Articles | Volume 32, issue 6
Eur. J. Mineral., 32, 575–586, 2020
https://doi.org/10.5194/ejm-32-575-2020
Eur. J. Mineral., 32, 575–586, 2020
https://doi.org/10.5194/ejm-32-575-2020

Research article 03 Nov 2020

Research article | 03 Nov 2020

Equation of state and high-pressure phase behaviour of SrCO3

Nicole Biedermann et al.

Related authors

In situ micro-FTIR spectroscopic investigations of synthetic ammonium phengite under pressure and temperature
Nada Abdel-Hak, Bernd Wunder, Ilias Efthimiopoulos, and Monika Koch-Müller
Eur. J. Mineral., 32, 469–482, https://doi.org/10.5194/ejm-32-469-2020,https://doi.org/10.5194/ejm-32-469-2020, 2020
Short summary
Advanced source apportionment of size-resolved trace elements at multiple sites in London during winter
S. Visser, J. G. Slowik, M. Furger, P. Zotter, N. Bukowiecki, F. Canonaco, U. Flechsig, K. Appel, D. C. Green, A. H. Tremper, D. E. Young, P. I. Williams, J. D. Allan, H. Coe, L. R. Williams, C. Mohr, L. Xu, N. L. Ng, E. Nemitz, J. F. Barlow, C. H. Halios, Z. L. Fleming, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 11291–11309, https://doi.org/10.5194/acp-15-11291-2015,https://doi.org/10.5194/acp-15-11291-2015, 2015
Short summary
Kerb and urban increment of highly time-resolved trace elements in PM10, PM2.5 and PM1.0 winter aerosol in London during ClearfLo 2012
S. Visser, J. G. Slowik, M. Furger, P. Zotter, N. Bukowiecki, R. Dressler, U. Flechsig, K. Appel, D. C. Green, A. H. Tremper, D. E. Young, P. I. Williams, J. D. Allan, S. C. Herndon, L. R. Williams, C. Mohr, L. Xu, N. L. Ng, A. Detournay, J. F. Barlow, C. H. Halios, Z. L. Fleming, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 2367–2386, https://doi.org/10.5194/acp-15-2367-2015,https://doi.org/10.5194/acp-15-2367-2015, 2015
Short summary

Cited articles

Angel, R. J., Alvaro, M., and Gonzalez-Platas, J.: EosFit7c and a Fortran module (library) for equation of state calculations, Z. Kristallogr., 229, 405–419, https://doi.org/10.1515/zkri-2013-1711, 2014. a, b
Antao, S. M. and Hassan, I.: The orthorhombic structure of CaCO3, SrCO3, PbCO3 and BaCO3: Linear structural trends, The Canadian Mineralogist, 47, 1245–1255, https://doi.org/10.3749/canmin.47.5.1245, 2009. a, b
Arapan, S. and Ahuja, R.: High-pressure phase transformations in carbonates, Phys. Rev. B, 82, 184115, https://doi.org/10.1103/physrevb.82.184115, 2010. a, b
Bayarjargal, L., Fruhner, C.-J., Schrodt, N., and Winkler, B.: CaCO3 phase diagram studied with Raman spectroscopy at pressures up to 50  GPa and high temperatures and DFT modeling, Phys. Earth Planet. In., 281, 31–45, https://doi.org/10.1016/j.pepi.2018.05.002, 2018. a, b, c
Biedermann, N., Speziale, S., Winkler, B., Reichmann, H. J., Koch-Müller, M., and Heide, G.: High-pressure phase behavior of SrCO3: an experimental and computational Raman scattering study, Phys. Chem. Miner., 44, 335–343, https://doi.org/10.1007/s00269-016-0861-2, 2017a. a, b, c, d, e
Download
Short summary
Carbonates play a key role in the chemistry and dynamics of our planet. The role of SrCO3 in the deep mantle has received little attention due to its low abundance. However, knowing the high-pressure phase behaviour of natural carbonates across its full compositional range is essential to evaluate effects of chemical substitution in the system of deep-Earth carbonates. We performed powder and single-crystal X-ray diffraction up to 49 GPa and observed a phase transition in SrCO3 at around 26 GPa.