Articles | Volume 32, issue 6
https://doi.org/10.5194/ejm-32-575-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-32-575-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Equation of state and high-pressure phase behaviour of SrCO3
Nicole Biedermann
CORRESPONDING AUTHOR
European XFEL, Schenefeld, Germany
Institute for Geosciences, University of Potsdam, Potsdam-Golm, Germany
Elena Bykova
Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C., USA
Wolfgang Morgenroth
Institute for Geosciences, University of Potsdam, Potsdam-Golm, Germany
c/o European Synchrotron Radiation Facility ESRF, Grenoble, France
Ilias Efthimiopoulos
GFZ German Research Center for Geosciences, Potsdam, Germany
Jan Mueller
GFZ German Research Center for Geosciences, Potsdam, Germany
Georg Spiekermann
Institute for Geosciences, University of Potsdam, Potsdam-Golm, Germany
Institute of Geochemistry and Petrology, ETH Zürich, Zürich, Switzerland
Konstantin Glazyrin
Deutsches Elektronen Synchroton DESY, Hamburg, Germany
Anna Pakhomova
Deutsches Elektronen Synchroton DESY, Hamburg, Germany
Karen Appel
European XFEL, Schenefeld, Germany
Max Wilke
Institute for Geosciences, University of Potsdam, Potsdam-Golm, Germany
Related authors
No articles found.
Roman Botcharnikov, Max Wilke, Jan Garrevoet, Maxim Portnyagin, Kevin Klimm, Stephan Buhre, Stepan Krasheninnikov, Renat Almeev, Severine Moune, and Gerald Falkenberg
Eur. J. Mineral., 36, 195–208, https://doi.org/10.5194/ejm-36-195-2024, https://doi.org/10.5194/ejm-36-195-2024, 2024
Short summary
Short summary
The new spectroscopic method, based on the syncrotron radiation, allows for determination of Fe oxidation state in tiny objects or in heterogeneous samples. This technique is expected to be an important tool in geosciences unraveling redox conditions in rocks and magmas as well as in material sciences providing constraints on material properties.
Melanie J. Sieber, Max Wilke, Oona Appelt, Marcus Oelze, and Monika Koch-Müller
Eur. J. Mineral., 34, 411–424, https://doi.org/10.5194/ejm-34-411-2022, https://doi.org/10.5194/ejm-34-411-2022, 2022
Short summary
Short summary
Carbonates reduce the melting point of the mantle, and carbonate melts produced in low-degree melting of a carbonated mantle are considered the precursor of CO2-rich magmas. We established experimentally the melting relations of carbonates up to 9 GPa, showing that Mg-carbonates melt incongruently to periclase and carbonate melt. The trace element signature of carbonate melts parental to kimberlites is approached by melting of Mg-rich carbonates.
Nada Abdel-Hak, Bernd Wunder, Ilias Efthimiopoulos, and Monika Koch-Müller
Eur. J. Mineral., 32, 469–482, https://doi.org/10.5194/ejm-32-469-2020, https://doi.org/10.5194/ejm-32-469-2020, 2020
Short summary
Short summary
The structural response of the NH4+ molecule to temperature and pressure changes is studied in ammonium phengite. The symmetry of the molecule is lowered by increasing P or decreasing T; the type and mechanism of this lowered symmetry is different in both cases. Devolatilisation (NH4+ and OH loss) of ammonium phengite is studied as well. This study confirms the wide stability range of phengite and its volatiles and thus has important implications for N and H recycling into the deep Earth.
S. Visser, J. G. Slowik, M. Furger, P. Zotter, N. Bukowiecki, F. Canonaco, U. Flechsig, K. Appel, D. C. Green, A. H. Tremper, D. E. Young, P. I. Williams, J. D. Allan, H. Coe, L. R. Williams, C. Mohr, L. Xu, N. L. Ng, E. Nemitz, J. F. Barlow, C. H. Halios, Z. L. Fleming, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 11291–11309, https://doi.org/10.5194/acp-15-11291-2015, https://doi.org/10.5194/acp-15-11291-2015, 2015
Short summary
Short summary
Trace element measurements in three particle size ranges (PM10-2.5, PM2.5-1.0 and PM1.0-0.3) were performed with 2h time resolution at kerbside, urban background and rural sites during the ClearfLo winter 2012 campaign in London. The environment-dependent variability of emissions was characterized using the Multilinear Engine implementation of the positive matrix factorization model. A total of nine different factors were resolved from local, regional and natural origin.
S. Visser, J. G. Slowik, M. Furger, P. Zotter, N. Bukowiecki, R. Dressler, U. Flechsig, K. Appel, D. C. Green, A. H. Tremper, D. E. Young, P. I. Williams, J. D. Allan, S. C. Herndon, L. R. Williams, C. Mohr, L. Xu, N. L. Ng, A. Detournay, J. F. Barlow, C. H. Halios, Z. L. Fleming, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 2367–2386, https://doi.org/10.5194/acp-15-2367-2015, https://doi.org/10.5194/acp-15-2367-2015, 2015
Short summary
Short summary
Ambient concentrations of trace elements with 2h time resolution were measured in three size ranges (PM10–2.5, PM2.5–1.0, PM1.0–0.3) at kerbside, urban background and rural sites in London during the ClearfLo (Clean Air for London) field campaign. Quantification of kerb and urban increments, and assessment of diurnal and weekly variability provided insight into sources governing urban air quality and the effects of urban micro-environments on human exposure.
Related subject area
High-pressure study of minerals
The use of MgO–ZnO ceramics to record pressure and temperature conditions in the piston–cylinder apparatus
The miscibility gap between the rock salt and wurtzite phases in the MgO–ZnO binary system to 3.5 GPa
High-pressure and high-temperature structure and equation of state of Na3Ca2La(CO3)5 burbankite
In situ reinvestigation of reaction phase A plus high-pressure clinoenstatite to forsterite plus water in the system MgO-SiO2-H2O (MSH)
Melt–rock interactions in a veined mantle: pyroxenite–peridotite reaction experiments at 2 GPa
New insights in the mechanisms of the reaction 3.65 Å phase = clinoenstatite + water down to nanoscales
Deformation of NaCoF3 perovskite and post-perovskite up to 30 GPa and 1013 K: implications for plastic deformation and transformation mechanism
Nicholas Farmer and Hugh St. C. O'Neill
Eur. J. Mineral., 36, 473–489, https://doi.org/10.5194/ejm-36-473-2024, https://doi.org/10.5194/ejm-36-473-2024, 2024
Short summary
Short summary
The piston–cylinder apparatus is widely used to investigate rock properties at the conditions of the interior of the Earth, but uncertainty in its calibration of pressure persists, with substantial differences between laboratories. We use a ceramic of magnesium and zinc oxides to measure the conditions experienced by a sample. Routine use of such ceramics provides an archive of experimental conditions, enables interlaboratory comparisons, and resolves long-standing controversies in calibration.
Nicholas Farmer and Hugh St. C. O'Neill
Eur. J. Mineral., 35, 1051–1071, https://doi.org/10.5194/ejm-35-1051-2023, https://doi.org/10.5194/ejm-35-1051-2023, 2023
Short summary
Short summary
The chemical compositions of the synthetic minerals periclase and zincite in the MgO–ZnO binary system change smoothly and systematically with pressure when they exist together in equilibrium. We have studied these changes experimentally over a wide range of conditions and fitted the results to a thermodynamic model. The model may be used to predict the compositions of the coexisting phases accurately at high pressures and temperatures corresponding to the Earth’s crust and uppermost mantle.
Sula Milani, Deborah Spartà, Patrizia Fumagalli, Boby Joseph, Roberto Borghes, Valentina Chenda, Juliette Maurice, Giorgio Bais, and Marco Merlini
Eur. J. Mineral., 34, 351–358, https://doi.org/10.5194/ejm-34-351-2022, https://doi.org/10.5194/ejm-34-351-2022, 2022
Short summary
Short summary
This work presents new thermoelastic parameters and the structural evolution of burbankite at high pressure and high temperature, obtained by in situ synchrotron radiation single-crystal diffraction measurements. Burbankite is a carbonate that may potentially play a key role as an upper-mantle reservoir of light REE3+. We observed that the density of burbankite is greater with respect to carbonatitic magmas, indicating a possible fractionation of this phase in upper-mantle conditions.
Christian Lathe, Monika Koch-Müller, Bernd Wunder, Oona Appelt, Shrikant Bhat, and Robert Farla
Eur. J. Mineral., 34, 201–213, https://doi.org/10.5194/ejm-34-201-2022, https://doi.org/10.5194/ejm-34-201-2022, 2022
Short summary
Short summary
The equilibrium phase of A + HP clinoenstatite = forsterite + water was experimentally investigated at aH2O = 1 in situ. In cold subducting slabs, it is of relevance to transport water to large depths, initiating the formation of dense hydrous magnesium silicate (DHMS). At normal gradients, the huge water amount from this reaction induces important processes within the overlying mantle wedge. We additionally discuss the relevance of this reaction for intermediate-depth earthquake formation.
Giulio Borghini, Patrizia Fumagalli, and Elisabetta Rampone
Eur. J. Mineral., 34, 109–129, https://doi.org/10.5194/ejm-34-109-2022, https://doi.org/10.5194/ejm-34-109-2022, 2022
Short summary
Short summary
The mineralogical and chemical heterogeneity of the mantle is poorly known because it is not able to be directly investigated. Melt–peridotite interaction processes play a fundamental role in controlling the mantle composition. The results of our reaction experiments help us to evaluate the role of temperature and melt composition in the modification of the mantle through the interaction with pyroxenite-derived melts with implications for the evolution of a veined mantle.
Monika Koch-Müller, Oona Appelt, Bernd Wunder, and Richard Wirth
Eur. J. Mineral., 33, 675–686, https://doi.org/10.5194/ejm-33-675-2021, https://doi.org/10.5194/ejm-33-675-2021, 2021
Short summary
Short summary
Dense hydrous magnesium silicates, like the 3.65 Å phase, are thought to cause deep earthquakes. We investigated the dehydration of the 3.65 Å phase at P and T. In both directions of the investigated simple reaction, additional metastable water-rich phases occur. The observed extreme reduction in grain size in the dehydration experiments might cause mechanical instabilities in the Earth’s mantle and, finally, induce earthquakes.
Jeffrey P. Gay, Lowell Miyagi, Samantha Couper, Christopher Langrand, David P. Dobson, Hanns-Peter Liermann, and Sébastien Merkel
Eur. J. Mineral., 33, 591–603, https://doi.org/10.5194/ejm-33-591-2021, https://doi.org/10.5194/ejm-33-591-2021, 2021
Short summary
Short summary
We examined the experimental deformation and phase transition of a bridgmanite analogue, NaCoF3, using a resistive-heated diamond anvil cell and a synchrotron radiation source. We wanted to observe the behavior of NaCoF3 under uniaxial compression and its plastic properties, as well as to determine if it is a suitable analogue for natural samples. We observe 100 and 001 compression textures and link those to the dominant deformation mechanism in the perovskite structure.
Cited articles
Angel, R. J., Alvaro, M., and Gonzalez-Platas, J.: EosFit7c and a Fortran
module (library) for equation of state calculations, Z.
Kristallogr., 229, 405–419, https://doi.org/10.1515/zkri-2013-1711,
2014. a, b
Antao, S. M. and Hassan, I.: The orthorhombic structure of CaCO3, SrCO3,
PbCO3 and BaCO3: Linear structural trends, The Canadian Mineralogist,
47, 1245–1255, https://doi.org/10.3749/canmin.47.5.1245, 2009. a, b
Arapan, S. and Ahuja, R.: High-pressure phase transformations in carbonates,
Phys. Rev. B, 82, 184115, https://doi.org/10.1103/physrevb.82.184115, 2010. a, b
Bayarjargal, L., Fruhner, C.-J., Schrodt, N., and Winkler, B.: CaCO3 phase
diagram studied with Raman spectroscopy at pressures up to 50 GPa and
high temperatures and DFT modeling, Phys. Earth Planet.
In., 281, 31–45, https://doi.org/10.1016/j.pepi.2018.05.002, 2018. a, b, c
Biedermann, N., Winkler, B., Speziale, S., Reichmann, H. J., and Koch-Müller,
M.: Single-crystal elasticity of SrCO3 by Brillouin spectroscopy, High
Pressure Res., 37, 181–192, https://doi.org/10.1080/08957959.2017.1289193,
2017b. a, b, c, d
Birch, F.: Finite Elastic Strain of Cubic Crystals, Phys. Rev., 71,
809–824, https://doi.org/10.1103/physrev.71.809, 1947. a
Boulard, E., Goncharov, A. F., Blanchard, M., and Mao, W. L.: Pressure-induced
phase transition in MnCO3 and its implications on the deep carbon cycle,
J. Geophys. Res.-Sol. Ea., 120, 4069–4079,
https://doi.org/10.1002/2015jb011901, 2015. a
Bragg, W. L.: The structure of aragonite, Proceedings of the Royal Society of
London. Series A, Containing Papers of a Mathematical and Physical Character,
105, 16–39, https://doi.org/10.1098/rspa.1924.0002, 1924. a
Brenker, F. E., Vollmer, C., Vincze, L., Vekemans, B., Szymanski, A., Janssens,
K., Szaloki, I., Nasdala, L., Joswig, W., and Kaminsky, F.: Carbonates from
the lower part of transition zone or even the lower mantle, Earth
Planet. Sci. Lett., 260, 1–9, https://doi.org/10.1016/j.epsl.2007.02.038, 2007. a, b
Dasgupta, R. and Hirschmann, M. M.: The deep carbon cycle and melting in
Earth's interior, Earth Planet. Sc. Let., 298,
1–13, https://doi.org/10.1016/j.epsl.2010.06.039, 2010. a
Efthimiopoulos, I., Jahn, S., Kuras, A., Schade, U., and Koch-Müller, M.:
Combined high-pressure and high-temperature vibrational studies of dolomite:
phase diagram and evidence of a new distorted modification, Phys.
Chem. Miner., 44, 465–476, https://doi.org/10.1007/s00269-017-0874-5, 2017. a
Efthimiopoulos, I., Müller, J., Winkler, B., Otzen, C., Harms, M., Schade, U.,
and Koch-Müller, M.: Vibrational response of strontianite at high pressures
and high temperatures and construction of P–T phase diagram,
Phys. Chem. Miner., 46, 27–35,
https://doi.org/10.1007/s00269-018-0984-8, 2019. a, b, c
Gavryushkin, P. N., Martirosyan, N. S., Inerbaev, T. M., Popov, Z. I.,
Rashchenko, S. V., Likhacheva, A. Y., Lobanov, S. S., Goncharov, A. F.,
Prakapenka, V. B., and Litasov, K. D.: Aragonite-II and CaCO3-VII:
New High-Pressure, High-Temperature Polymorphs of CaCO3, Cryst. Growth
Des., 17, 6291–6296, https://doi.org/10.1021/acs.cgd.7b00977, 2017. a
Ghosh, S., Ohtani, E., Litasov, K. D., and Terasaki, H.: Solidus of carbonated
peridotite from 10 to 20 GPa and origin of magnesiocarbonatite melt in the
Earth′s deep mantle, Chem. Geol., 262, 17–28,
https://doi.org/10.1016/j.chemgeo.2008.12.030, 2009. a
Hammersley, A. P.: FIT2D: a multi-purpose data reduction, analysis and
visualization program, J. Appl. Crystallogr., 49, 646–652,
https://doi.org/10.1107/s1600576716000455, 2016. a
Hemley, R. J., Zha, C. S., Jephcoat, A. P., Mao, H. K., Finger, L. W., and Cox,
D. E.: X-ray diffraction and equation of state of solid neon to 110 GPa,
Phys. Rev. B, 39, 11820–11827, https://doi.org/10.1103/physrevb.39.11820,
1989. a
Holl, C. M., Smyth, J. R., Laustsen, H. M. S., Jacobsen, S. D., and Downs,
R. T.: Compression of witherite to 8 GPa and the crystal structure of
BaCO3 II, Phys. Chem. Miner., 27, 467–473,
https://doi.org/10.1007/s002690000087, 2000. a, b, c, d
Isshiki, M., Irifune, T., Hirose, K., Ono, S., Ohishi, Y., Watanuki, T.,
Nishibori, E., Takata, M., and Sakata, M.: Stability of magnesite and its
high-pressure form in the lowermost mantle, Nature, 427, 60–63,
https://doi.org/10.1038/nature02181, 2004. a
Javoy, M.: The major volatile elements of the Earth: Their origin, behavior,
and fate, Geophys. Res. Lett., 24, 177–180,
https://doi.org/10.1029/96gl03931, 1997. a
Kalliomäki, M. S. and Meisalo, V. P. J.: Structure determination of the
high-pressure phases RbNO3-V, CsNO3-III, and CsNO3-IV,
Acta Crystall. B-Stru., 35, 2829–2835, https://doi.org/10.1107/s0567740879010773, 1979. a
Kaminsky, F.: Mineralogy of the lower mantle: A review of `super-deep' mineral
inclusions in diamond, Earth-Sci. Rev., 110, 127–147,
https://doi.org/10.1016/j.earscirev.2011.10.005, 2012. a
Kaminsky, F., Wirth, R., Matsyuk, S., Schreiber, A., and Thomas, R.: Nyerereite
and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic
magmas, Mineral. Mag., 73, 797–816,
https://doi.org/10.1180/minmag.2009.073.5.797, 2009. a
Kelemen, P. B. and Manning, C. E.: Reevaluating carbon fluxes in subduction
zones, what goes down, mostly comes up, P. Natl. Acad. Sci. USA, 112, E3997–E4006, https://doi.org/10.1073/pnas.1507889112, 2015. a
Korsakov, A. V. and Hermann, J.: Silicate and carbonate melt inclusions
associated with diamonds in deeply subducted carbonate rocks, Earth
Planet. Sc. Lett., 241, 104–118, https://doi.org/10.1016/j.epsl.2005.10.037,
2006. a
Larson, A. C. and Von Dreele, R. B.: General structure analysis system (GSAS)
(Report LAUR 86-748), Los Alamos National Laboratory, Los Alamos, New Mexico,
2004. a
Li, J., Redfern, S. A., and Giovannelli, D.: Introduction: Deep carbon cycle
through five reactions, Am. Mineral., 104, 465–467,
https://doi.org/10.2138/am-2019-6833, 2019. a
Liermann, H.-P., Konôpková, Z., Morgenroth, W., Glazyrin, K.,
Bednarčik, J., McBride, E. E., Petitgirard, S., Delitz, J. T., Wendt,
M., Bican, Y., Ehnes, A., Schwark, I., Rothkirch, A., Tischer, M., Heuer, J.,
Schulte-Schrepping, H., Kracht, T., and Franz, H.: The Extreme Conditions
Beamline P02.2 and the Extreme Conditions Science Infrastructure
at PETRAIII, J. Synchrotron Radiat., 22,
908–924, https://doi.org/10.1107/s1600577515005937, 2015. a
Lin, C.-C. and Liu, L.-G.: Post-aragonite phase transitions in strontianite and
cerussite: A high-pressure Raman spectroscopic study, J. Phys.
Chem. Solids, 58, 977–987, https://doi.org/10.1016/s0022-3697(96)00201-6, 1997. a, b
Litasov, K.: Physicochemical conditions for melting in the Earth's mantle
containing a C–O–H fluid (from experimental data),
Russ. Geol. Geophys., 52, 475–492,
https://doi.org/10.1016/j.rgg.2011.04.001, 2011. a
Litasov, K. D., Shatskiy, A., Ohtani, E., and Yaxley, G. M.: Solidus of
alkaline carbonatite in the deep mantle, Geology, 41, 79–82,
https://doi.org/10.1130/g33488.1, 2013. a
Mao, H. K. and Hemley, R. J. M. A. L.: Diamond-cell research with synchrotron
radiation, Advances in High Pressure Research, 29, 12–20, 1997. a
Mao, H. K., Xu, J., and Bell, P. M.: Calibration of the ruby pressure gauge to
800 kbar under quasi-hydrostatic conditions, J. Geophys. Res.,
91, 4673, https://doi.org/10.1029/jb091ib05p04673, 1986. a
Martinez, I., Zhang, J., and Reeder, R. J.: In situ X-ray diffraction of
aragonite and dolomite at high pressure and high temperature; evidence for
dolomite breakdown to aragonite and magnesite, Am. Mineral., 81,
611–624, https://doi.org/10.2138/am-1996-5-608, 1996. a, b
McCammon, C., Bureau, H., Cleaves, J. H., Cottrell, E., Dorfman, S. M.,
Kellogg, L. H., Li, J., Mikhail, S., Moussallam, Y., Sanloup, C., Thomson,
A. R., and Brovarone, A. V.: Deep Earth carbon reactions through time and
space, Am. Mineral., 105, 22–27, https://doi.org/10.2138/am-2020-6888ccby,
2020. a
Merlini, M., Crichton, W. A., Hanfland, M., Gemmi, M., Muller, H., Kupenko, I.,
and Dubrovinsky, L.: Structures of dolomite at ultrahigh pressure and their
influence on the deep carbon cycle, P. Natl. Acad.
Sci. USA, 109, 13509–13514, https://doi.org/10.1073/pnas.1201336109,
2012a. a
Merlini, M., Hanfland, M., and Crichton, W.: CaCO3-III and
CaCO3-VI, high-pressure polymorphs of calcite: Possible host
structures for carbon in the Earth's mantle, Earth
Planet. Sc. Lett., 333-334, 265–271,
https://doi.org/10.1016/j.epsl.2012.04.036, 2012b. a
Nguyen-Thanh, T., Bosak, A., Bauer, J. D., Luchitskaia, R., Refson, K., Milman,
V., and Winkler, B.: Lattice dynamics and elasticity of SrCO3, J. Appl. Crystallogr., 49, 1982–1990, https://doi.org/10.1107/s1600576716014205,
2016. a
Oganov, A. R., Glass, C. W., and Ono, S.: High-pressure phases of CaCO3:
Crystal structure prediction and experiment, Earth Planet. Sc.
Lett., 241, 95–103, https://doi.org/10.1016/j.epsl.2005.10.014, 2006. a, b, c
Ono, S., Brodholt, J. P., and Price, G. D.: Phase transitions of BaCO3 at
high pressures, Mineral. Mag., 72, 659–665,
https://doi.org/10.1180/minmag.2008.072.2.659, 2008. a
Rigaku Oxford Diffraction: CrysAlis PRO software system, Version
1.171.40.57a, Rigaku Oxford Diffraction, Oxford, UK, 2019. a
Ringwood, A.: Composition and petrology of the Earth's mantle, McGraw-Hill, New York,
618, 1975. a
Santillán, J. and Williams, Q.: A high pressure X-ray diffraction study
of aragonite and the post-aragonite phase transition in CaCO3, Am.
Mineral., 89, 1348–1352, https://doi.org/10.2138/am-2004-8-925, 2004. a, b
Santos, S. S., Marcondes, M. L., Justo, J. F., and Assali, L. V.: Stability of
calcium and magnesium carbonates at Earth's lower mantle
thermodynamic conditions, Earth Planet. Sc. Lett., 506, 1–7,
https://doi.org/10.1016/j.epsl.2018.10.030, 2019. a
Shannon, R.: Revised Effective Ionic Radii and Systematic Studies of
Interatomic Distances in Halides and Chaleogenides, Acta Crystall. A-Crys., 32, 751–767, https://doi.org/10.1107/S0567739476001551, 1976. a
Shcheka, S. S., Wiedenbeck, M., Frost, D. J., and Keppler, H.: Carbon
solubility in mantle minerals, Earth Planet. Sc. Lett., 245,
730–742, https://doi.org/10.1016/j.epsl.2006.03.036, 2006. a
Sheldrick, G. M.: SHELXT – Integrated space-group and
crystal-structure determination, Acta Crystallogr. A, 71, 3–8, https://doi.org/10.1107/s2053273314026370, 2015. a, b
Sobolev, N. V., Yefimova, E. S., Channer, D. M. D., Anderson, P. F. N., and
Barron, K. M.: Unusual upper mantle beneath Guaniamo, Guyana shield,
Venezuela: Evidence from diamond inclusions, Geology, 26, 971–974, 1998. a
Solomatova, N. V. and Asimow, P. D.: Ab initio study of the structure and
stability of CaMg(CO3)2 at high pressure, Am. Mineral.,
102, 210–215, https://doi.org/10.2138/am-2017-5830, 2017.
a
Thomson, A., Kohn, S., Bulanova, G., Smith, C., Araujo, D., and Walter, M.:
Trace element composition of silicate inclusions in sub-lithospheric diamonds
from the Juina-5 kimberlite: Evidence for diamond growth from slab melts,
Lithos, 265, 108–124, https://doi.org/10.1016/j.lithos.2016.08.035, 2016. a
Townsend, J. P., Chang, Y.-Y., Lou, X., Merino, M., Kirklin, S. J., Doak,
J. W., Issa, A., Wolverton, C., Tkachev, S. N., Dera, P., and Jacobsen,
S. D.: Stability and equation of state of post-aragonite BaCO3, Phys. Chem. Miner., 40, 447–453, https://doi.org/10.1007/s00269-013-0582-8,
2013. a, b, c, d
Wirth, R., Kaminsky, F., Matsyuk, S., and Schreiber, A.: Unusual micro- and
nano-inclusions in diamonds from the Juina Area, Brazil, Earth Planet.
Sc. Lett., 286, 292–303, https://doi.org/10.1016/j.epsl.2009.06.043, 2009. a
Zhang, Y.-F., Liu, J., Qin, Z.-X., Lin, C.-L., Xiong, L., Li, R., and Bai,
L.-G.: A high-pressure study of PbCO3 by XRD and Raman spectroscopy,
Chinese Physics C, 37, 038001, https://doi.org/10.1088/1674-1137/37/3/038001, 2013. a
Zucchini, A., Prencipe, M., Belmonte, D., and Comodi, P.: Ab initio study of
the dolomite to dolomite-II high-pressure phase transition, Eur.
J. Mineral., 29, 227–238, https://doi.org/10.1127/ejm/2017/0029-2608, 2017. a
Short summary
Carbonates play a key role in the chemistry and dynamics of our planet. The role of SrCO3 in the deep mantle has received little attention due to its low abundance. However, knowing the high-pressure phase behaviour of natural carbonates across its full compositional range is essential to evaluate effects of chemical substitution in the system of deep-Earth carbonates. We performed powder and single-crystal X-ray diffraction up to 49 GPa and observed a phase transition in SrCO3 at around 26 GPa.
Carbonates play a key role in the chemistry and dynamics of our planet. The role of SrCO3 in the...