivine. Part I: experimental observations and a multi species
diffusion model, Geochim. Cosmochim. Ac., 74, 274–292, https://doi.org/10.1016/j.gca.2009.10.016, 2010.
Druzhbin, D.: Silicon and oxygen volume diffusion in wadsleyite and
implications to mantle transition zone rheology, Doctoral dissertation,
Bayreuth, 2019.
Du Frane, W. L. and Tyburczy, J. A.: Deuterium-hydrogen exchange in olivine:
implications for point defects and electrical conductivity, Geochem.
Geophys. Geosyst., 13, Q03004, https://doi.org/10.1029/2011gc003895, 2012.
Dziewonski, A. M. and Anderson, D. L.: Preliminary reference Earth model, Phys. Earth Planet. In., 25, 297–356, https://doi.org/10.1016/0031-9201(81)90046-7, 1981.
Evans, R. L., Hirth, G., Baba, K., Forsyth, D., Chave, A., and Mackie, R.:
Geophysical evidence from the MELT area for compositional controls on
oceanic plates, Nature, 437, 249–252,
https://doi.org/10.1038/nature04014, 2005.
Farla, R., Amulele, G., Girard, J., Miyajima, N., and Karato, S. I.:
High-pressure and high-temperature deformation experiments on
polycrystalline wadsleyite using the rotational Drickamer apparatus, Phys.
Chem. Mineral., 42, 541–558, https://doi.org/10.1007/s00269-015-0742-0, 2015.
Farver, J. R.: Oxygen and hydrogen diffusion in minerals, Rev. Mineral.
Geochem., 72, 447–507, https://doi.org/10.2138/rmg.2010.72.10,
2010.
Faul, U. H., Cline II, C. J., David, E. C., Berry, A. J., and Jackson, I.:
Titanium-hydroxyl defect-controlled rheology of the Earth's upper mantle, Earth Planet. Sc. Lett., 452, 227–237, https://doi.org/10.1016/j.epsl.2016.07.016, 2016.
Fei, H. and Katsura, T.: Pressure dependence of proton incorporation and
water solubility in olivine, J. Geophys. Res., 125, e2019JB018813,
https://doi.org/10.1029/2019JB018813, 2020.
Fei, H., Hegoda, C., Yamazaki, D., Wiedenbeck, M., Yurimoto, H., Shcheka,
S., and Katsura, T.: High silicon self-diffusion coefficient in dry
forsterite, Earth Planet. Sc. Lett., 345, 95–103, https://doi.org/10.1016/j.epsl.2012.06.044, 2012.
Fei, H., Wiedenbeck, M., Yamazaki, D., and Katsura, T.: Small effect of
water on upper-mantle rheology based on silicon self-diffusion coefficients,
Nature, 498, 213–215, https://doi.org/10.1038/nature12193, 2013.
Fei, H., Wiedenbeck, M., Yamazaki, D., and Katsura, T.: No effect of water
on oxygen self-diffusion rate in forsterite, J. Geophys. Res., 119,
7598–7606, https://doi.org/10.1002/2014JB011141, 2014.
Fei, H., Koizumi, S., Sakamoto, N., Hashiguchi, M., Yurimoto, H., Marquardt,
K., Miyajima, N., Yamazaki, D., and Katsura, T.: New constraints on upper
mantle creep mechanism inferred from silicon grain-boundary diffusion rates,
Earth Planet. Sc. Lett., 433, 350–359, https://doi.org/10.1016/j.epsl.2015.11.014, 2016.
Fei, H., Yamazaki, D., Sakurai, M., Miyajima, N., Ohfuji, H., Katsura, T.,
and Yamamoto, T.: A nearly water-saturated mantle transition zone inferred
from mineral viscosity, Sci. Adv., 3, e1603024,
https://doi.org/10.1126/sciadv.1603024, 2017.
Fei, H., Koizumi, S., Sakamoto, N., Hashiguchi, M., Yurimoto, H., Marquardt,
K., and Katsura, T.: Mg lattice diffusion in iron-free olivine and
implications to conductivity anomaly in the oceanic asthenosphere, Earth Planet. Sc. Lett., 484, 204–212, https://doi.org/10.1016/j.epsl.2017.12.020, 2018.
Fei, H., Druzhbin, D., and Katsura, T.: The effect of water on ionic
conductivity in olivine, J. Geophys. Res., 125, e2019JB019313,
https://doi.org/10.1029/2019JB019313, 2020.
Ferriss, E., Plank, T., Newcombe, M., Walker, D., and Hauri, E.: Rates of
dehydration of olivines from San Carlos and Kilauea Iki, Geochim. Cosmochim. Ac., 242, 165–190, https://doi.org/10.1016/j.gca.2018.08.050, 2018.
Freitas, D., Manthilake, G., Schiavi, F., Chantel, J., Bolfan-Casanova, N.,
Bouhifd, M. A., and Andrault, D.: Experimental evidence supporting a global
melt layer at the base of the Earth's upper mantle, Nat. Commun., 8, 2186,
https://doi.org/10.1038/s41467-017-02275-9, 2017.
Freitas, D., Manthilake, G., Chantel, J., Bouhifd, M. A., and Andrault, D.:
Simultaneous measurements of electrical conductivity and seismic wave
velocity of partially molten geological materials: effect of evolving melt
texture, Phys. Chem. Mineral., 46, 535–551,
https://doi.org/10.1007/s00269-019-01021-5, 2019.
Frost, H. J. and Ashby, M. F. (Eds.): Deformation Mechanism Maps, Pergamon
Press, Oxford, 1982.
Gardés, E., Gaillard, F., and Tarits, P.: Toward a unified hydrous
olivine electrical conductivity law, Geochem. Geophys. Geosyst., 15,
4984–5000, https://doi.org/10.1002/2014GC005496, 2014.
Gardés, E., Gaillard, F., and Tarits, P.: Comment to “High and highly
anisotropic electrical conductivity of the asthenosphere due to hydrogen
diffusion in olivine” by Dai and Karato [Earth Planet. Sc. Lett. 408
(2014) 79–86], Earth Planet. Sc. Lett., 427, 296–299,
https://doi.org/10.1016/j.epsl.2015.06.041, 2015.
Ge, J. H., Zhang, B. H., Xiong, Z. L., He, L. F., and Li, H. P.: Thermal
properties of harzburgite and dunite at 0.8–3 GPa and 300–823 K and
implications for the thermal evolution of Tibet, Geosci. Frontiers, 12, 947–956,
https://doi.org/10.1016/j.gsf.2020.01.008, 2021.
Girard, J., Chen, J., Raterron, P., and Holyoke, C. W.: Hydrolytic weakening
of olivine at mantle pressure: Evidence of [100](010) slip system softening
from single-crystal deformation experiments, Phys. Earth Planet. In., 216,
12–20, https://doi.org/10.1016/j.pepi.2012.10.009, 2013.
Girard, J., Amulele, G., Farla, R., Mohiuddin, A., and Karato, S. I.: Shear
deformation of bridgmanite and magnesiowüstite aggregates at lower
mantle conditions, Science, 351, 144–147,
https://doi.org/10.1126/science.aad3113, 2016.
Gouriet, K., Cordier, P., Garel, F., Thoraval, C., Demouchy, S., Tommasi,
A., and Carrez, P.: Dislocation dynamics modelling of the power-law
breakdown in olivine single crystals: Toward a unified creep law for the
upper mantle, Earth Planet. Sc. Lett., 506, 282–291, https://doi.org/10.1016/j.epsl.2018.10.049, 2019.
Gu, X. Y., Wang, P. Y., Kuritani, T., Hanski, E., Xia, Q. K., Wan, Q. Y.: Low
water content in the mantle source of the Hainan plume as a factor
inhibiting the formation of a large igneous province, Earth Planet. Sc. Lett., 515, 221–230, https://doi.org/10.1016/j.epsl.2019.03.034, 2019.
Hae, R., Ohtani, E., Kubo, T., Koyama, T., and Utada, H.: Hydrogen
diffusivity in wadsleyite and water distribution in the mantle transition
zone, Earth Planet. Sc. Lett., 243, 141–148,
https://doi.org/10.1016/j.epsl.2005.12.035, 2006.
Hansen, L. N., Zimmerman, M. E., and Kohlstedt, D. L.: Grain boundary
sliding in San Carlos olivine: Flow law parameters and
crystallographic-preferred orientation, J. Geophys. Res., 116, B08201,
https://doi.org/10.1029/2011jb008220, 2011.
Hier-Majumder, S., Anderson, I. M., and Kohlstedt, D. L.: Influence of
protons on Fe-Mg interdiffusion in olivine, J. Geophys. Res., 110,
2004JB003292, https://doi.org/10.1029/2004JB003292, 2005.
Higo, Y., Inoue, T., Irifune, T., Funakoshi, K. I., and Li, B.: Elastic wave
velocities of (Mg0.91Fe0.09)2SiO4 ringwoodite under P-T
conditions of the mantle transition region, Phys. Earth Planet. In., 166,
167–174, https://doi.org/10.1016/j.pepi.2008.01.003, 2008.
Hirschmann, M. M.: Partial melt in the oceanic low velocity zone, Phys. Earth Planet. In., 179, 60–71,
https://doi.org/10.1016/j.pepi.2009.12.003, 2010.
Hirth, G. and Kohlstedt, D. L.: Experimental constraints on the dynamics of
the partially molten upper mantle: Deformation in the diffusion creep
regime, J. Geophys. Res., 100, 1981–2001, https://doi.org/10.1029/94JB02128,
1995.
Hirth, G. and Kohlstedt, D. L.: Rheology of the upper mantle and the mantle
wedge: A view from the experimentalists, in: Inside the Subduction Factory,
edited by: Eiler, J., Geophys. Monogr. Ser., AGU, Washington, D.C., 138,
83–105, https://doi.org/10.1029/138GM06, 2003.
Hofmeister, A. M.: Mantle values of thermal conductivity and the geotherm
from phonon lifetimes, Science, 283, 1699–1706,
https://doi.org/10.1126/science.283.5408.1699, 1999.
Hofmeister, A. M.: Pressure dependence of thermal transport properties,
P. Natl. Acad. Sci. USA, 104, 9192–9197,
https://doi.org/10.1073/pnas.0610734104, 2007.
Hofmeister, A. M., Branlund, J. M., and Pertermann, M.: Properties of rock
and minerals-thermal conductivity of the Earth, in: Treatise on Geophysics,
edited by: Schubert, G., Elsevier, Amsterdam, 543–577,
https://doi.org/10.1016/B978-044452748-6.00048-1, 2007.
Holzapfel, C., Chakraborty, S., Rubie, D. C., and Frost, D. J.: Fe-Mg
interdiffusion in wadsleyite: the role of pressure, temperature and
composition and the magnitude of jump in diffusion rates at the 410 km
discontinuity, Phys. Earth Planet. In., 172, 28–33,
https://doi.org/10.1016/j.pepi.2008.09.005, 2009.
Houser, C.: Global seismic data reveal little water in the mantle transition
zone, Earth Planet. Sc. Lett., 448, 94–101,
https://doi.org/10.1016/j.epsl.2016.04.018, 2016.
Houser, C. and Williams, Q.: Reconciling Pacific 410 and 660 km
discontinuity topography, transition zone shear velocity patterns, and
mantle phase transitions, Earth Planet. Sc. Lett., 296, 255–266,
https://doi.org/10.1016/j.epsl.2010.05.006, 2010.
Huang, X., Xu, Y., and Karato, S. I.: Water content in the transition zone
from electrical conductivity of wadsleyite and ringwoodite, Nature, 434,
746–749, https://doi.org/10.1038/nature03426, 2005.
Hustoft, J., Amulele, G., Ando, J. I., Otsuka, K., Du, Z., Jing, Z., and
Karato, S. I.: Plastic deformation experiments to high strain on mantle
transition zone minerals wadsleyite and ringwoodite in the rotational
Drickamer apparatus, Earth Planet. Sc. Lett., 361, 7–15,
https://doi.org/10.1016/j.epsl.2012.11.028, 2013.
Ichiki, M., Uyeshima, M., Utada, H., Zhao, G., Tang, J., and Ma, M.: Upper
mantle conductivity structure of the back-arc region beneath northeastern
China, Geophys. Res. Lett., 28, 3773–3776,
https://doi.org/10.1029/2001GL012983, 2001.
Ichiki, M., Baba, K., Obayashi, M., and Utada, H.: Water content and
geotherm in the upper mantle above the stagnant slab: interpretation of
electrical conductivity and seismic P-wave velocity models, Phys. Earth Planet. In., 155, 1–15, https://doi.org/10.1016/j.pepi.2005.09.010,
2006.
Ingrin, J. and Blanchard, M.: Diffusion of hydrogen in minerals, Rev.
Mineral. Geochem., 62, 291–320, https://doi.org/10.2138/rmg.2006.62.13, 2006.
Inoue, T., Yurimoto, H., and Kudoh, Y.: Hydrous modified spinel,
Mg1.75SiH0.5O4, a new water reservoir in the mantle
transition zone, J. Geophys. Res., 22, 117–120,
https://doi.org/10.1029/94GL02965, 1995.
Jackson, J. M., Sinogeikin, S. V., and Bass, J. D.: Sound velocities and
elastic properties of γ-Mg2SiO4 to 873 K by Brillouin
spectroscopy, Am. Mineral., 85, 296–303,
https://doi.org/10.2138/am-2000-2-306, 2000.
Jacobsen, S. D. and Smyth, J. R.: Effect of water on the sound velocities of
ringwoodite in the transition zone, in: Earth's Deep Water Cycle, edited by:
Jacobsen, S. D. and van der Lee, S., American Geophysical Union, Washington,
D.C., 131–145, https://doi.org/10.1029/168GM10, 2006.
Jacobsen, S. D., Smyth, J. R., Spetzler, H., Holl, C. M., and Frost, D. J.:
Sound velocities and elastic constants of iron-bearing hydrous ringwoodite,
Phys. Earth Planet Inter., 143–144, 47–56,
https://doi.org/10.1016/j.pepi.2003.07.019, 2004.
Jollands, M. C., Padrón-Navarta, J. A., Hermann, J., and O'Neill, H. S.
C.: Hydrogen diffusion in Ti-doped forsterite and the preservation of
metastable point defects, Am. Mineral., 101, 1571–1583,
https://doi.org/10.2138/am-2016-55681571, 2016.
Jollands, M. C., Kempf, E., Hermann, J., and Müntener, O.: Coupled
inter-site reaction and diffusion: Rapid dehydrogenation of silicon
vacancies in natural olivine, Geochim. Cosmochim. Ac., 262, 220–242,
https://doi.org/10.1016/j.gca.2019.07.025, 2019.
Jones, A. G.: Reconciling different equations for proton conduction using
the Meyer-Neldel compensation rule, Geochem. Geophys. Geosyst., 15,
337–349, https://doi.org/10.1002/2013GC004911, 2014.
Jones, A. G.: Proton conduction and hydrogen diffusion in olivine: an
attempt to reconcile laboratory and field observations and implications for
the role of grain boundary diffusion in enhancing conductivity, Phys. Chem.
Mineral., 43, 237–265, https://doi.org/10.1007/s00269-015-0790-5, 2016.
Jung, H. and Karato, S. I.: Water-induced fabric transitions in olivine,
Science, 293, 1460–1463, https://doi.org/10.1126/science.1062235, 2001.
Jung, H., Katayama, I., Jiang, Z., Hiraga, T., and Karato, S. I.: Effect of
water and stress on the lattice-preferred orientation of olivine,
Tectonophysics, 421, 1–22, https://doi.org/10.1016/j.tecto.2006.02.011,
2006.
Karato, S. I.: The role of hydrogen in the electrical conductivity of the
upper mantle, Nature, 347, 272–273, https://doi.org/10.1038/347272a0, 1990.
Karato, S. I. (Ed.): Deformation of earth materials: introduction to the
rheology of the solid earth, Cambridge University Press, Cambridge,
https://doi.org/10.1017/CBO9780511804892, 2008.
Karato, S. I.: Water distribution across the mantle transition zone and its
implications for global material circulation, Earth Planet. Sc. Lett., 301,
413–423, https://doi.org/10.1016/j.epsl.2010.11.038, 2011.
Karato, S. I.: Water in the evolution of the Earth and other terrestrial
planets, in: Treatise on Geophysics, edited by: Schubert, G., Elsevier,
Amsterdam, 105–144, https://doi.org/10.1016/B978-0-444-53802-4.00156-1, 2015.
Karato, S. I.: Some remarks on hydrogen-assisted electrical conductivity in
olivine and other minerals, Prog. Earth Planet. Sci., 6, 55,
https://doi.org/10.1186/s40645-019-0301-2, 2019.
Karato, S. and Jung, H.: Effects of pressure on high-temperature dislocation
creep in olivine polycrystals, Philos. Mag. A., 83, 401–414,
https://doi.org/10.1080/0141861021000025829, 2003.
Karato, S. I. and Dai, L.: Comments on “Electrical conductivity of
wadsleyite as a function of temperature and water content” by Manthilake et
al., Phys. Earth Planet. In., 174, 19–21,
https://doi.org/10.1016/j.pepi.2009.01.011, 2009.
Karato, S. I., Paterson, M. S., and Fitz Gerald, J. D.: Rheology of
synthetic olivine aggregates: influence of grain-size and water, J. Geophys.
Res., 91, 8151–8176, https://doi.org/10.1029/JB091iB08p08151, 1986.
Karato, S. I., Riedel, M. R., and Yuen, D. A.: Rheological structure and
deformation of subducted slabs in the mantle transition zone: implications
for mantle circulation and deep earthquakes, Phys. Earth Planet. In.,
127, 83–108, https://doi.org/10.1016/S0031-9201(01)00223-0, 2001.
Katayama, I. and Karato, S. I.: Effects of water and iron content on the
rheological contrast between garnet and olivine, Phys. Earth Planet. In.,
166, 57–66, https://doi.org/10.1016/j.pepi.2007.10.004, 2008a.
Katayama, I. and Karato, S. I.: Low-temperature, high-stress deformation of
olivine under water-saturated conditions, Phys. Earth Planet. In., 168,
125–133, https://doi.org/10.1016/j.pepi.2008.05.019, 2008b.
Katayama, I., Jung, H., and Karato, S. I.: New type of olivine fabric from
deformation experiments at modest water content and low stress, Geology, 32,
1045–1048, https://doi.org/10.1130/G20805.1, 2004.
Katsura, T.: Thermal diffusivity of olivine under upper mantle conditions,
Geophys. J. Inter., 122, 63–69,
https://doi.org/10.1111/j.1365-246X.1995.tb03536.x, 1995.
Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T., and Ito, E.: Adiabatic
temperature profile in the mantle, Phys. Earth Planet. In., 183,
212–218, https://doi.org/10.1016/j.pepi.2010.07.001, 2010.
Kawakatsu, H., Kumar, P., Takei, Y., Shinohara, M., Kanazawa, T., Araki, E., and Suyehiro, K.: Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates, Science, 324, 499–502, https://doi.org/10.1126/science.1169499, 2009.
Kawazoe, T., Karato, S. I., Otsuka, K., Jing, Z., and Mookherjee, M.: Shear
deformation of dry polycrystalline olivine under deep upper mantle
conditions using a rotational Drickamer apparatus (RDA), Phys. Earth Planet. In., 174, 128–137, https://doi.org/10.1016/j.pepi.2008.06.027, 2009.
Kawazoe, T., Karato, S. I., Ando, J., Jing, Z., Otsuka, K., and Hustoft, J.
W.: Shear deformation of polycrystalline wadsleyite up to 2100 K at 14–17 GPa using a rotational Drickamer apparatus (RDA), J. Geophys. Res., 115,
B08208, https://doi.org/10.1029/2009JB007096, 2010.
Kawazoe, T., Ohuchi, T., Nishihara, Y., Nishiyama, N., Fujino, K., and
Irifune, T.: Seismic anisotropy in the mantle transition zone induced by
shear deformation of wadsleyite, Phys. Earth Planet. In., 216, 91–98,
https://doi.org/10.1016/j.pepi.2012.12.005, 2013.
Kawazoe, T., Nishihara, Y., Ohuchi, T., Miyajima, N., Maruyama, G., Higo,
Y., and Irifune, T.: Creep strength of ringwoodite measured at
pressure–temperature conditions of the lower part of the mantle transition
zone using a deformation–DIA apparatus, Earth Planet. Sc. Lett., 454,
10–19, https://doi.org/10.1016/j.epsl.2016.08.011, 2016.
Kelbert, A., Schultz, A., and Egbert, G.: Global electromagnetic induction
constraints on transition-zone water content variations, Nature, 460,
1003–1006, https://doi.org/10.1038/nature08257, 2009.
Kennett, B. L. N., Engdahl, E. R., and Buland, R.: Constraints on seismic
velocities in the earth from travel-times, Geophys. J. Inter., 122,
108–124, https://doi.org/10.1111/j.1365-246X.1995.tb03540.x, 1995.
Kohlstedt, D. L.: The role of water in high-temperature rock deformation,
Rev. Miner. Geochem., 62, 377–396, https://doi.org/10.2138/rmg.2006.62.16,
2006.
Kohlstedt, D. L., Keppler, H., and Rubie, D. C.: Solubility of water in the
α, β and γ phases of (Mg,Fe)2SiO4, Contrib.
Mineral. Petrol., 123, 345–357, https://doi.org/10.1007/s004100050161,
1996.
Kubo, T., Shimojuku, A., and Ohtani, E.: Mg-Fe interdiffusion rates in
wadsleyite and the diffusivity jump at the 410-km discontinuity, Phys. Chem.
Mineral., 31, 456–464, https://doi.org/10.1007/s00269-004-0412-0, 2004.
Kudo, T., Ohtani, E., Hae, R., and Shimojuku, R.: Diffusion of hydrogen in
ringwoodite, in: AIP conference proceedings, American Institute of Physics, New York,
148–149, https://doi.org/10.1063/1.2207093, 2006.
Kustowski, B., Ekström, G., and Dziewoński, A. M.: Anisotropic shear
wave velocity structure of the Earth's mantle: A global model, J. Geophys.
Res., 113, B06306, https://doi.org/10.1029/2007JB005169, 2008.
Kuvshinov, A. and Olsen, N.: A global model of mantle conductivity derived
from 5 years of CHAMP, Ørsted, and SAC-C magnetic data, Geophys. Res.
Lett., 33, L18301, https://doi.org/10.1029/2006GL027083, 2006.
Le Losq, C., Jollands, M. C., Tollan, P. M. E., Hawkins, R., and O'Neill, H.
S. C.: Point defect populations of forsterite revealed by two-stage
metastable hydroxylation experiments, Contrib. Mineral. Petrol., 174, 53,
https://doi.org/10.1007/s00410-019-1590-6, 2019.
Li, B.: Compressional and shear wave velocities of ringwoodite γ-Mg2SiO4 to 12 GPa, Am. Mineral., 88, 1312–1317,
https://doi.org/10.2138/am-2003-8-913, 2003.
Li, B. and Liebermann, R. C.: Sound velocities of wadsleyite β-(Mg0.88Fe0.12)2SiO4 to 10 GPa, Am. Mineral., 85,
292–295, https://doi.org/10.2138/am-2000-2-305, 2000.
Li, B. and Liebermann, R. C.: Study of the Earth's interior using
measurements of sound velocities in minerals by ultrasonic interferometry,
Phys. Earth Planet. In., 233, 135–153,
https://doi.org/10.1016/j.pepi.2014.05.006, 2014.
Li, B., Gwanmesia, G. D., and Liebermann, R. C.: Sound velocities of olivine
and beta polymorphs of Mg2SiO4 at Earth's transition zone
pressures, Geophys. Res. Lett., 23, 2259–2262,
https://doi.org/10.1029/96GL02084, 1996.
Li, B., Kung, J., and Liebermann, R. C.: Modern techniques in measuring
elasticity of Earth materials at high pressure and high temperature using
ultrasonic interferometry in conjunction with synchrotron X-radiation in
multi-anvil apparatus, Phys. Earth Planet. In., 143, 559–574,
https://doi.org/10.1016/j.pepi.2003.09.020, 2004.
Liu, H. Y., Zhu, Q., and Yang, X. Z.: Electrical conductivity of OH-bearing
omphacite and garnet in eclogite: The quantitative dependence on water
content, Contrib. Mineral. Petrol., 174, 57,
https://doi.org/10.1007/s00410-019-1593-3, 2019.
Liu, W., Kung, J., and Li, B.: Elasticity of San Carlos olivine to 8 GPa and 1073 K, Geophys. Res. Lett., 32, L16301,
https://doi.org/10.1029/2005GL023453, 2005.
Liu, W., Kung, J., Li, B., Nishiyama, N., and Wang, Y.: Elasticity of
(Mg0.87Fe0.13)2SiO4 wadsleyite to 12 GPa and 1073 K, Phys. Earth Planet. In., 174, 98–104,
https://doi.org/10.1016/j.pepi.2008.10.020, 2009.
Manthilake, G., Matsuzaki, T., Yoshino, T., Yamashita, S., Ito, E., and
Katsura, T.: Electrical conductivity of wadsleyite as a function of
temperature and water content, Phys. Earth Planet. In., 174, 10–18,
https://doi.org/10.1016/j.pepi.2009.01.012, 2009.
Mao, Z., Jacobsen, S. D., Jiang, F., Smyth, J. R., Holl, C. M., Frost, D.
J., and Duffy, T. S.: Velocity crossover between hydrous and anhydrous
forsterite at high pressures, Earth Planet. Sc. Lett., 293, 250–258,
https://doi.org/10.1016/j.epsl.2010.02.025, 2010.
Mao, Z., Jacobsen, S. D., Frost, D. J., McCammon, C. A., Hauri, E. H., and
Duffy, T. S.: Effect of hydration on the single-crystal elasticity of
Fe-bearing wadsleyite to 12 GPa, Am. Mineral., 96, 1606–1612,
https://doi.org/10.2138/am.2011.3807, 2011.
Mao, Z., Lin, J. F., Jacobsen, S. D., Duffy, T. S., Chang, Y. Y., Smyth, J.
R., Frost, D. J., Hauri, E. H., and Prakapenka, V. B.: Sound velocities of
hydrous ringwoodite to 16 GPa and 673 K, Earth Planet. Sc. Lett., 331,
112–119, https://doi.org/10.1016/j.epsl.2012.03.001, 2012.
Mao, Z., Fan, D., Lin, J. F., Yang, J., Tkachev, S. N., Zhuravlev, K., and
Prakapenka, V. B.: Elasticity of single-crystal olivine at high pressures
and temperatures, Earth Planet. Sc. Lett., 426, 204–215,
https://doi.org/10.1016/j.epsl.2015.06.045, 2015.
Marzotto, E., Hsieh, W. P., Ishii, T., Chao, K. H., Golabek, G. J.,
Thielmann, M., and Ohtani, E.: Effect of water on lattice thermal
conductivity of ringwoodite and its implications for the thermal evolution
of descending slabs, Geophys. Res. Lett., 47, e2020GL087607,
https://doi.org/10.1029/2020GL087607, 2020.
Mayama, N., Suzuki, I., Saito, T., Ohno, I., Katsura, T., and Yoneda, A.:
Temperature dependence of the elastic moduli of ringwoodite, Phys. Earth
Planet. Inter., 148, 353–359, https://doi.org/10.1016/j.pepi.2004.09.007,
2005.
Mehrer, H. (Ed.): Diffusion in solids: fundamentals, methods, materials,
diffusion-controlled processes, Springer, Berlin, 2007.
Mei, S. and Kohlstedt, D. L.: Influence of water on plastic deformation of
olivine aggregates: 1. Diffusion creep regime, J. Geophys. Res., 105,
21457–21469, https://doi.org/10.1029/2000JB900179, 2000a.
Mei, S. and Kohlstedt, D. L.: Influence of water on plastic deformation of
olivine aggregates: 2. Dislocation creep regime, J. Geophys. Res., 105,
21471–21481, https://doi.org/10.1029/2000JB900180, 2000b.
Moine, B. N., Bolfan-Casanova, N., Radu, I. B., Ionov, D. A., Costin, G.,
Korsakov, A. V., Golovin, A. V., Oleinikov, O. B., Deloule, E., and Cottin,
J. Y.: Molecular hydrogen in minerals as a clue to interpret ∂D
variations in the mantle, Nat. Commun., 11, 3614, https://doi.org/10.1038/s41467-020-17442-8, 2020.
Mosenfelder, J. L., Deligne, N. I., Asimow, P. D. and Rossman, G. R.:
Hydrogen incorporation in olivine from 2–12 GPa, Am. Mineral., 91, 285–294,
https://doi.org/10.2138/am.2006.1943, 2006.
Mrosko, M., Lenz, S., McCammon, C. A., Taran, M., Wirth, R., and
Koch-Müller, M.: Hydrogen incorporation and the oxidation state of iron
in ringwoodite: A spectroscopic study, Am. Mineral., 98, 629–636,
https://doi.org/10.2138/am.2013.4245, 2013.
Naif, S., Key, K., Constable, S., and Evans, R. L.: Melt-rich channel
observed at the lithosphere–asthenosphere boundary, Nature, 495, 356–359,
https://doi.org/10.1038/nature11939, 2013.
Ni, H., Hui, H., and Steinle-Neumann, G.: Transport properties of silicate
melts, Rev. Geophys., 53, 715–744, https://doi.org/10.1002/2015RG000485,
2015.
Nishihara, Y., Shinmei, T., and Karato, S. I.: Effects of chemical
environments on the hydrogen-defects in wadsleyite, Am. Mineral., 93,
831–843, https://doi.org/10.2138/am.2008.2653, 2008.
Nishihara, Y., Ohuchi, T., Kawazoe, T., Spengler, D., Tasaka, M., Kikegawa,
T., and Ohtani, E.: Rheology of fine-grained forsterite aggregate at deep
upper mantle conditions, J. Geophys. Res., 119, 253–273,
https://doi.org/10.1002/2013JB010473, 2014.
Novella, D., Jacobsen, B., Weber, P. K., Tyburczy, J. A., Ryerson, F. J.,
and Du Frane, W. L.: Hydrogen self-diffusion in single crystal olivine and
electrical conductivity of the Earth's mantle, Sci. Rep.-UK, 7, 1–10,
https://doi.org/10.1038/s41598-017-05113-6, 2017.
Núñez Valdez, M., Wu, Z., Yu, Y. G., Revenaugh, J., and
Wentzcovitch, R. M.: Thermoelastic properties of ringwoodite
(FexMg1−x)2SiO4: Its relationship to the 520 km
seismic discontinuity, Earth Planet. Sc. Lett., 351–352, 115–122,
https://doi.org/10.1016/j.epsl.2012.07.024, 2012.
Ohtani, E., Litasov, D. K., Hosoya, T., Kubo, T., and Kondo, T.: Water
transport into the deep mantle and formation of a hydrous transition zone,
Phys. Earth Planet. In., 143–144, 255–269, https://doi.org/10.1016/j.pepi.2003.09.015, 2004.
Ohuchi, T. and Irifune, T.: Development of A-type olivine fabric in
water-rich deep upper mantle, Earth Planet. Sc. Lett., 362, 20–30,
https://doi.org/10.1016/j.epsl.2012.11.029, 2013.
Ohuchi, T., Kawazoe, T., Nishihara, Y., and Irifune, T.: Change of olivine
a-axis alignment induced by water: Origin of seismic anisotropy in
subduction zones, Earth Planet. Sc. Lett., 317, 111–119, https://doi.org/10.1016/j.epsl.2011.11.022, 2012.
Ohuchi, T., Kawazoe, T., Higo, Y., and Suzuki, A.: Flow behavior and
microstructures of hydrous olivine aggregates at upper mantle pressures and
temperatures, Contrib. Mineral. Petrol., 172, 65, https://doi.org/10.1007/s00410-017-1375-8, 2017.
Ohuchi, T., Lei, X., Higo, Y., Tange, Y., Sakai, T., and Fujino, K.:
Semi-brittle behavior of wet olivine aggregates: the role of aqueous fluid
in faulting at upper mantle pressures, Contrib. Mineral. Petrol., 173, 88,
https://doi.org/10.1007/s00410-018-1515-9, 2018.
Osako, M., Ito, E., and Yoneda, A.: Simultaneous measurements of thermal
conductivity and thermal diffusivity for garnet and olivine under high
pressure, Phys. Earth Planet. In., 143–144, 311–320, https://doi.org/10.1016/j.pepi.2003.10.010, 2004.
Osako, M., Yoneda, A., and Ito, E.: Thermal diffusivity, thermal
conductivity and heat capacity of serpentine (antigorite) under high
pressure, Phys. Earth Planet. In., 183, 229–233, https://doi.org/10.1016/j.pepi.2010.07.005, 2010.
Padrón-Navarta, J. A. and Hermann, J.: A subsolidus olivine water
solubility equation for the Earth's upper mantle, J. Geophys. Res., 122,
9862–9880, https://doi.org/10.1002/2017JB014510, 2017.
Padrón-Navarta, J. A., Hermann, J., and O'Neill, H. S. C.: Site-specific
hydrogen diffusion rates in forsterite, Earth Planet. Sc. Lett., 392,
100–112, https://doi.org/10.1016/j.epsl.2014.01.055, 2014.
Paterson, M. S.: The determination of hydroxyl by infrared absorption in
quartz, silicate glasses and similar materials, Bull. Mineral., 105, 20–29,
https://doi.org/10.3406/bulmi.1982.7582, 1982.
Pearson, D. G., Brenker, F. E., Nestola, F., McNeill, J., Nasdala, L.,
Hutchison, M. T., Matveev, S., Mather, K., Silversmit, G., Schmitz, S.,
Vekemans, B., and Vincze, L.: Hydrous mantle transition zone indicated by
ringwoodite included within diamond, Nature, 507, 221–224, https://doi.org/10.1038/nature13080, 2014.
Poe, B. T., Romano, C., Nestola, F., and Smyth, J. R.: Electrical
conductivity anisotropy of dry and hydrous olivine at 8 GPa, Phys. Earth Planet. In., 181, 103–111, https://doi.org/10.1016/j.pepi.2010.05.003, 2010.
Pommier, A.: Interpretation of magnetotelluric results using laboratory
measurements, Surv. Geophys., 35, 41–84, https://doi.org/10.1007/s10712-013-9226-2, 2013.
Pommier, A., Leinenweber, K., Kohlstedt, D. L., Qi, C., Garnero, E. J.,
Mackwell, S. J., and Tyburczy, J. A.: Experimental constraints on the
electrical anisotropy of the lithosphere-asthenosphere system, Nature, 522,
202–206, https://doi.org/10.1038/nature14502, 2015.
Purevjav, N., Okuchi, T., Tomioka, N., Abe, J., and Harjo, S.: Hydrogen site
analysis of hydrous ringwoodite in mantle transition zone by pulsed neutron
diffraction, Geophys. Res. Lett., 41, 6718–6724, https://doi.org/10.1002/2014GL061448, 2014.
Purevjav, N., Okuchi, T., Tomioka, N., Wang, X., and Hoffmann, C.:
Quantitative analysis of hydrogen sites and occupancy in deep mantle hydrous
wadsleyite using single crystal neutron diffraction, Sci. Rep.-UK, 6, 34988,
https://doi.org/10.1038/srep34988, 2016.
Revenaugh, J. and Jordan, T. H.: Mantle layering from ScS reverberations: 2.
The transition zone, J. Geophys. Res., 96, 19763–19780,
https://doi.org/10.1029/91JB01486, 1991.
Ritterbex, S., Carrez, P. H., Gouriet, K., and Cordier, P.: Modeling
dislocation glide in Mg2SiO4 ringwoodite: Towards rheology under
transition zone conditions, Phys. Earth Planet. In., 248, 20–29,
https://doi.org/10.1016/j.pepi.2015.09.001, 2015.
Romano, C., Poe, B. T., Tyburczy, J., and Nestra, F.: Electrical conductivity of
hydrous wadsleyite, Eur. J. Mineral., 21, 615–622,
https://doi.org/10.1127/0935-1221/2009/0021-1933, 2009.
Schmandt, B., Jacobsen, S. D., Becker, T. W., Liu, Z., and Dueker, K. G.:
Dehydration melting at the top of the lower mantle, Science, 344,
1265–1268, https://doi.org/10.1126/science.1253358, 2014.
Schmerr, N.: The Gutenberg discontinuity: Melt at the lithosphere–asthenosphere boundary, Science, 335, 1480–1483,
https://doi.org/10.1126/science.1215433, 2012.
Schulze, K., Marquardt, H., Kawazoe, T., Ballaran, T. B., McCammon, C.,
Koch-Müller, M., Kurnosov, A., and Marquardt, K.: Seismically invisible
water in Earth's transition zone? Earth Planet. Sc. Lett., 498, 9–16,
https://doi.org/10.1016/j.epsl.2018.06.021, 2018.
Shimizu, H., Koyama, T., Baba, H., and Utada, H.: Revised 1-D mantle electrical
conductivity structure beneath the north Pacific, Geophys. J. Inter., 180,
1030–1048, https://doi.org/10.1111/j.1365-246X.2009.04466.x, 2010.
Shimojuku, A., Kubo, T., Ohtani, E., and Yurimoto, H.: Silicon
self-diffusion in wadsleyite: Implications for rheology of the mantle
transition zone and subducting plates, Geophys. Res. Lett., 31, L13606,
https://doi.org/10.1029/2004GL020002, 2004.
Shimojuku, A., Kubo, T., Ohtani, E., Nakamura, T., Okazaki, R., Chakraborty,
S., and Dohmen, R.: Si and O diffusion in (Mg,Fe)2SiO4 wadsleyite
and ringwoodite and its implication for rheology of the mantle transition
zone, Earth Planet. Sc. Lett., 284, 103–112,
https://doi.org/10.1016/j.epsl.2009.04.014, 2009.
Shimojuku, A., Kubo, T., Ohtani, E., Nakamura, T., and Okazaki, R.: Effects
of hydrogen and iron on the silicon diffusivity of wadsleyite, Phys. Earth
Planet. Inter., 183, 175–182, https://doi.org/10.1016/j.pepi.2010.09.011,
2010.
Sieminski, A., Debayle, E., and Lévêque, J. J.: Seismic evidence for
deep low-velocity anomalies in the transition zone beneath West Antarctica, Earth Planet. Sc. Lett., 216, 645–661,
https://doi.org/10.1016/S0012-821X(03)00518-1, 2003.
Sinogeikin, S. V., Bass, J. D., and Katsura, T.: Single-crystal elasticity
of ringwoodite to high pressures and high temperatures: implications for 520
km seismic discontinuity, Phys. Earth Planet. In., 136, 41–66,
https://doi.org/10.1016/S0031-9201(03)00022-0, 2003.
Smyth, J. R., Frost, D. J., Nestola, F., Holl, C. M., and Bromiley, G.:
Olivine hydration in the deep upper mantle: Effects of temperature and
silica activity, Geophys. Res. Lett., 33, L15301,
https://doi.org/10.1029/2006GL026194, 2006.
Song, T. R. A., Helmberger, D. V., and Grand, S. P.: Low-velocity zone atop
the 410-km seismic discontinuity in the northwestern United States, Nature,
427, 530–533, https://doi.org/10.1038/nature02231, 2004.
Stern, T. A., Henrys, S. A., Okaya, D., Louie, J. N., Savage, M. K., Lamb,
S., Sato, H., Sutherland, R., and Iwasaki, T.: A seismic reflection image
for the base of a tectonic plate, Nature, 518, 85–88,
https://doi.org/10.1038/nature14146, 2015.
Sun, W., Yoshino, T., Sakamoto, N., and Yurimoto, H.: Hydrogen
self-diffusivity in single crystal ringwoodite: implications for water
content and distribution in the mantle transition zone, Geophys. Res. Lett.,
42, 6582–6589, https://doi.org/10.1002/2015GL064486, 2015.
Sun, W., Yoshino, T., Sakamoto, N., and Yurimoto, H.: Supercritical fluid in
the mantle transition zone deduced from H-D interdiffusion of wadsleyite,
Earth Planet. Sc. Lett., 484, 309–317, https://doi.org/10.1016/j.epsl.2017.12.032, 2018.
Sun, W., Yoshino, T., Kuroda, M., Sakamoto, N., and Yurimoto, H.: H-D
interdiffusion in single-crystal olivine: Implications for electrical
conductivity in the upper mantle, J. Geophys. Res., 124, 5696–5707,
https://doi.org/10.1029/2019JB017576, 2019.
Tachibana, S., Tamada, S., Kawasaki, H., Ozawa, K., and Nagahara, H.:
Interdiffusion of Mg-Fe in olivine at 1400–1600 ∘C and 1 atm total
pressure, Phys. Chem. Mineral., 40, 511–519, https://doi.org/10.1007/s00269-013-0588-2, 2013.
Tarits, P., Hautot, S., and Perrier, F.: Water in the mantle: results from
electrical conductivity beneath the French Alps, Geophys. Res. Lett., 31,
L06612, https://doi.org/10.1029/2003GL019277, 2004.
Tasaka, M., Zimmerman, M. E., and Kohlstedt, D. L.: Creep behavior of
Fe-bearing olivine under hydrous conditions, J. Geophys. Res., 120,
6039–6057, https://doi.org/10.1002/2015JB012096, 2015.
Tasaka, M., Zimmerman, M. E., and Kohlstedt, D. L.: Evolution of the
rheological and microstructural properties of olivine aggregates during
dislocation creep under hydrous conditions, J. Geophys. Res., 121, 92–113,
https://doi.org/10.1002/2015jb012134, 2016.
Tauzin, B., Debayle, E., and Wittlinger, G.: Seismic evidence for a global
low-velocity layer within the Earth's upper mantle, Nat. Geosci., 3,
718–721, https://doi.org/10.1038/ngeo969, 2010.
Tielke, J. A., Zimmerman, M. E., and Kohlstedt, D. L.: Hydrolytic weakening
in olivine single crystals, J. Geophys. Res., 122, 3465–3479, https://doi.org/10.1002/2017JB014004, 2017.
Tielke, J., Mecklenburgh, J., Mariani, E., and Wheeler, J.: The influence of
water on the strength of olivine dislocation slip systems, J. Geophys. Res.,
124, 6542–6559, https://doi.org/10.1029/2019JB017436, 2019.
Toffelmier, D. A. and Tyburczy, J. A.: Electromagnetic detection of a 410-km
deep melt layer in the southwestern United States, Nature, 447, 991–994,
https://doi.org/10.1038/nature05922, 2007.
Tollan, P. M. E., Smith, R., O'Neill, H. S. C., and Hermann, J.: The
responses of the four main substitution mechanisms of H in olivine to
H2O activity at 1050 ∘C and 3 GPa, Prog. Earth Planet. Sci.,
4, 14, https://doi.org/10.1186/s40645-017-0128-7, 2017.
Tollan, P. M. E., O'Neill, H. S. C., and Hermann, J.: The role of trace
elements in controlling H incorporation in San Carlos olivine, Contrib.
Mineral. Petrol., 173, 89, https://doi.org/10.1007/s00410-018-1517-7, 2018.
Tommasi, A., Gibert, B., Seipold, U., and Mainprice, D.: Anisotropy of
thermal diffusivity in the upper mantle, Nature, 411, 783–786, https://doi.org/10.1038/35081046, 2001.
Tschauner, O., Huang, S., Greenberg, E., Prakapenka, V. B., Ma, C., Rossman,
G. R., Shen, A. H., Zhang, D., Newville, M., Lanzirotti, A., and Tait, K.:
Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth's deep
mantle, Science, 359, 1136–1139, https://doi.org/10.1126/science.aao3030, 2018.
Utada, H., Koyama, T., Shimizu, H., and Chave, A. D.: A semi-global
reference model for electrical conductivity in the mid-mantle beneath the
north Pacific region, Geophys. Res. Lett., 30, 1194, https://doi.org/10.1029/2002GL016092, 2003.
Walker, A. M., Hermann, J., Berry, A. J., and O'Neill, H. S. C.: Three water
sites in upper mantle olivine and the role of titanium in the water
weakening mechanism, J. Geophys. Res., 112, B05211, https://doi.org/10.1029/2006JB004620, 2007.
Wallis, D., Hansen, L. N., Tasaka, M., Kumamoto, K. M., Parsons, A. J.,
Lloyd, G. E., Kohlstedt, D. L., and Wilkinson, A. J.: The impact of water on
slip system activity in olivine and the formation of bimodal
crystallographic preferred orientations, Earth Planet. Sc. Lett., 508,
51–61, https://doi.org/10.1016/j.epsl.2018.12.007, 2019.
Wang, D., Mookherjee, M., Xu, Y., and Karato, S. I.: The effect of water on
the electrical conductivity of olivine, Nature, 443, 977–980, https://doi.org/10.1038/nature05256, 2006.
Wang, J., Sinogeikin, S. V., Inoue, T., and Bass, J. D.: Elastic properties
of hydrous ringwoodite at high-pressure conditions, Geophys. Res. Lett., 33,
L14308, https://doi.org/10.1029/2006GL026441, 2006.
Wang, J., Bass, J. D., and Kastura, T.: Elastic properties of iron-bearing
wadsleyite to 17.7 GPa: Implications for mantle mineral models, Phys. Earth
Planet. Inter., 228, 92–96, https://doi.org/10.1016/j.pepi.2014.01.015, 2014.
Wang, W., Walter, M. J., Peng, Y., Redfern, S., and Wu, Z.: Constraining
olivine abundance and water content of the mantle at the 410-km
discontinuity from the elasticity of olivine and wadsleyite, Earth Planet.
Sci. Lett., 519, 1–11, https://doi.org/10.1016/j.epsl.2019.04.018, 2019.
Wang, Y., Durham, W. B., Getting, I. C., and Weidner, D. J.: The
deformation-DIA: A new apparatus for high temperature triaxial deformation
to pressures up to 15 GPa, Rev. Sci. Instrum., 74, 3002–3011, https://doi.org/10.1063/1.1570948, 2003.
Watson, E. B. and Baxter, E. F.: Diffusion in solid-Earth systems, Earth Planet. Sc. Lett., 253, 307–327, https://doi.org/10.1016/j.epsl.2006.11.015, 2007.
Weertman, J.: Microstructural mechanisms of creep, in: Mechanics and
Materials: Fundamentals and Linkages, edited by: Meyers, M. A., Armstrong,
R. W., and Kirschner, H., John Wiley and Sons, Boston, 451–488, 1999.
Withers, A. C., Bureau, H., Raepsaet, C. and Hirschmann, M. M.: Calibration
of infrared spectroscopy by elastic recoil detection analysis of H in
synthetic olivine, Chem. Geol., 334, 92–98, https://doi.org/10.1016/j.chemgeo.2012.10.002, 2012.
Wright, K. and Catlow, C. R. A.: Calculations on the energetics of water
dissolution in wadsleyite, Phys. Chem. Mineral., 23, 38–41, https://doi.org/10.1007/BF00202991, 1996.
Xia, Q. K., Yang, X. Z., Deloule, E., Sheng, Y. M., and Hao, Y. T.:
Water in the lower crustal granulite xenoliths from Nushan, SE China, J.
Geophys. Res., 111, B11202, https://doi.org/10.1029/2006JB004296, 2006.
Xia, Q. K., Liu, J., Liu, S. C., Kovács, I., Feng, M., and
Dang, L.: High water content in Mesozoic primitive basalts of the North
China Craton and implications for the destruction of cratonic mantle
lithosphere, Earth Planet. Sc. Lett., 361, 85–97, https://doi.org/10.1016/j.epsl.2012.11.024, 2013.
Xia, Q. K., Liu, J., Kovács, I., Hao, Y. T., Li, P., Yang, X.
Z., Chen, H., and Sheng, Y. M.: Water in the upper mantle and deep crust of
eastern China: Concentration, distribution and implications, Natl. Sci.
Rev., 6, 125–144, https://doi.org/10.1093/nsr/nwx016, 2019.
Xiong, Z. L. and Zhang, B. H.: Thermal properties of olivine, wadsleyite and
ringwoodite – a review, Minerals, 9, 519, https://doi.org/10.3390/min9090519, 2019.
Xu, Y., Poe, B. T., Shankland, T. J., and Rubie, D. C.: Electrical
conductivity of olivine, wadsleyite, and ringwoodite under upper-mantle
conditions, Science, 280, 1415–1418, https://doi.org/10.1126/science.280.5368.1415, 1998.
Xu, Y., Shankland, T. J., and Poe, B. T.: Laboratory-based electrical
conductivity in the Earth's mantle, J. Geophys. Res., 105, 27865–27875,
https://doi.org/10.1029/2000JB900299, 2000.
Xu, Y., Weidner, D. J., Chen, J., Vaughan, M. T., Wang, Y., and Uchida, T.:
Flow-law for ringwoodite at subduction zone conditions, Phys. Earth Planet.
In., 136, 3–9, https://doi.org/10.1016/S0031-9201(03)00026-8, 2003.
Xu, Y., Shankland, T. J., Linhardt, S., Rubie, D. C., Langenhorst, F., and
Klasinski, K.: Thermal diffusivity and conductivity of olivine, wadsleyite
and ringwoodite to 20 GPa and 1373 K, Phys. Earth Planet. In., 143,
321–336, https://doi.org/10.1016/j.pepi.2004.03.005, 2004.
Yamazaki, D. and Karato, S. I.: Some mineral physics constraints on the
rheology and geothermal structure of Earth's lower mantle, Am. Mineral., 86,
385–391, https://doi.org/10.2138/am-2001-0401, 2001.
Yang, X.: Orientation-related electrical conductivity of hydrous olivine,
clinopyroxene and plagioclase and implications for the structure of the
lower continental crust and uppermost mantle, Earth Planet. Sc. Lett.,
317–318, 241–250, https://doi.org/10.1016/j.epsl.2011.11.011,
2012.
Yoshino, T.: Laboratory electrical conductivity measurement of mantle
minerals, Surv. Geophys., 31, 163–206, https://doi.org/10.1007/s10712-009-9084-0, 2010.
Yoshino, T. and Katsura, T.: Reply to comments on “Electrical conductivity
of wadsleyite as a function of temperature and water content” by Manthilake
et al., Phys. Earth Planet. In., 174, 22–23, https://doi.org/10.1016/j.pepi.2009.01.012, 2009.
Yoshino, T. and Katsura, T.: Re-evaluation of electrical conductivity of
anhydrous and hydrous wadsleyite, Earth Planet. Sc. Lett., 337–338,
56–67, https://doi.org/10.1016/j.epsl.2012.05.023, 2012.
Yoshino, T. and Katsura, T.: Electrical conductivity of mantle
minerals: role of water in conductivity anomalies, Annu. Rev. Earth Planet.
Sci., 41, 605–628, https://doi.org/10.1146/annurev-earth-050212-124022, 2013.
Yoshino, T., Matsuzaki, T., Yamashita, S., and Katsura, T.: Hydrous olivine
unable to account for conductivity anomaly at the top of the asthenosphere,
Nature, 443, 973–976, https://doi.org/10.1038/nature05223,
2006.
Yoshino, T., Manthilake, G., Matsuzaki, T., and Katsura, T.: Dry mantle
transition zone inferred from electrical conductivity of wadsleyite and
ringwoodite, Nature, 451, 326–329, https://doi.org/10.1038/nature06427, 2008.
Yoshino, T., Matsuzaki, T., Shatskiy, A., and Katsura, T.: The effect of
water on the electrical conductivity of olivine aggregates and its
implications for the electrical structure of the upper mantle, Earth Planet. Sc. Lett., 288, 291–300, https://doi.org/10.1016/j.epsl.2009.09.032, 2009.
Yoshino, T., Laumonier, M., McIsaac, E., and Katsura, T.: Electrical
conductivity of basaltic and carbonatite melt-bearing peridotites at high
pressures: implications for melt distribution and melt fraction in the upper
mantle, Earth Planet. Sc. Lett., 295, 593–602, https://doi.org/10.1016/j.epsl.2010.04.050, 2010.
Zha, C. S., Duffy, T. S., Downs, R. T., Mao, H. K., and Hemley, R. J.: Sound velocity and elasticity of single-crystal forsterite to 16 GPa, J. Geophys. Res., 101, 17535–17545, https://doi.org/10.1029/96JB01266, 1996.
Zhang, B. H.: Diffusion of hydrogen in (Mg,Fe)2SiO4 and high
pressure polymorphs refined by the cBΩ model, J. Asian Earth Sci.,
54–55, 9–17, https://doi.org/10.1016/j.jseaes.2012.02.017,
2012.
Zhang, B. H.: An overview of Fe-Mg interdiffusion in mantle minerals, Surv.
Geophys., 38, 727–755, https://doi.org/10.1007/s10712-017-9415-5, 2017.
Zhang, B. H. and Shan, S. M.: Thermodynamic calculations of Fe-Mg
interdiffusion in (Mg,Fe)2SiO4 polymorphs and perovskite, J. Appl.
Phys., 117, 054906, https://doi.org/10.1063/1.4907576, 2015a.
Zhang, B. H. and Shan, S. M.: Application of the cBΩ model to the
calculation of diffusion parameters of Si in silicates, Geochem. Geophys.
Geosyst., 16, 705–718, https://doi.org/10.1002/2014GC005551,
2015b.
Zhang, B. H. and Yoshino, T.: Temperature-enhanced electrical conductivity
anisotropy in partially molten peridotite under shear deformation, Earth Planet. Sc. Lett., 530, 115922, https://doi.org/10.1016/j.epsl.2019.115922, 2020.
Zhang, B. H., Wu, X. P., Xu, J. S., and Zhou, R. L.: Application of the
cBΩ model for the calculation of oxygen self-diffusion coefficients
in minerals, J. Appl. Phys., 108, 053505, https://doi.org/10.1063/1.3476283, 2010.
Zhang, B. H., Wu, X. P., and Zhou, R. L.: Calculation of oxygen
self-diffusion coefficients in Mg2SiO4 polymorphs and MgSiO3
perovskite based on the compensation law, Solid State Ionics, 186, 20–28,
https://doi.org/10.1016/j.ssi.2011.01.007, 2011.
Zhang, B. H., Yoshino, T., Wu, X. P., Matsuzaki, T., Shan, S., and Katsura,
T.: Electrical conductivity of enstatite as a function of water content:
implications for the electrical structure in the upper mantle, Earth Planet. Sc. Lett., 357–358, 11–20, https://doi.org/10.1016/j.epsl.2012.09.020, 2012.
Zhang, B. H., Yoshino, T., Yamazaki, D., Manthilake, G., and Katsura, T.:
Electrical conductivity anisotropy in partially molten peridotite under
shear deformation, Earth Planet. Sc. Lett., 405, 98–109, https://doi.org/10.1016/j.epsl.2014.08.018, 2014.
Zhang, B. H., Ge, J. H., Xiong, Z. L., and Zhai, S. M.: Effect of water on
the thermal properties of olivine with implications for lunar internal
temperature, J. Geophys. Res., 124, 3469–3481, https://doi.org/10.1029/2019JE006194, 2019a.
Zhang, B. H., Yoshino, T., and Zhao, C. C.: The effect of water on Fe-Mg
interdiffusion rates in ringwoodite and implications for the electrical
conductivity in the mantle transition zone, J. Geophys. Res., 124,
2510–2524, https://doi.org/10.1029/2018JB016415, 2019b.
Zhang, B. H., Zhao, C. C., Ge, J. H., and Yoshino, T.: Electrical conductivity of omphacite as a function of water content and implications for high
conductivity anomalies in the Dabie-Sulu UHPM belts and Tibet, J. Geophys.
Res., 124, 12523–12536, https://doi.org/10.1029/2019JB018826,
2019c.
Zhang, B. H., Zhao, C. C., and Yoshino, T.: Fe-Mg interdiffusion in
wadsleyite and implications for water content of the transition zone, Earth Planet. Sc. Lett., 554, 116672, https://doi.org/10.1016/j.epsl.2020.116672, 2021.
Zhang, J. S. and Bass, J. D.: Sound velocities of olivine at high pressures
and temperatures and the composition of Earth's upper mantle, Geophys. Res.
Lett., 43, 9611–9618, https://doi.org/10.1002/2016GL069949, 2016.
Zhang, Y.: Diffusion in minerals and melts: theoretical background, Rev.
Mineral. Geochem., 72, 5–59, https://doi.org/10.2138/rmg.2010.72.2, 2010.
Zhang, Y., Yoshino, T., Yoneda, A., and Osako, M.: Effect of iron content on
thermal conductivity of olivine with implications for cooling history of
rocky planets, Earth Planet. Sc. Lett., 519, 109–119, https://doi.org/10.1016/j.epsl.2019.04.048, 2019.
Zhao, C. C. and Yoshino, T.: Electrical conductivity of mantle clinopyroxene
as a function of water content and its implication on electrical structure
of uppermost mantle, Earth Planet. Sc. Lett., 447, 1–9,
https://doi.org/10.1016/j.epsl.2016.04.028, 2016.
Zimmerman, M. E. and Kohlstedt, D. L.: Rheological properties of partially
molten lherzolite, J. Petrol., 45, 275–298,
https://doi.org/10.1093/petrology/egg089, 2004.