Articles | Volume 36, issue 3
https://doi.org/10.5194/ejm-36-417-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-36-417-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Compressibility and thermal expansion of magnesium phosphates
Catherine Leyx
Laboratoire de Géologie, École normale supérieure–CNRS UMR8538, Université PSL, Paris, 75005, France
Peter Schmid-Beurmann
CORRESPONDING AUTHOR
Institut für Mineralogie, Universität Münster, 48194 Münster, Germany
Fabrice Brunet
ISTerre, Univ. Grenoble Alpes, USMB, CNRS, IRD, UGE, Grenoble, 38048 CEDEX 9, France
Christian Chopin
Laboratoire de Géologie, École normale supérieure–CNRS UMR8538, Université PSL, Paris, 75005, France
Christian Lathe
GeoForschungsZentrum Potsdam, 14473 Potsdam, Germany
Related authors
No articles found.
Alain Ragu, Luca Bindi, Paola Bonazzi, Laurent Remusat, and Christian Chopin
Eur. J. Mineral., 37, 627–638, https://doi.org/10.5194/ejm-37-627-2025, https://doi.org/10.5194/ejm-37-627-2025, 2025
Short summary
Short summary
A new rare-earth-bearing silicate is described from a manganese ore deposit in the Pyrenees. It belongs to the epidote family and is characterised by the formula Mn2+Ce(MgAlMn2+)(Si2O7)(SiO4)F(OH). This new mineral commonly contains inclusions of an Mn-rich yttrium borosilicate, a potentially new mineral of the hellandite family. This is a new type of occurrence for hellandite – while rare earths are under the spotlight.
Monika Koch-Müller, Christian Lathe, Bernd Wunder, Oona Appelt, Shrikant Bhat, Andreas Ebert, Robert Farla, Vladimir Roddatis, Anja Schreiber, and Richard Wirth
Eur. J. Mineral., 36, 1023–1036, https://doi.org/10.5194/ejm-36-1023-2024, https://doi.org/10.5194/ejm-36-1023-2024, 2024
Short summary
Short summary
We examined the influence of Al2O3 and H2O on the position of the coesite–stishovite transition by means of in situ X‑ray diffraction measurements with the large-volume press at the synchrotron PETRA III in Hamburg. The position of the transition was found to be shifted almost in parallel by about 1.5 GPa to lower pressures compared to results for the pure SiO2 system by Ono et al. (2017). Stishovite of this study containing Al and H is only partially quenchable but transforms back to coesite.
Marianna Corre, Arnaud Agranier, Martine Lanson, Cécile Gautheron, Fabrice Brunet, and Stéphane Schwartz
Geochronology, 4, 665–681, https://doi.org/10.5194/gchron-4-665-2022, https://doi.org/10.5194/gchron-4-665-2022, 2022
Short summary
Short summary
This study is focused on the accurate measurement of U and Th by wet chemistry and laser ablation methods to improve (U–Th)/He dating of magnetite and spinel. The low U–Th content and the lack of specific U–Th standards significantly limit the accuracy of (U–Th)/He dating. Obtained U–Th results on natural and synthetic magnetite and aluminous spinel samples analyzed by wet chemistry methods and LA-ICP-MS sampling have important implications for the (U–Th)/He method and dates interpretation.
Christian Lathe, Monika Koch-Müller, Bernd Wunder, Oona Appelt, Shrikant Bhat, and Robert Farla
Eur. J. Mineral., 34, 201–213, https://doi.org/10.5194/ejm-34-201-2022, https://doi.org/10.5194/ejm-34-201-2022, 2022
Short summary
Short summary
The equilibrium phase of A + HP clinoenstatite = forsterite + water was experimentally investigated at aH2O = 1 in situ. In cold subducting slabs, it is of relevance to transport water to large depths, initiating the formation of dense hydrous magnesium silicate (DHMS). At normal gradients, the huge water amount from this reaction induces important processes within the overlying mantle wedge. We additionally discuss the relevance of this reaction for intermediate-depth earthquake formation.
Cited articles
Amisano-Canesi, A.: Studio cristallografico di minerali di altissima pressione del Complesso Brossasco-Isasca (Dora-Maira meridionale), Doct. thesis, Univ. di Torino, 185 pp., 1994.
Amri, M. and Walton, R. I.: Negative thermal expansion in the aluminum and gallium phosphate zeotypes with CHA and AEI structure types, Chem. Mater., 21, 3380–3390, https://doi.org/10.1021/cm901140u, 2009.
Angel, R. J.: Equations of state, Rev. Mineral., 41, 35–59, https://doi.org/10.2138/rmg.2000.41.2, 2000.
Angel, R. J., Gonzalez-Platas, J., and Alvaro, M.: EosFit-7c and a Fortran module (library) for equation of state calculations, Z. Kristallogr., 229, 405–419, https://doi.org/10.1515/zkri-2013-1711, 2014.
Annersten, H. and Nord, A. G.: A high pressure phase of magnesium orthophosphate, Acta Chem. Scand., 34, 389–390, https://doi.org/10.3891/acta.chem.scand.34a-0389, 1980.
Berman, R. G.: Minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2, J. Petrol., 29, 445–522, https://doi.org/10.1093/petrology/29.2.445, 1988.
Berthet, G., Joubert, J. C., and Bertaut, E. F.: Vacancies ordering in new metastable orthophosphates (Co3□)P2O8 and (Mg3□)P2O8 with olivine-related structure, Z. Kristallogr., 136, 98–105, https://doi.org/10.1524/zkri.1972.136.1-2.98, 1972.
Bouhifd, M. A., Andrault, D., Fiquet, G., and Richet, P.: Thermal expansion of forsterite up to the melting point, Geophys. Res. Lett., 23, 1143–1146, https://doi.org/10.1029/96GL01118, 1996.
Brown, T. H., Berman, R. G., and Perkins, E. H.: PTA system – A GEO-CALC software package for the calculation and display of activity-temperature-pressure phase-diagrams, Am. Mineral., 74, 485–487, http://www.minsocam.org/ammin/AM74/AM74_485.pdf (last access: 6 May 2024), 1989.
Brunet, F. and Schaller, T.: Protons in the magnesium phosphates phosphoellenbergerite and holtedahlite: An IR and NMR study, Am. Mineral., 81, 385–394, https://doi.org/10.2138/am-1996-3-413, 1996.
Brunet, F. and Vielzeuf, D.: The farringtonite/Mg3(PO4)2-II transformation: a new curve for pressure calibration in piston-cylinder apparatus, Eur. J. Mineral., 8, 349–354, https://doi.org/10.1127/ejm/8/2/0349, 1996.
Brunet, F., Chopin, C., and Seifert, F.: Phase relations in the MgO-P2O5-H2O system and the stability of phosphoellenbergerite: petrological implications, Contrib. Mineral. Petr., 131, 54–70, https://doi.org/10.1007/s004100050378, 1998.
Brunet, F., Allan, D. R., Redfern, S. A. T., Angel, R. J., Miletich, R., Reichmann, H., Sergent, J., and Hanfland, M.: Compressibility and thermal expansivity of synthetic apatites, Ca5(PO4)3X, with X = OH, F, and Cl, Eur. J. Mineral., 11, 1023–1035, https://doi.org/10.1127/ejm/11/6/1023, 1999.
Brunet, F., Morineau, D., and Schmid-Beurmann, P.: Heat capacity of lazulite, MgAl2(PO4)2(OH)2, from 35 to 298 K and a (S–V) value for P2O5 to estimate phosphate entropy, Mineral. Mag., 68, 123–134, https://doi.org/10.1180/0026461046810175, 2004.
Cemič, L. and Schmid-Beurmann, P.: Lazulite stability relations in the system Al2O3-AlPO4-Mg3(PO4)2-H2O, Eur. J. Mineral., 7, 921–929, https://pubs.geoscienceworld.org/eurjmin/article-abstract/7/4/921/62752/Lazulite-stability-relations-in-the-system-Al-2-O?redirectedFrom=fulltext (last access: 4 May 2024), 1995.
Chopin, C., Klaska, R., Medenbach, O., and Dron, D.: Ellenbergerite, a new high-pressure Mg-Al-(Ti,Zr)-silicate with a novel structure based on face-sharing octahedra, Contrib. Mineral. Petr., 92, 316–321, https://doi.org/10.1007/BF00572160, 1986.
Chopin, C., Armbruster, T., Grew, E. S., Baronnet, A., Leyx, C., and Medenbach, O.: The triplite–triploidite supergroup: structural modulation in wagnerite, discreditation of magniotriplite, and the new mineral hydroxylwagnerite, Eur. J. Mineral., 26, 553–565, https://doi.org/10.1127/0935-1221/2014/0026-2386, 2014.
Comodi, P. and Zanazzi, P. F.: Structural study of ellenbergerite. Part II: Effects of high pressure, Eur. J. Mineral. 5, 831–838, https://doi.org/10.1127/ejm/5/5/0831, 1993a.
Comodi, P. and Zanazzi, P. F.: Structural study of ellenbergerite. Part I: Effects of high temperatures, Eur. J. Mineral., 5, 819–829, https://doi.org/10.1127/ejm/5/5/0819, 1993b.
Decker, D. L.: High-pressure equation of state for NaCl, KCl and CsCl, J. Appl. Phys., 42, 3239–3244, https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1792&context=facpub (last access: 6 May 2024), 1971.
Dodd, J. L.: Phase composition and dynamical studies of lithium iron phosphate, PhD thesis, California Institute of Technology, Pasadena, CA, 135 pp., https://thesis.library.caltech.edu/1662/1/JoannaDodd_thesis.pdf (last access: 6 May 2024), 2007.
Fang, B. D., Hu, Z. J., Shi, T., Liu, Y. M., Wang, X., Yang, D. P., Zhu, K., Zhao, X. Y., and Zhao, Z. F.: Research progress on the properties and applications of magnesium phosphate cement, Ceram. Int., 49, 4001–4016, https://doi.org/10.1016/j.ceramint.2022.11.078, 2022.
Finkelstein, G. J., Dena, P. K., Jahn, S., Oganov, A. R., Holl, C. M., Meng, Y., and Duffy, T.: Phase transitions and equation of state of forsterite to 90 GPa from single-crystal X-ray diffraction and molecular modeling. Am. Mineral., 90, 35–43, https://doi.org/10.2138/am.2014.4526, 2014.
Grevel, K., Nowlan, E. U., Fasshauer, D. W., and Burchard, M.: In situ X-ray investigation of lawsonite and zoisite at high pressures and temperatures, Am. Mineral., 85, 206–216, https://doi.org/10.2138/am-2000-0120, 2000a.
Grevel, K.-D., Burchard, M., Faßhauer, D. W., and Peun, T.: Pressure-volume-temperature behavior of diaspore and corundum: An in situ X-ray diffraction study comparing different pressure media, J. Geophys. Res., 105, 27877–27887, https://doi.org/10.1029/2000JB900323, 2000b.
Grew, E. S., Armbruster, T., Medenbach, O., Yates, M. G., and Carson, C. J.: Chopinite, [(Mg,Fe)3□](PO4)2, a new mineral isostructural with sarcopside, from a fluorapatite segregation in granulite-facies paragneiss, Larsemann Hills, Prydz Bay, East Antarctica, Eur. J. Mineral., 19, 229–245, https://doi.org/10.1127/0935-1221/2007/0019-1712, 2007.
Haque, M. A. and Chen, B.: Research progresses on magnesium phosphate cement: A review, Constr. Build. Mater., 211, 885–898, https://doi.org/10.1016/j.conbuildmat.2019.03.304, 2019.
Holland, T. J. B. and Powell, R.: An internally consistent thermodynamic dataset with uncertainties and correlations: 2. Data and results, J. Metamorph. Geol., 3, 343–370, https://doi.org/10.1111/j.1525-1314.2010.00923.x, 1985.
Hu, X., Zhai, K., Jia, M., Liu, Y., Wu, X., Wen, W., Xue, W., and Zhai, S.: Phase transition of Mg3(PO4)2 polymorphs at high-temperature: In-situ synchrotron X-ray diffraction and Raman spectroscopic study, Spectrochim. Acta A, 269, 120762, https://doi.org/10.1016/j.saa.2021.120762, 2022.
Jaulmes, S., Elfakir, A., Quarton, M., Brunet, F., and Chopin, C.: Structure cristalline de la phase haute température et haute pression de Mg3(PO4)2, J. Solid State Chem., 129, 341–345, https://doi.org/10.1006/jssc.1996.7262, 1997.
Knight, S.: Analytical expressions to determine the isothermal compressibility tensor and the isobaric thermal expansion tensor for monoclinic crystals: application to determine the direction of maximum compressibility in jadeite, Phys. Chem. Minerals, 37, 529–533, https://doi.org/10.1007/s00269-009-0353-8, 2010.
Kroll, H., Kirfel, A., Heinemann, R., and Barbier, B.: Volume thermal expansion and related thermophysical parameters in the Mg,Fe olivine solid-solution series, Eur. J. Mineral., 24, 935–956, https://doi.org/10.1127/0935-1221/2012/0024-2235, 2012.
Kroll, H., Kirfel, A., and Heinemann, R.: Axial thermal expansion and related thermophysical parameters in the Mg,Fe olivine solid-solution series, Eur. J. Mineral., 26, 607–621, https://doi.org/10.1127/0935-1221/2014/0026-2398, 2014.
Lacomba-Perales, R., Errandonea, D., Meng, Y., and Bettinelli, M.: High-pressure stability and compressibility of APO4 (A = La, Nd, Eu,Gd, Er, and Y) orthophosphates: an x-ray diffraction study using synchrotron radiation, Phys. Rev. B, 81, 064113, https://doi.org/10.1103/PhysRevB.81.064113, 2010.
Larson, A. C. and Von Dreele, R. B.: GSAS Generalized structure analysis system, Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM 97545, https://www.ncnr.nist.gov/xtal/software/gsas.html (last access: 6 May 2024), 1988.
Launay, S.: Th4(PO4)4P2O7, an original ultralow expansion material, Chem. Mater., 12, 2833–2837, https://doi.org/10.1021/cm010002y, 2001.
Leyx, C.: Les phosphates magnésiens dans le métamorphisme. Constitution d'une base de données thermodynamiques, étude des relations de phases dans le système MgO-Al2O3-P2O5-SiO2-H2O et applications pétrologiques, PhD thesis, Université Paris Sud – Orsay, 240 + 30 pp., 2004.
Leyx, C., Chopin, C., Brunet, F., Schmid-Beurmann, P., and Parra, T.: Towards a Thermodynamic Database for Phosphate Minerals: Elastic Properties of Mg-phosphates and Phase Relations in the System MgO-Al2O3-P2O5-SiO2-H2O, 18th General Meeting of the International Mineralogical Association, Edinburgh, Scotland, 1–6 September 2002, Edinburgh, Programme with abstracts, p. 240, 2002.
Leyx, C., van Miltenburg, C. J., Chopin, C., and Cemič, L.: Heat-capacity measurements and absolute entropy of ε-Mg2PO4OH, Phys. Chem. Miner., 32, 13–18, https://doi.org/10.1007/s00269-004-0432-9, 2005.
Liferovich, R. P., Pakhomovsky, Y. A., Yakubovich, O. V., Massa, W., Laajoki, K., Gehor, S., Bogdanova, A. N., and Sorokhtina, N. V.: Bakhchisaraitsevite, Na2Mg5[PO4]4 ⋅ 7 H2O, a new mineral from hydrothermal assemblages related to phoscorite-carbonatite complex of the Kovdor massif, Russia, Neues Jb. Miner. Monat., 9, 402–418, 2000.
Maurice-Estepa, L., Levillain, P., Lacour, B., and Daudon, M.: Crystalline phase differentiation in urinary calcium phosphate and magnesium phosphate calculi, Scand. J. Urol. Nephrol., 33, 299–305, https://doi.org/10.1080/003655999750017365, 1999.
Maxisch, T. and Ceder, G.: Elastic properties of olivine LixFePO4 from first principles, Phys. Rev. B, 73, 174112, https://doi.org/10.1103/PhysRevB.73.174112, 2006.
Nord, A. G. and Kierkegaard, P.: The crystal structure of Mg3(PO4)2, Acta Chem Scand., 22, 1466–1474, http://actachemscand.org/pdf/acta_vol_22_p1466-1474.pdf (last access: 6 May 2024), 1968.
Nye, J. F.: Physical properties of crystals, Clarendon Press, Oxford, ISBN 0-19-851165-5, 1985.
Orear, J.: Least-squares when both variables have uncertainties, Am. J. Phys., 50, 912–916, https://doi.org/10.1119/1.12972, 1982.
Perrière, L., Bregiroux, D., Naitali, B., Audubert, F., Champion, E., Smith, D. S., and Bernache-Assollant, D.: Microstructural dependence of the thermal and mechanical properties of monazite LnPO4 (Ln = La to Gd), J. Eur. Ceram. Soc., 27, 3207–3213, https://doi.org/10.1016/j.jeurceramsoc.2006.12.005, 2007.
Peun, T., Zinn, P., Lauterjung, J., and Hinze, E.: High-pressure minerals: in-situ X-ray diffraction experiments with MAX-80 using synchrotron radiation, Bochumer geol. geotech. Arb., 44, 139–144, 1995.
Raade, G.: Hydrothermal syntheses of Mg2PO4OH polymorphs, Neues Jb. Miner. Monat., 1990, 289–300, 1990.
Raade, G. and Rømming, C.: The crystal structure of ε-Mg2PO4OH, a synthetic high-temperature polymorph, Z. Kristallogr., 177, 1–13, https://doi.org/10.1524/zkri.1986.177.14.1, 1986a.
Raade, G. and Rømming, C.: The crystal structure of β-Mg2PO4OH, a synthetic hydroxyl analogue of Wagnerite, Z. Kristallogr., 177, 15–26, https://doi.org/10.1524/zkri.1986.177.14.15, 1986b.
Rømming, C. and Raade, G.: The crystal structure of althausite, Mg4(PO4)2(OH,O)(F,□), Am. Mineral., 65, 488–498, 1980.
Schmid-Beurmann, P., Knitter, S., and Cemič, L.: P-T stability of the lazulite-scorzalite solid-solution series, Miner. Petrol., 70, 55–71, https://doi.org/10.1007/s007100070013, 2000.
Schmid-Beurmann, P., Brunet, F., Kahlenberg, V., and Dachs, E.: Polymorphism and thermochemistry of MgAlPO4O, a product of lazulite breakdown at high temperature, Eur. J. Mineral., 19, 159–172, https://doi.org/10.1127/0935-1221/2007/0019-1709, 2007.
Song, H. W. and Li, X. L.: An Overview on the Rheology, Mechanical Properties, Durability, 3D Printing, and Microstructural Performance of Nanomaterials in Cementitious Composites, Materials, 14, 2950, https://doi.org/10.3390/ma14112950, 2021.
Sowa, H., Macavei, J., and Schulz, H.: The crystal structure of berlinite at high pressure, Z. Kristallogr., 192, 119–136, https://doi.org/10.1524/zkri.1990.192.14.119, 1990.
Thiéblot, L., Roux, J., and Richet, P.: High-temperature thermal expansion and decomposition of garnets, Eur. J. Mineral., 10, 7–15, https://doi.org/10.1127/ejm/10/1/0007, 1998.
Troccaz, M., Berger, C., Richard, M., and Eyraud, L.: Etude de la transformation de phase α↔β de la variété “phosphoquartz” de l'orthophosphate d'aluminium AlPO4, Bull. Soc. Chim. Fr., 11, 4256–4259, 1967.
Young, R. A., Sakthivel, A., Moss, T. S., and Paiva-Santos, C. O.: DBWS-9411, an upgrade of the DBWS programs for Rietveld refinement with PC and mainframe computers, J. Appl. Cryst., 28, 366–367, https://doi.org/10.1107/S0021889895002160, 1995.
Short summary
This paper presents the results of an exploratory study on the pressure–volume–temperature behaviour of the main Mg-phosphates of geological interest, especially in high-pressure metamorphic rocks. The incentive for it was the growing body of experimental phase-equilibrium data acquired at high pressure in the MgO–(Al2O3)–P2O5–H2O systems, the thermodynamic evaluation of which has been begging for such volumetric data.
This paper presents the results of an exploratory study on the pressure–volume–temperature...