Articles | Volume 37, issue 1
https://doi.org/10.5194/ejm-37-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/ejm-37-1-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Insights from the compositional evolution of a multi-coloured, zoned tourmaline from the Cruzeiro pegmatite, Minas Gerais, Brazil
Giovanni B. Andreozzi
CORRESPONDING AUTHOR
Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
CNR–IGAG c/o Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
Claudia Gori
independent researcher: Largo Gaetano De Sanctis, 7, 00179 Rome, Italy
Henrik Skogby
Department of Geosciences, Swedish Museum of Natural History, P.O. Box 50007, 10405 Stockholm, Sweden
Ulf Hålenius
Department of Geosciences, Swedish Museum of Natural History, P.O. Box 50007, 10405 Stockholm, Sweden
Alessandra Altieri
Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
Ferdinando Bosi
Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
CNR–IGAG c/o Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
Related authors
Beatrice Celata, Ferdinando Bosi, Kira A. Musiyachenko, Andrey V. Korsakov, and Giovanni B. Andreozzi
Eur. J. Mineral., 36, 797–811, https://doi.org/10.5194/ejm-36-797-2024, https://doi.org/10.5194/ejm-36-797-2024, 2024
Short summary
Short summary
The discovery of the K-dominant tourmaline maruyamaite with microdiamond inclusions suggested its ultrahigh-pressure formation. We analyzed the role of K in the tourmaline structure, with a special focus on its stability. High pressure is necessary to squeeze the large cation K+ in the stiff framework of tourmaline, although K is the underdog component if Na+ is present in the mineralizing fluid. K-tourmaline is stable at high pressure, overcoming the stereotype of a mere crustal component.
Alessandra Altieri, Federico Pezzotta, Giovanni B. Andreozzi, Henrik Skogby, and Ferdinando Bosi
Eur. J. Mineral., 35, 755–771, https://doi.org/10.5194/ejm-35-755-2023, https://doi.org/10.5194/ejm-35-755-2023, 2023
Short summary
Short summary
Elba tourmaline crystals commonly display a sharp transition to dark colors at the analogous termination, but the mechanisms leading to the formation of such terminations are unclear. Here we propose a general genetic model in which, as a consequence of a pocket rupture event, chemical alteration of early formed Fe-/Mn-rich minerals in the enclosing pegmatite was responsible for the release of Fe and/or Mn in the geochemical system, allowing the formation of the late-stage dark terminations.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 1005–1010, https://doi.org/10.5194/ejm-36-1005-2024, https://doi.org/10.5194/ejm-36-1005-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 917–923, https://doi.org/10.5194/ejm-36-917-2024, https://doi.org/10.5194/ejm-36-917-2024, 2024
Beatrice Celata, Ferdinando Bosi, Kira A. Musiyachenko, Andrey V. Korsakov, and Giovanni B. Andreozzi
Eur. J. Mineral., 36, 797–811, https://doi.org/10.5194/ejm-36-797-2024, https://doi.org/10.5194/ejm-36-797-2024, 2024
Short summary
Short summary
The discovery of the K-dominant tourmaline maruyamaite with microdiamond inclusions suggested its ultrahigh-pressure formation. We analyzed the role of K in the tourmaline structure, with a special focus on its stability. High pressure is necessary to squeeze the large cation K+ in the stiff framework of tourmaline, although K is the underdog component if Na+ is present in the mineralizing fluid. K-tourmaline is stable at high pressure, overcoming the stereotype of a mere crustal component.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 599–604, https://doi.org/10.5194/ejm-36-599-2024, https://doi.org/10.5194/ejm-36-599-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 525–528, https://doi.org/10.5194/ejm-36-525-2024, https://doi.org/10.5194/ejm-36-525-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 361–367, https://doi.org/10.5194/ejm-36-361-2024, https://doi.org/10.5194/ejm-36-361-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 165–172, https://doi.org/10.5194/ejm-36-165-2024, https://doi.org/10.5194/ejm-36-165-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 1073–1078, https://doi.org/10.5194/ejm-35-1073-2023, https://doi.org/10.5194/ejm-35-1073-2023, 2023
Daniel Atencio, Andrezza A. Azzi, Kai Qu, Ritsuro Miyawaki, Ferdinando Bosi, and Koichi Momma
Eur. J. Mineral., 35, 1027–1030, https://doi.org/10.5194/ejm-35-1027-2023, https://doi.org/10.5194/ejm-35-1027-2023, 2023
Short summary
Short summary
This article introduces a new nomenclature system for the cerite group minerals. This system was necessary to allow the nomenclature of new species of minerals that are currently being described.
Ian E. Grey, Stephanie Boer, Colin M. MacRae, Nicholas C. Wilson, William G. Mumme, and Ferdinando Bosi
Eur. J. Mineral., 35, 909–919, https://doi.org/10.5194/ejm-35-909-2023, https://doi.org/10.5194/ejm-35-909-2023, 2023
Short summary
Short summary
The paper describes the formal establishment of the paulkerrite group of minerals and its nomenclature. It includes the application of a site-merging procedure, coupled with a site-total-charge analysis, to obtain unambiguous end-member formulae. Application of the procedure has resulted in the revision of the end-member formulae for several of the group members.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 891–895, https://doi.org/10.5194/ejm-35-891-2023, https://doi.org/10.5194/ejm-35-891-2023, 2023
Alessandra Altieri, Federico Pezzotta, Giovanni B. Andreozzi, Henrik Skogby, and Ferdinando Bosi
Eur. J. Mineral., 35, 755–771, https://doi.org/10.5194/ejm-35-755-2023, https://doi.org/10.5194/ejm-35-755-2023, 2023
Short summary
Short summary
Elba tourmaline crystals commonly display a sharp transition to dark colors at the analogous termination, but the mechanisms leading to the formation of such terminations are unclear. Here we propose a general genetic model in which, as a consequence of a pocket rupture event, chemical alteration of early formed Fe-/Mn-rich minerals in the enclosing pegmatite was responsible for the release of Fe and/or Mn in the geochemical system, allowing the formation of the late-stage dark terminations.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 659–664, https://doi.org/10.5194/ejm-35-659-2023, https://doi.org/10.5194/ejm-35-659-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 397–402, https://doi.org/10.5194/ejm-35-397-2023, https://doi.org/10.5194/ejm-35-397-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 285–293, https://doi.org/10.5194/ejm-35-285-2023, https://doi.org/10.5194/ejm-35-285-2023, 2023
Cristian Biagioni, Ferdinando Bosi, Daniela Mauro, Henrik Skogby, Andrea Dini, and Federica Zaccarini
Eur. J. Mineral., 35, 81–94, https://doi.org/10.5194/ejm-35-81-2023, https://doi.org/10.5194/ejm-35-81-2023, 2023
Short summary
Short summary
Dutrowite is the first tourmaline supergroup minerals having Ti as a species-defining chemical constituent. Its finding improves our knowledge on the crystal chemistry of this important mineral group and allows us to achieve a better picture of the mechanisms favouring the incorporation of Ti.
Ferdinando Bosi, Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 75–79, https://doi.org/10.5194/ejm-35-75-2023, https://doi.org/10.5194/ejm-35-75-2023, 2023
Dan Holtstam, Fernando Cámara, Andreas Karlsson, Henrik Skogby, and Thomas Zack
Eur. J. Mineral., 34, 451–462, https://doi.org/10.5194/ejm-34-451-2022, https://doi.org/10.5194/ejm-34-451-2022, 2022
Short summary
Short summary
A new mineral has been discovered, an amphibole, with the name ferri-taramite, which has now been approved by the International Mineralogical Association. The paper discusses the significance of the discovery in relation to other amphiboles found worldwide. This taramite is unique in that it is from a skarn associated with ore and is not of magmatic origin. For the description we have used many methods, including X-ray diffraction, chemical analyses and several types of spectroscopy.
Natale Perchiazzi, Ulf Hålenius, Nicola Demitri, and Pietro Vignola
Eur. J. Mineral., 32, 265–273, https://doi.org/10.5194/ejm-32-265-2020, https://doi.org/10.5194/ejm-32-265-2020, 2020
Short summary
Short summary
Type material for heliophyllite, preserved in the Swedish Museum of Natural History in Stockholm, was re-investigated through a combined EPMA (electron probe X-ray microanalysis), Raman, and X-ray powder diffraction (XRPD) and single-crystal study. EPMA chemical data, together with Raman and single-crystal structural studies, point to heliophyllite being identical to ecdemite. XRPD synchrotron data highlight the presence of a minor quantity of finely admixed finnemanite in the analyzed material.
Related subject area
Ore deposits and mineral resources
Micro- to nano-sized solid inclusions in magnetite record skarn reactions
First in situ Lu–Hf garnet date for a lithium–caesium–tantalum (LCT) pegmatite from the Kietyönmäki Li deposit, Somero–Tammela pegmatite region, SW Finland
Mineralogy and mineral chemistry of detrital platinum-group minerals and gold particles from the Elbe, Germany
Multistage fluorite mineralization in the southern Black Forest, Germany: evidence from rare earth element (REE) geochemistry
Vibrational spectroscopic study of three Mg–Ni mineral series in white and greenish clay infillings of the New Caledonian Ni-silicate ores
New data on gersdorffite and associated minerals from the Peloritani Mountains (Sicily, Italy)
A remarkable discovery of electrum on the island of Sylt, northern Germany, and its Scandinavian origin
Igor González-Pérez, José María González-Jiménez, Lola Yesares, Antonio Acosta-Vigil, Jordi Llopís, and Fernando Gervilla
Eur. J. Mineral., 36, 925–941, https://doi.org/10.5194/ejm-36-925-2024, https://doi.org/10.5194/ejm-36-925-2024, 2024
Short summary
Short summary
This study examines solid nano-inclusions in magnetite from the La Víbora magnesian skarn, Spain, revealing insights into mineral formation. We found two types of inclusions: representing fossilized skarn reactions and precipitated from supersaturated fluids. Nano-inclusions provide valuable clues about the Fe mineralization event, highlighting the significance of nano-inclusions in understanding geological processes and resource exploration.
Krisztián Szentpéteri, Kathryn Cutts, Stijn Glorie, Hugh O'Brien, Sari Lukkari, Radoslaw M. Michallik, and Alan Butcher
Eur. J. Mineral., 36, 433–448, https://doi.org/10.5194/ejm-36-433-2024, https://doi.org/10.5194/ejm-36-433-2024, 2024
Short summary
Short summary
In situ Lu–Hf geochronology of garnet is applied to date a Finnish lithium–caesium–tantalum (LCT) pegmatite from the Somero–Tammela pegmatite region. The age obtained was 1801 ± 53 Ma, which is consistent with zircon ages of 1815–1740 Ma obtained from the same pegmatite. We show the in situ Lu–Hf method is a fast way of obtaining reliable age dates from LCT pegmatites.
Malte Junge, Simon Goldmann, and Hermann Wotruba
Eur. J. Mineral., 35, 439–459, https://doi.org/10.5194/ejm-35-439-2023, https://doi.org/10.5194/ejm-35-439-2023, 2023
Short summary
Short summary
The analysis by electron microprobe of platinum-group minerals, gold and cinnabar particles from heavy mineral concentrates of the Elbe showed a broad compositional variation of Os–Rus–Irs–(Pt) alloys as well as Pts–Fe alloys. The comparison with the literature showed that different sources account for the heavy mineral concentrate. This compositional variation of the alloys is also of interest for other placers of platinum-group minerals worldwide.
Robin Hintzen, Wolfgang Werner, Michael Hauck, Reiner Klemd, and Lennart A. Fischer
Eur. J. Mineral., 35, 403–426, https://doi.org/10.5194/ejm-35-403-2023, https://doi.org/10.5194/ejm-35-403-2023, 2023
Short summary
Short summary
The diversity of chemical patterns in multi-stage fluorite mineralization from two neighbouring deposits in the Black Forest is investigated. From over 70 samples, 7 fluorite groups and 3 hydrothermal events are identified after chemical and mathematical classification. The relative chronology and features suggest different mineralization histories and source aquifers for both deposits despite their proximity. Genetic differences are likely controlled by different behaviours of their host rocks.
Emmanuel Fritsch, Etienne Balan, Sabine Petit, and Farid Juillot
Eur. J. Mineral., 33, 743–763, https://doi.org/10.5194/ejm-33-743-2021, https://doi.org/10.5194/ejm-33-743-2021, 2021
Short summary
Short summary
The study presents and discusses mid- and near-infrared spectra of three Mg–Ni mineral series (serpentine-like and talc-like minerals, sepiolite) commonly found in reactivated faults and sequences of clay infillings of the New Caledonian Ni-silicate deposits. This spectroscopic study sheds light on the nature of the residual mineral phases found in the clay infillings (serpentine-like minerals) and reveals the aptitude of the newly formed minerals (talc-like minerals and sepiolite) to store Ni.
Daniela Mauro, Cristian Biagioni, and Federica Zaccarini
Eur. J. Mineral., 33, 717–726, https://doi.org/10.5194/ejm-33-717-2021, https://doi.org/10.5194/ejm-33-717-2021, 2021
Short summary
Short summary
This work reports the full crystal-chemical characterization of gersdorffite from Contrada Zillì (Peloritani Mountains, Sicily, Italy). The structural type shown by gersdorffite (ordered polytype 213) and its chemistry agree with low-temperature crystallization conditions. Moreover, the chemical zoning of the studied crystals recorded changes in the crystallization physicochemical conditions. This zoning may be due to a multistage crystallization, related to the evolution of the ore deposits.
Jochen Schlüter, Stephan Schuth, Raúl O. C. Fonseca, and Daniel Wendt
Eur. J. Mineral., 33, 373–387, https://doi.org/10.5194/ejm-33-373-2021, https://doi.org/10.5194/ejm-33-373-2021, 2021
Short summary
Short summary
On the west coast of the German North Sea island of Sylt, an electrum–quartz pebble weighing 10.4 g was discovered in a cliff of Saalian glaciogenic sediments. This is an unusually large and rare precious metal to find. Within our paper we document and characterize this discovery. An attempt to investigate its provenance points towards a southern Norwegian origin. This leads to the conclusion that ice advance events were involved in transporting this pebble from Norway to Germany.
Cited articles
Altieri, A., Pezzotta, F., Skogby, H., Hålenius, U., and Bosi, F.: Blue growth zones caused by Fe2+ in tourmaline crystals from the San Piero in Campo gem-bearing pegmatites, Elba Island, Italy, Mineral. Mag., 86, 910–919, https://doi.org/10.1180/mgm.2022.101, 2022.
Andreozzi, G. B., Ottolini, L., Lucchesi, S., Graziani, G., and Russo, U.: Crystal chemistry of the axinite-group minerals: A multi-analytical approach, Am. Mineral., 85, 698–706, https://doi.org/10.2138/am-2000-5-607, 2000.
Andreozzi, G. B., Lucchesi, S., Graziani, G., and Russo, U.: Site distribution of Fe2+ and Fe3+ in the axinite mineral group: New crystal-chemical formula, Am. Mineral., 89, 1763–1771, https://doi.org/10.2138/am-2004-11-1223, 2004.
Andreozzi, G. B., Bosi, F., and Longo, M.: Linking Mössbauer and structural parameters in elbaite-schorl-dravite tourmalines, Am. Mineral., 93, 658–666, 2008.
Berryman, E. J., Wunder, B., Ertl, A., Koch-Müller, M., Rhede, D., Scheidl, K., Giester, G., and Heinrich, W.: Influence of the X-site composition on tourmaline's crystal structure: Investigation of synthetic K-dravite, dravite, oxy-uvite, and magnesio-foitite using SREF and Raman spectroscopy, Phys. Chem. Miner., 43, 83–102, https://doi.org/10.1007/s00269-015-0776-3, 2016.
Bilal, E., César-Mendes, J., Correia-Neves, J. M., and Nasraoui, M.: Chemistry of some pegmatites of São José da Safira area, Minas Gerais, Brazil, Rev. Rom. Mat., 78, 4–6, 1997.
Bilal, E., César-Mendes, J., Correia-Neves, J. M., Nasraoui, M., and Fuzikawa, K.: Chemistry of tourmalines in some pegmatites of São José da Safira area, Minas Gerais, Brazil. J. Geosci., 43, 33–38, 1998.
Bloodaxe, E. S., Hughes J. M., Dyar, M. D., Grew, E. S., and Guidotti, C. V.: Linking structure and chemistry in the Schorl-Dravite series, Am. Min., 84, 922–929, 1999.
Bosi, F.: Bond-valence constraints around the O1 site of tourmaline, Mineral. Mag., 77, 343–351, https://doi.org/10.1180/minmag.2013.077.3.08, 2013.
Bosi, F. and Lucchesi, S.: Crystal chemistry of the schorl-dravite series, Eur. J. Mineral., 16, 335–344, https://doi.org/10.1127/0935-1221/2004/0016-0335, 2004.
Bosi, F. and Lucchesi, S.: Crystal chemical relationships in the tourmaline group: Structural constraints on chemical variability, Am. Mineral., 92, 1054–1063, https://doi.org/10.2138/am.2007.2370, 2007.
Bosi, F., Andreozzi, G. B., Federico, M., Graziani, G., and Lucchesi, S.: Crystal chemistry of the elbaite-schorl series, Am. Mineral., 90, 1784–1792, https://doi.org/10.2138/am.2005.1827, 2005.
Bosi, F., Andreozzi, G. B., Skogby, H., Lussier, A. J., Yassir, A., and Hawthorne, F. C.: Fluor-elbaite, Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3F, a new mineral species of the tourmaline supergroup, Am. Mineral., 98, 297–303, https://doi.org/10.2138/am.2013.4285, 2013.
Bosi, F., Andreozzi, G. B., and Skogby, H.: Experimental evidence for partial Fe2+ disorder at the Y and Z sites of tourmaline: a combined EMP, SREF, MS, IR and OAS study of schorl, Mineral. Mag., 79, 515–528, https://doi.org/10.1180/minmag.2015.079.3.01, 2015.
Bosi, F., Reznitskii, L., Hålenius, U., and Skogby, H.: Crystal chemistry of Al-V-Cr oxy-tourmalines from Sludyanka complex, Lake Baikal, Russia, Eur. J. Mineral., 29, 457–472, https://doi.org/10.1127/ejm/2017/0029-2617, 2017.
Bosi, F., Naitza, S., Skogby, H., Secchi, F., Conte, A. M., Cuccuru, S., Hålenius, U., De La Rosa, N., Kristiansson, P., Nilsson, E. J. C., Ros, L., and Andreozzi, G. B.: Late magmatic controls on the origin of schorlitic and foititic tourmalines from late-Variscan peraluminous granites of the Arbus pluton (SW Sardinia, Italy): Crystal-chemical study and petrological constraints, Lithos, 308–309, 395–411, https://doi.org/10.1016/j.lithos.2018.02.013, 2018.
Boukili, B., Holtz, F., Robert, J. L., and Beny, J. M.: “Fe–F avoidance rule” in ferrous-aluminous (OH,F) biotites, Schweizerische mineralogisch petrographisches Mitteilungen, 82, 549–559, 2002.
Brown, I. D. and Altermatt, D.: Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database, Acta Crystallogr. B, 41, 244–247, 1985.
Buřival, Z. and Novák, M.: Secondary blue tourmaline after garnet from elbaite-subtype pegmatites; implications for source and behavior of Ca and Mg in fluids, J. Geosci., 63, 111–122, https://doi.org/10.3190/jgeosci.257, 2018.
Burnham, C. W.: Magmas and hydrothermal fluids, in: Geochemistry of Hydrothermal Ore Deposits, 2nd Edn., edited by: Barnes, H. L., Wiley-Interscience, New York, 71–136, 1979.
Cámara, F., Ottolini, L., and Hawthorne, F. C.: Crystal chemistry of three tourmalines by SREF, EMPA, and SIMS, Am. Mineral., 87, 1437–1442, https://doi.org/10.2138/am-2002-1021, 2002.
César-Mendes, J.: Mineralogia e gênese dos pegmatitos turmaliníferos da Mina do Cruzeiro, São Josè da Safira, Minas Gerais, PhD Thesis, Univ. São Paulo, São Paulo, Brazil, 1995 (in Portuguese).
Černý, P.: Rare-element granitic pegmatites. part I: Anatomy and internal evolution of pegmatitic deposits, Geosci. Can., 18, 49–67, 1991.
Černý, P. and Ercit, T. S.: The classification of granitic pegmatites revisited, Can. Mineral., 43, 2005–2026, https://doi.org/10.2113/gscanmin.43.6.2005, 2005.
Černý, P., London, D., and Novak, M.: Granitic pegmatites as reflections of their sources, Elements, 8, 289–294, https://doi.org/10.2113/gselements.8.4.289, 2012.
de Mello, F. M. and Bilal, E.: Ages constraints in pegmatite province related to charnockitic host rocks in Minas Gerais, Brazil, Rev. Rom. Mat., 85, 94–98, 2012.
Dutrow, B. L. and Henry, D. J.: Complexly zoned fibrous tourmaline, Cruzeiro mine, Minas Gerais, Brazil: A record of evolving magmatic and hydrothermal fluids, Can. Mineral., 38, 131–143, https://doi.org/10.2113/gscanmin.38.1.131, 2000.
Dutrow, B. L. and Henry, D. J.: Tourmaline: A geologic DVD, Elements, 7, 301–306, https://doi.org/10.2113/gselements.7.5.301, 2011.
Dyar, M. D., Taylor, M. E., Lutz, T. M., Francis, C. A., Guidotti, C. V., and Wise, M.: Inclusive chemical characterization of tourmaline: Mössbauer study of Fe valence and site occupancy, Am. Mineral., 83, 848–864, https://doi.org/10.2138/am-1998-7-817, 1998.
Ertl, A., Schuster, R., Hughes, J. M., Ludwig, T., Meyer, H.-P., Finger, F., Dyar, M. D., Ruschel, K., Rossman, G. R., Klötzli, U., Brandstätter, F., Lengauer, C. L., and Tillmanns, E.: Li-bearing tourmalines in Variscan granitic pegmatites from the Moldanubian nappes, Lower Austria, Eur. J. Mineral., 24, 695–715, https://doi.org/10.1127/0935-1221/2012/0024-2203, 2012.
Ertl, A., Kolitsch, U., Dyar, M. D., Meyer, H.-P., Henry, D. J., Rossman, G.R., Prem, M., Ludwig, T., Nasdala, L., Lengauer, C. L., Tillmanns, E., and Niedermayr, G.: Fluor-schorl, a new member of the tourmaline supergroup, and new data on schorl from the cotype localities, Eur. J. Mineral., 28, 163–177, https://doi.org/10.1127/ejm/2015/0027-2501, 2016.
Federico, M., Andreozzi, G. B., Lucchesi, S., Graziani, G., and Cesar-Mendes, J.: Crystal chemistry of tourmalines. I. Chemistry, compositional variations and coupled substitutions in the pegmatite dikes of the Cruzeiro mine, Minas Gerais, Brazil, Can. Mineral., 36, 415–431, 1998.
Fehér, B. and Zajzon, N.: Tourmalines of the Velence Granite Formation and the surrounding contact slate, Velence Mountains, Hungary, Central European Geology, 64, 38–58, https://doi.org/10.1556/24.2021.00005, 2021.
Fuge, R.: On the behavior of fluorine and chlorine during magmatic differentiation, Contrib. Mineral. Petr., 61, 245–249, 1977.
Gatta, G. D., Danisi, R. M., Adamo, I., Meven, M., and Diella, V.: A single-crystal neutron and X-ray diffraction study of elbaite, Phys. Chem. Miner., 39, 577–588, https://doi.org/10.1007/s00269-012-0513-0, 2012.
Gebert, W. and Zemann, J.: Messung des Ultrarot-Pleochroismus von Mineralen II. Der Pleochroismus der OH-Streckfrequenz in Turmalin, Neues Jb. Miner. Monat., 8, 232–235, https://doi.org/10.1007/BF01081565, 1965.
Gonzalez-Carreño, T., Fernandez, M., and Sanz, J.: Infrared and electron microprobe analysis in tourmalines, Phys. Chem. Miner., 15, 452–460, https://doi.org/10.1007/BF00311124, 1988.
Grice, J. D. and Ercit, T. S.: Ordering of Fe and Mg in the tourmaline crystal structure: the correct formula, Neues Jb. Miner. Abh., 165, 245–266, 1993.
Gysi, A. P. and Williams-Jones, A. E.: Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada: a reaction path model, Geochim. Cosmochim. Ac., 122, 324–352, https://doi.org/10.1016/j.gca.2013.08.031, 2013.
Hards, N. J.: Distribution of elements between the fluid phase and silicate melt phase of granites and nepheline syenites, Progress in experimental petrology, Nat. Env. Res. Council Publ. Ser., 3, 88–90, 1976.
Henry, D. J. and Dutrow, B. L.: The incorporation of fluorine in tourmaline: Internal crystallographic controls or external environmental influences?, Can. Mineral., 49, 41–56, https://doi.org/10.3749/canmin.49.1.41, 2011.
Henry, D. J., Novák, M., Hawthorne, F. C., Ertl, A., Dutrow, B., Uher, P., and Pezzotta, F.: Nomenclature of the tourmaline supergroup minerals, Am. Mineral., 96, 895–913, https://doi.org/10.2138/am.2011.3636, 2011.
Krivovichev, S.: Structural complexity of minerals: Information storage and processing in the mineral world, Mineral. Mag., 77, 275–326, https://doi.org/10.1180/minmag.2013.077.3.05, 2013.
Jolliff, B. L., Papike, J. J., and Shearer, C. K.: Tourmaline as a recorder of pegmatite evolution: Bob Ingersoll Pegmatite, Black Hills, South Dakota, Am. Mineral., 71, 472–500, 1986.
Lagarec, K. and Rancourt, D. G.: RECOIL. Mössbauer spectral analysis software for Windows, version 1.0, Department of Physics, University of Ottawa, Canada, 1998.
Lima, J. L., Scholz, R., Lana, C., Queiroga, G., and de Castro, M. P.: Mica and tourmaline geochemistry of pegmatites from Conselheiro Pena Pegmatite District, Minas Gerais, Brazil: Implications for pegmatite genesis and economic potential, Geochem. J., 53, 151–170, https://doi.org/10.2343/geochemj.2.0556, 2019.
Linnen, R. L., Van Lichtervelde, M., and Cerný, P.: Granitic pegmatites as sources of strategic metals, Elements, 8, 275–280, https://doi.org/10.2113/gselements.8.4.275, 2012.
London, D.: Granitic pegmatites: an assessment of current concepts and directions for the future, Lithos, 80, 281–303, https://doi.org/10.1016/j.lithos.2004.02.009, 2005.
London, D.: A petrologic assessment of internal zonation in granitic pegmatites, Lithos, 74–104, https://doi.org/10.1016/j.lithos.2013.10.025, 2014.
London, D.: Ore-forming processes within granitic pegmatites, Ore Geol. Rev., 101, 349–383, https://doi.org/10.1016/j.oregeorev.2018.04.020, 2018.
Lussier, A. J. and Hawthorne, F. C.: Oscillatory zoned liddicoatite from Anjanabonoina, central Madagascar. II. Compositional variation and mechanisms of substitution, Can. Mineral., 49, 89–104, https://doi.org/10.3749/2200026, 2011.
Lussier, A. J., Abdu, Y., Hawthorne, F. C., Michaelis, V. K., Aguiar, P. M., and Kroeker, S.: Oscillatory zoned liddicoatite from Anjanabonoina, central Madagascar. I. Crystal chemistry and structure by SREF and 11B and 27Al MAS NMR spectroscopy, Can. Mineral., 49, 63–88, https://doi.org/10.3749/canmin.49.1.63, 2011.
Manning, D. A. C.: The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 Kb, Contrib. Mineral. Petr., 76, 206–215, 1981.
Martin, R. F. and De Vito, C.: The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting, Can. Mineral., 43, 2027–2048, 2005.
Mattson, S. M. and Rossman, G. R.: Fe2+-Fe3+ interactions in tourmaline, Phys. Chem. Miner., 14, 163–171, https://doi.org/10.2113/gscanmin.43.6.2027, 1987.
Novák, M., Škoda, R., Gadas, P., Krmíček, L., and Černý, P.: Contrasting origins of the mixed (NYF + LCT) signature in granitic pegmatites, with examples from the Moldanubian Zone, Czech Republic, Can. Mineral., 50, 1077–1094, https://doi.org/10.3749/canmin.50.4.1077, 2012.
Pouchou, J. L. and Pichoir, F.: Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”, in: Heinrich, K. F. J. and Newbury, D. E., Electron Probe Quantitation, Plenum, New York, 31–75, https://doi.org/10.1007/978-1-4899-2617-3_4, 1991.
Roda-Robles, E., Pesquera, A., Gil, P. P., Torres-Ruiz, J., and Fontan, F.: Tourmaline from the rare-element Pinilla pegmatite, (Central Iberian Zone, Zamora, Spain): chemical variation and implications for pegmatitic evolution, Mineral. Petr., 81, 249–263, https://doi.org/10.1007/s00710-004-0042-8, 2004.
Rosenberg, P. E. and Foit Jr., F. F.: Fe2+-F avoidance in silicates, Geochim. Cosmochim. Ac., 41, 345–346, 1977.
Shaw, R. A., Goodenough, K. M., Roberts, N. M. W., Horstwood, M. S. A., Chenery, S. R., and Gunn, A. G.: Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: a case study from the Lewisian Gneiss Complex of north-west Scotland, Precambrian Res., 281, 338–362, https://doi.org/10.1016/j.precamres.2016.06.008, 2016.
Shen, G., Lu, Q., and Xu, J.: Fluorannite: A new mineral of the mica group from the western suburb of Suzhou City, Ac. Petrol. Mineral., 19, 355–362, 2000 (in Chinese, English absract).
Simmons, W. B. and Webber, K. L.: Pegmatite genesis: state of the art, Eur. J. Mineral. 20, 421–438, https://doi.org/10.1127/0935-1221/2008/0020-1833, 2008.
Skogby, H., Bosi, F., and Lazor, P.: Short-range order in tourmaline: a vibrational spectroscopic approach to elbaite, Phys. Chem. Miner., 39, 811–816, https://doi.org/10.1007/s00269-012-0536-6, 2012.
Sheldrick, G. M.: Crystal structure refinement with SHELXL, Acta Crystallogr. C, 71, 3==8, 2015.
Tindle, A. G., Breaks, F. W., and Selway, J. B.: Tourmaline in petalite-subtype granitic pegmatites: evidence of fractionation and contamination from the Pakeagama Lake and Separation Lake areas of northwestern Ontario, Canada, Can. Mineral., 40, 753–788, https://doi.org/10.2113/gscanmin.40.3.753, 2002.
Tindle, A. G., Selway, J. B., and Breaks, F. W.: Liddicoatite and associated species from the McCombe spodumene-subtype rare-element granitic pegmatite, northwestern Ontario, Canada, Can. Mineral., 43, 769–793, https://doi.org/10.2113/gscanmin.43.2.769, 2005.
van Hinsberg, V. J., Henry, D. J., and Dutrow, B. L.: Tourmaline as a petrologic forensic mineral: A unique recorder of its geologic past, Elements, 7, 327–332, https://doi.org/10.2113/gselements.7.5.327, 2011.
Wadoski, E. R., Grew, E. S., and Yates, M. G.: Compositional evolution of tourmaline-supergroup minerals from granitic pegmatites in the Larsemann Hills, East Antarctica, Can. Mineral., 49, 381–405, https://doi.org/10.3749/canmin.49.1.381, 2011.
Watenphul, A., Burgdorf, M., Schlüter, J., Horn, I., Malcherek, T., and Mihailova, B.: Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: II. Tourmalines, Am. Mineral., 101, 970–985, https://doi.org/10.2138/am-2016-5530, 2016.
Wright, S. E., Foley, J. A., and Hughes, J. M.: Optimization of site occupancies in minerals using quadratic programming, Am. Mineral., 85, 524–531, https://doi.org/10.2138/am-2000-0414, 2000.
Short summary
The compositional variation in a multi-coloured, zoned tourmaline from the Cruzeiro pegmatite, Brazil, reflects melt chemical evolution during the entire pegmatite differentiation. In uncontaminated granitic pegmatite systems such as that of Cruzeiro, the compositional evolution of tourmaline progresses from schorl to fluor-elbaite, rather than directly from schorl to elbaite, to reflect co-enrichment in Li and F during fractional crystallization.
The compositional variation in a multi-coloured, zoned tourmaline from the Cruzeiro pegmatite,...