

Supplement of

Insights from the compositional evolution of a multi-coloured, zoned tourmaline from the Cruzeiro pegmatite, Minas Gerais, Brazil

Giovanni B. Andreozzi et al.

Correspondence to: Giovanni B. Andreozzi (gianni.andreozzi@uniroma1.it)

The copyright of individual parts of the supplement might differ from the article licence.

1 S1. Mössbauer data and Fe speciation

Room temperature ⁵⁷Fe Mössbauer spectra of the four tourmaline samples are typical of 2 3 paramagnetic silicates and show two main absorptions in the region from -1 to +3 mm/s. The 4 spectra were deconvoluted using Lorentzian doublets based on previous experience and in 5 agreement with models already used in the existing literature (e.g., Andreozzi et al., 2008; Bosi et al., 2015). Quantification of Fe³⁺/Fe_{Tot} ratios was obtained through evaluation of the 6 absorption area of the refined doublets. The four doublets assigned to Fe^{2+} have δ values in the 7 range 1.0÷1.1 mm/s and are distinguished by their quadrupole splitting values: $\Delta E_Q \sim 2.6$, 2.3, 8 9 2.0 and 1.4 mm/s (Table S1).

The first three doublets, conventionally labelled Y1, Y2 and Y3 are interpreted as Fe^{2+} at the Y 10 11 sites with different nearest and next-nearest neighbour coordination environments and may represent up ~100% of Fe_{Tot} (Fig. S1). The fourth Fe^{2+} doublet, required to satisfactorily 12 13 model the absorption for T2, T3 and T4 samples, is interpreted as Fe^{2+} at a different crystallographic site of area up to 29% of the Fe_{Tot} (in T4). According to the multianalytical 14 approach results, this doublet is compatible with Fe^{2+} at the Z site. An additional, low intensity 15 doublet –centred at $\delta \le 0.3$ mm/s and assigned to ^YFe³⁺– was introduced to improve the fit for 16 samples T3 and T4, but its absorption was too low ($\leq 4\%$ of the Fe_{Tot}) for its hyperfine 17 parameters to be reliable. 18

Table S1. Room temperature ⁵⁷Fe Mössbauer parameters and Fe site assignment for the selected fragments of a multi-coloured, zoned tournaline single crystal from the Cruzeiro pegmatite (Minas Gerais, Brazil)

23		,				
24	Sample	δ	ΔE_Q	Γ	Assignment	Area (%)
24	T1	1.08	2.53	0.28	${\rm Fe}^{2+}(Y1)$	35
25		1.10	2.31	0.26	${\rm Fe}^{2+}$ (<i>Y</i> 2)	37
26		1.16	1.98	0.56	${\rm Fe}^{2+}$ (<i>Y</i> 3)	28
21	T2	1.09	2.49	0.28	${\rm Fe}^{2+}(Y1)$	39
28		1.10	2.21	0.36	${\rm Fe}^{2+}$ (<i>Y</i> 2)	44
		1.04	1.41	0.56	${\rm Fe}^{2+}$ (<i>Y</i> 3)	17
29	T3*	1.10	2.51	0.38	${\rm Fe}^{2+}(Y1)$	34
30		1.10	2.25	0.28	${\rm Fe}^{2+}$ (<i>Y</i> 2)	24
21		1.10	1.90	0.38	${\rm Fe}^{2+}$ (<i>Y</i> 3)	16
31		1.00	1.38	0.68	${\rm Fe}^{2+}(Z)$	23
32		0.30	0.50	0.60	${\rm Fe}^{3+}(Y)$	3
33	T4	1.10	2.56	0.24	${\rm Fe}^{2+}(Y1)$	23
34		1.09	2.34	0.24	${\rm Fe}^{2+}$ (<i>Y</i> 2)	27
0-1		1.07	2.07	0.29	${\rm Fe}^{2+}(Y3)$	17
35		1.07	1.47	0.63	${\rm Fe}^{2+}(Z)$	29
36		0.19	0.12	0.22	${\rm Fe}^{3+}(Y)$	4

21 22

Figure S1: Tourmaline sample T1 Mössbauer spectrum at room temperature

43 S2. Single-crystal X-ray diffraction data

	Sample	T1	T2	T3*	T4
	Crystal size (mm)	$0.25 \times 0.30 \times 0.40$	$0.30 \times 0.40 \times 0.40$	$0.20 \times 0.20 \times 0.20$	$0.20 \times 0.25 \times 0.30$
	<i>a</i> (Å)	15.8984(2)	15.9315(3)	15.9801(2)	15.9688(3)
	<i>c</i> (Å)	7.1226(1)	7.1286(1)	7.1577(1)	7.1698(1)
	$V(\text{\AA}^3)$	1559.11(4)	1566.92(6)	1582.93(5)	1583.37(6)
	Reciprocal space range	$-26 \le h \le 24$	$-22 \le h \le 26$	$-19 \leq h \leq 26$	$-19 \le h \le 26$
	hkl	$-26 \le k \le 19$	$-25 \le k \le 23$	$-25 \leq k \leq 18$	$-26 \le k \le 26$
		$-11 \le l \le 19$	$-6 \le l \le 11$	$-8 \leq l \leq 11$	$-11 \le l \le 12$
	Number reflections	7503	7519	7626	7532
	Unique reflections	1683	1431	1565	1771
	R _{int} (%)	1.44	1.45	1.74	1.41
	Extinction coefficient	0.0020(2)	0.0067(3)	0.0032(2)	0.0038(3)
	Flack parameter	0.21(2)	0.165(19)	0.021(17)	0.052(16)
	wR2 (%)	4.47	4.13	3.94	3.68
	<i>R</i> 1 (%) all data	1.80	1.62	1.60	1.34
40	GooF	1.061	1.073	1.118	1.097
49 50 51 52 53	Absorption correction met refinement program: SHEI *Data from Bosi et al. 201	hod: SADABS; Refine LXL-2013 5	ement method: Full-ma	atrix last-squares on F	² ; Structural
54					
55					
56					
57 58					
50					
59					
60					
61					
62					
63					
64					
65					
66					

Table S2. Single-crystal X-ray diffraction data for the selected fragments of a multi-coloured, zoned tourmaline
 from the Cruzeiro pegmatite (Minas Gerais, Brazil)

		T1	T2	T3*	T4
X	x	0	0	0	0
	у	0	0	0	0
	z	0.2367(4)	0.2343(4)	0.2283(4)	0.2303(3)
	$U_{ m eq}$	0.0232(7)	0.0242(8)	0.0244(8)	0.0234(7)
Y	x	0.12397(5)	0.12469(4)	0.12476(3)	0.12464(2)
-	v	0.06198(3)	0.06235(2)	0.06238(2)	0.06232(2)
	7	0.62798(12)	0.62660(11)	0.62790(8)	0.62917(7)
	$\widetilde{U}_{ m eq}$	0.00894(18)	0.00910(14)	0.00854(10)	0.00865(10)
7	r	0 29763(4)	0 29803(3)	0 29854(3)	0.29842(2)
L	v	0.29703(1) 0.26077(4)	0.25005(3) 0.26118(3)	0.25051(3) 0.26169(3)	0.29012(2) 0.26171(3)
	y 7	0.20077(1) 0.61149(10)	0.61134(9)	0.20109(3) 0.61082(8)	0.20171(3) 0.61110(7)
	$\widetilde{U}_{ m eq}$	0.00593(10)	0.00579(9)	0.00571(11)	0.00577(10)
Т	r	0.10050(0)	0 10076(8)	0 10106(2)	0 11008(6)
1	x	0.10930(9) 0.21900(19)	0.10970(8) 0.21052(16)	0.19190(2) 0.19008(2)	0.11000(0) 0.22016(12)
	у -	0.21099(10) 0.4557(4)	0.21933(10) 0.4556(2)	0.16996(3)	0.22010(13) 0.4552(2)
		0.4337(4) 0.0063(3)	0.4330(3)	0 00515(0)	0.4333(3) 0.0066(3)
	$U_{\rm eq}$	0.0003(3)	0.0000(3)	0.00313(9)	0.0000(3)
В	x	0.19197(3)	0.19200(3)	0.11019(7)	0.19185(2)
	v	0.18997(3)	0.18999(3)	0.22038(15)	0.18990(2)
	7	0	0	0.4551(3)	0
	$\tilde{U}_{ m eq}$	0.00481(8)	0.00501(8)	0.0070(3)	0.00513(8)
01	r	0	0	0	0
01	v	0	0	0	0
	y 7	0 7857(6)	0 7840(6)	0 7813(5)	0 7790(4)
	$\widetilde{U}_{ m eq}$	0.0574(16)	0.0531(14)	0.0343(8)	0.0273(6)
02	*	0.06091(7)	0.06116(6)	0.06170(5)	0.06150(5)
02	x	0.00081(7) 0.12162(14)	0.00110(0) 0.12232(12)	0.00170(3) 0.12340(11)	0.00139(3) 0.12317(0)
	у 7	0.12102(14) 0.4843(3)	0.12232(12) 0.4843(3)	0.12540(11) 0.4859(2)	0.12517(9) 0.4862(2)
	2. 11	0.4643(3)	0.4643(3)	0.4639(2) 0.0153(3)	0.4802(2) 0.0130(3)
	U _{eq}	0.0103(4)	0.0103(4)	0.0155(5)	0.0139(3)
O3	x	0.26888(14)	0.26917(13)	0.26830(12)	0.26730(11)
	У	0.13444(7)	0.13459(7)	0.13415(6)	0.13365(6)
	Z	0.5096(3)	0.5093(3)	0.5095(2)	0.5101(2)
	$U_{ m eq}$	0.0094(3)	0.0096(3)	0.0121(3)	0.0128(2)
O4	x	0.09310(7)	0.09313(6)	0.09322(5)	0.09324(5)
	у	0.18621(13)	0.18626(12)	0.18644(11)	0.18648(10)
	Z	0.0715(2)	0.0703(2)	0.0683(2)	0.06897(19)
	$U_{ m eq}$	0.0077(3)	0.0083(3)	0.0099(2)	0.0098(2)
05	x	0.18644(13)	0.18670(12)	0.18710(11)	0.18628(10)
	y	0.09322(6)	0.09335(6)	0.09355(6)	0.09314(5)
	z	0.0936(2)	0.0927(2)	0.0913(2)	0.09127(19)
	$U_{ m eq}$	0.0078(3)	0.0086(3)	0.0102(2)	0.0101(2)
06	x	0.19715(8)	0.19758(8)	0.19793(7)	0.19737(7)
	v	0.18698(8)	0.18730(8)	0.18757(7)	0.18712(7)
	z.	0.77587(18)	0.77556(18)	0.77571(15)	0.77653(14)
	$U_{ m eq}$	0.00701(19)	0.00708(18)	0.00864(17)	0.00872(16)
	~~	· /	· /	· /	· /

Table S3. Fractional atom coordinates (*x*, *y*, *z*) and equivalent isotropic displacement parameters (U_{eq} in Å²) for 68 the selected fragments of a multi-coloured, zoned tournaline from the Cruzeiro pegmatite (Minas Gerais, Brazil)

						69
O7	x	0.28560(8)	0.28551(8)	0.28511(7)	0.28501(6)	
	У	0.28572(8)	0.28578(7)	0.28568(7)	0.28545(6)	70
	z	0.08051(17)	0.08023(16)	0.07932(14)	0.07930(13)	71
	$U_{ m eq}$	0.00609(18)	0.00650(17)	0.00805(17)	0.00814(15)	11
						72
08	x	0.20993(8)	0.20989(8)	0.20980(7)	0.20973(6)	
	У	0.27047(9)	0.27052(8)	0.27062(8)	0.27052(7)	73
	Z.	0.44158(18)	0.44135(18)	0.44085(15)	0.44107(15)	
	$U_{ m eq}$	0.0073(2)	0.00780(19)	0.00931(18)	0.00938(16)	74
112		0.259(2)	0.259(2)	0.268(2)	0.260(2)	75
пз	X	0.238(3)	0.238(3)	0.208(2)	0.200(2)	-
	У	0.1290(14)	0.1291(13)	0.1341(12)	0.1298(11)	76
	z	0.380(3)	0.381(3)	0.389(5)	0.381(3)	
	$U_{ m iso}{}^{ m a}$	0.011	0.012	0.015	0.015	77

^a isotropic (U_{iso}) displacement parameters for H3-atom was constrained to have a U_{iso} 1.2 times the U_{eq} value of the O3 oxygen. *Data from Bosi et al. (2015)

79 80

Table S4. Selected mean bond distances (Å) and mean atomic numbers (m.a.n.) for the selected fragments of a multi-coloured, zoned tournaline from the Cruzeiro 85

pegmatite (Minas Gerais, Brazil)

Sample	T1	T2	T3*	T4
<x-o></x-o>	2.672	2.681	2.702	2.697
X-m.a.n.	10.42(13)	9.47(10)	7.70(1)	8.43(7)
< <i>Y</i> -O>	2.035	2.041	2.045	2.039
<i>Y</i> -m.a.n.	13.90(4)	16.57(5)	20.90(1)	19.76(8)
<z-0></z-0>	1.907	1.909	1.917	1.920
Z-m.a.n.	13 ^a	13 ^a	13.50(1)	13.34(4)
< <i>B</i> -O>	1.376	1.376	1.375	1.374
<i>B</i> -m.a.n.	5 ^a	5 ^a	5 ^a	5 ^a
< <i>T</i> -O>	1.619	1.620	1.622	1.620
	1 / ^a	1 / ^a	14 ^a	1/a

96

97 Figure S2: Polarized FTIR spectra perpendicular (E⊥c) and parallel (E||c) to the c-axis direction of the T4

98 crystal fragment (sample thickness 42 µm) of a colored, zoned tourmaline from the Cruzeiro pegmatite
 99 (Minas Gerais, Brazil). Peak positions are indicated.

Figure S3: Optical absorption spectra polarized perpendicular (E||a) and parallel (E||c) to the c-axis
 direction of the T1, T2 and T4 crystal fragments of a colored, zoned tourmaline from the Cruzeiro
 pegmatite (Minas Gerais, Brazil). Thickness of all samples: 100 μm.