Berman, R. G.: Minerals in the system Na
2O-K
2O-CaO-MgO-FeO-Fe
2O
3-Al
2O
3-SiO
2-TiO
2-H
2O-CO
2, J. Petrol., 29, 445–522, https://doi.org/10.1093/petrology/29.2.445, 1988.
Berthet, G., Joubert, J. C., and Bertaut, E. F.: Vacancies ordering in new metastable orthophosphates (Co
3□)P
2O
8 and (Mg
3□)P
2O
8 with olivine-related structure, Z. Kristallogr., 136, 98–105, https://doi.org/10.1524/zkri.1972.136.1-2.98, 1972.
Bouhifd, M. A., Andrault, D., Fiquet, G., and Richet, P.: Thermal expansion of forsterite up to the melting point, Geophys. Res. Lett., 23, 1143–1146, https://doi.org/10.1029/96GL01118, 1996.
Brown, T. H., Berman, R. G., and Perkins, E. H.: PTA system – A GEO-CALC software package for the calculation and display of activity-temperature-pressure phase-diagrams, Am. Mineral., 74, 485–487,
http://www.minsocam.org/ammin/AM74/AM74_485.pdf (last access: 6 May 2024), 1989.
Brunet, F. and Schaller, T.: Protons in the magnesium phosphates phosphoellenbergerite and holtedahlite: An IR and NMR study, Am. Mineral., 81, 385–394, https://doi.org/10.2138/am-1996-3-413, 1996.
Brunet, F. and Vielzeuf, D.: The farringtonite/Mg
3(PO
4)
2-II transformation: a new curve for pressure calibration in piston-cylinder apparatus, Eur. J. Mineral., 8, 349–354, https://doi.org/10.1127/ejm/8/2/0349, 1996.
Brunet, F., Chopin, C., and Seifert, F.: Phase relations in the MgO-P
2O
5-H
2O system and the stability of phosphoellenbergerite: petrological implications, Contrib. Mineral. Petr., 131, 54–70, https://doi.org/10.1007/s004100050378, 1998.
Brunet, F., Allan, D. R., Redfern, S. A. T., Angel, R. J., Miletich, R., Reichmann, H., Sergent, J., and Hanfland, M.: Compressibility and thermal expansivity of synthetic apatites, Ca
5(PO
4)
3X, with X
= OH, F, and Cl, Eur. J. Mineral., 11, 1023–1035, https://doi.org/10.1127/ejm/11/6/1023, 1999.
Brunet, F., Morineau, D., and Schmid-Beurmann, P.: Heat capacity of lazulite, MgAl
2(PO
4)
2(OH)
2, from 35 to 298 K and a (S–V) value for P
2O
5 to estimate phosphate entropy, Mineral. Mag., 68, 123–134, https://doi.org/10.1180/0026461046810175, 2004.
Cemič, L. and Schmid-Beurmann, P.: Lazulite stability relations in the system Al
2O
3-AlPO
4-Mg
3(PO
4)
2-H
2O, Eur. J. Mineral., 7, 921–929,
https://pubs.geoscienceworld.org/eurjmin/article-abstract/7/4/921/62752/Lazulite-stability-relations-in-the-system-Al-2-O?redirectedFrom=fulltext (last access: 4 May 2024), 1995.
Chopin, C., Klaska, R., Medenbach, O., and Dron, D.: Ellenbergerite, a new high-pressure Mg-Al-(Ti,Zr)-silicate with a novel structure based on face-sharing octahedra, Contrib. Mineral. Petr., 92, 316–321, https://doi.org/10.1007/BF00572160, 1986.
Chopin, C., Armbruster, T., Grew, E. S., Baronnet, A., Leyx, C., and Medenbach, O.: The triplite–triploidite supergroup: structural modulation in wagnerite, discreditation of magniotriplite, and the new mineral hydroxylwagnerite, Eur. J. Mineral., 26, 553–565, https://doi.org/10.1127/0935-1221/2014/0026-2386, 2014.
Comodi, P. and Zanazzi, P. F.: Structural study of ellenbergerite. Part II: Effects of high pressure, Eur. J. Mineral. 5, 831–838, https://doi.org/10.1127/ejm/5/5/0831, 1993a.
Comodi, P. and Zanazzi, P. F.: Structural study of ellenbergerite. Part I: Effects of high temperatures, Eur. J. Mineral., 5, 819–829, https://doi.org/10.1127/ejm/5/5/0819, 1993b.
Decker, D. L.: High-pressure equation of state for NaCl, KCl and CsCl, J. Appl. Phys., 42, 3239–3244,
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1792&context=facpub (last access: 6 May 2024), 1971.
Dodd, J. L.: Phase composition and dynamical studies of lithium iron phosphate, PhD thesis, California Institute of Technology, Pasadena, CA, 135 pp.,
https://thesis.library.caltech.edu/1662/1/JoannaDodd_thesis.pdf (last access: 6 May 2024), 2007.
Fang, B. D., Hu, Z. J., Shi, T., Liu, Y. M., Wang, X., Yang, D. P., Zhu, K., Zhao, X. Y., and Zhao, Z. F.: Research progress on the properties and applications of magnesium phosphate cement, Ceram. Int., 49, 4001–4016, https://doi.org/10.1016/j.ceramint.2022.11.078, 2022.
Finkelstein, G. J., Dena, P. K., Jahn, S., Oganov, A. R., Holl, C. M., Meng, Y., and Duffy, T.: Phase transitions and equation of state of forsterite to 90 GPa from single-crystal X-ray diffraction and molecular modeling. Am. Mineral., 90, 35–43, https://doi.org/10.2138/am.2014.4526, 2014.
Grevel, K., Nowlan, E. U., Fasshauer, D. W., and Burchard, M.: In situ X-ray investigation of lawsonite and zoisite at high pressures and temperatures, Am. Mineral., 85, 206–216, https://doi.org/10.2138/am-2000-0120, 2000a.
Grevel, K.-D., Burchard, M., Faßhauer, D. W., and Peun, T.: Pressure-volume-temperature behavior of diaspore and corundum: An in situ X-ray diffraction study comparing different pressure media, J. Geophys. Res., 105, 27877–27887, https://doi.org/10.1029/2000JB900323, 2000b.
Grew, E. S., Armbruster, T., Medenbach, O., Yates, M. G., and Carson, C. J.: Chopinite, [(Mg,Fe)
3□](PO
4)
2, a new mineral isostructural with sarcopside, from a fluorapatite segregation in granulite-facies paragneiss, Larsemann Hills, Prydz Bay, East Antarctica, Eur. J. Mineral., 19, 229–245, https://doi.org/10.1127/0935-1221/2007/0019-1712, 2007.
Haque, M. A. and Chen, B.: Research progresses on magnesium phosphate cement: A review, Constr. Build. Mater., 211, 885–898, https://doi.org/10.1016/j.conbuildmat.2019.03.304, 2019.
Holland, T. J. B. and Powell, R.: An internally consistent thermodynamic dataset with uncertainties and correlations: 2. Data and results, J. Metamorph. Geol., 3, 343–370, https://doi.org/10.1111/j.1525-1314.2010.00923.x, 1985.
Hu, X., Zhai, K., Jia, M., Liu, Y., Wu, X., Wen, W., Xue, W., and Zhai, S.: Phase transition of Mg
3(PO
4)
2 polymorphs at high-temperature: In-situ synchrotron X-ray diffraction and Raman spectroscopic study, Spectrochim. Acta A, 269, 120762, https://doi.org/10.1016/j.saa.2021.120762, 2022.
Jaulmes, S., Elfakir, A., Quarton, M., Brunet, F., and Chopin, C.: Structure cristalline de la phase haute température et haute pression de Mg
3(PO
4)
2, J. Solid State Chem., 129, 341–345, https://doi.org/10.1006/jssc.1996.7262, 1997.
Knight, S.: Analytical expressions to determine the isothermal compressibility tensor and the isobaric thermal expansion tensor for monoclinic crystals: application to determine the direction of maximum compressibility in jadeite, Phys. Chem. Minerals, 37, 529–533, https://doi.org/10.1007/s00269-009-0353-8, 2010.
Kroll, H., Kirfel, A., Heinemann, R., and Barbier, B.: Volume thermal expansion and related thermophysical parameters in the Mg,Fe olivine solid-solution series, Eur. J. Mineral., 24, 935–956, https://doi.org/10.1127/0935-1221/2012/0024-2235, 2012.
Kroll, H., Kirfel, A., and Heinemann, R.: Axial thermal expansion and related thermophysical parameters in the Mg,Fe olivine solid-solution series, Eur. J. Mineral., 26, 607–621, https://doi.org/10.1127/0935-1221/2014/0026-2398, 2014.
Lacomba-Perales, R., Errandonea, D., Meng, Y., and Bettinelli, M.: High-pressure stability and compressibility of APO4 (A
= La, Nd, Eu,Gd, Er, and Y) orthophosphates: an x-ray diffraction study using synchrotron radiation, Phys. Rev. B, 81, 064113, https://doi.org/10.1103/PhysRevB.81.064113, 2010.
Larson, A. C. and Von Dreele, R. B.: GSAS Generalized structure analysis system, Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM 97545,
https://www.ncnr.nist.gov/xtal/software/gsas.html (last access: 6 May 2024), 1988.
Launay, S.: Th
4(PO
4)
4P
2O
7, an original ultralow expansion material, Chem. Mater., 12, 2833–2837, https://doi.org/10.1021/cm010002y, 2001.
Leyx, C.: Les phosphates magnésiens dans le métamorphisme. Constitution d'une base de données thermodynamiques, étude des relations de phases dans le système MgO-Al
2O
3-P
2O
5-SiO
2-H
2O et applications pétrologiques, PhD thesis, Université Paris Sud – Orsay, 240
+ 30 pp., 2004.
Leyx, C., Chopin, C., Brunet, F., Schmid-Beurmann, P., and Parra, T.: Towards a Thermodynamic Database for Phosphate Minerals: Elastic Properties of Mg-phosphates and Phase Relations in the System MgO-Al
2O
3-P
2O
5-SiO
2-H
2O, 18th General Meeting of the International Mineralogical Association, Edinburgh, Scotland, 1–6 September 2002, Edinburgh, Programme with abstracts, p. 240, 2002.
Leyx, C., van Miltenburg, C. J., Chopin, C., and Cemič, L.: Heat-capacity measurements and absolute entropy of
ε-Mg
2PO
4OH, Phys. Chem. Miner., 32, 13–18, https://doi.org/10.1007/s00269-004-0432-9, 2005.
Liferovich, R. P., Pakhomovsky, Y. A., Yakubovich, O. V., Massa, W., Laajoki, K., Gehor, S., Bogdanova, A. N., and Sorokhtina, N. V.: Bakhchisaraitsevite, Na
2Mg
5[PO
4]
4 ⋅ 7 H
2O, a new mineral from hydrothermal assemblages related to phoscorite-carbonatite complex of the Kovdor massif, Russia, Neues Jb. Miner. Monat., 9, 402–418, 2000.
Maurice-Estepa, L., Levillain, P., Lacour, B., and Daudon, M.: Crystalline phase differentiation in urinary calcium phosphate and magnesium phosphate calculi, Scand. J. Urol. Nephrol., 33, 299–305, https://doi.org/10.1080/003655999750017365, 1999.
Maxisch, T. and Ceder, G.: Elastic properties of olivine LixFePO
4 from first principles, Phys. Rev. B, 73, 174112, https://doi.org/10.1103/PhysRevB.73.174112, 2006.
Nord, A. G. and Kierkegaard, P.: The crystal structure of Mg
3(PO
4)
2, Acta Chem Scand., 22, 1466–1474,
http://actachemscand.org/pdf/acta_vol_22_p1466-1474.pdf (last access: 6 May 2024), 1968.
Nye, J. F.: Physical properties of crystals, Clarendon Press, Oxford, ISBN 0-19-851165-5, 1985.
Orear, J.: Least-squares when both variables have uncertainties, Am. J. Phys., 50, 912–916, https://doi.org/10.1119/1.12972, 1982.
Perrière, L., Bregiroux, D., Naitali, B., Audubert, F., Champion, E., Smith, D. S., and Bernache-Assollant, D.: Microstructural dependence of the thermal and mechanical properties of monazite LnPO
4 (Ln
= La to Gd), J. Eur. Ceram. Soc., 27, 3207–3213, https://doi.org/10.1016/j.jeurceramsoc.2006.12.005, 2007.
Peun, T., Zinn, P., Lauterjung, J., and Hinze, E.: High-pressure minerals: in-situ X-ray diffraction experiments with MAX-80 using synchrotron radiation, Bochumer geol. geotech. Arb., 44, 139–144, 1995.
Raade, G.: Hydrothermal syntheses of Mg
2PO
4OH polymorphs, Neues Jb. Miner. Monat., 1990, 289–300, 1990.
Raade, G. and Rømming, C.: The crystal structure of
ε-Mg
2PO
4OH, a synthetic high-temperature polymorph, Z. Kristallogr., 177, 1–13, https://doi.org/10.1524/zkri.1986.177.14.1, 1986a.
Raade, G. and Rømming, C.: The crystal structure of
β-Mg
2PO
4OH, a synthetic hydroxyl analogue of Wagnerite, Z. Kristallogr., 177, 15–26, https://doi.org/10.1524/zkri.1986.177.14.15, 1986b.
Schmid-Beurmann, P., Knitter, S., and Cemič, L.:
P-
T stability of the lazulite-scorzalite solid-solution series, Miner. Petrol., 70, 55–71, https://doi.org/10.1007/s007100070013, 2000.
Schmid-Beurmann, P., Brunet, F., Kahlenberg, V., and Dachs, E.: Polymorphism and thermochemistry of MgAlPO
4O, a product of lazulite breakdown at high temperature, Eur. J. Mineral., 19, 159–172, https://doi.org/10.1127/0935-1221/2007/0019-1709, 2007.
Song, H. W. and Li, X. L.: An Overview on the Rheology, Mechanical Properties, Durability, 3D Printing, and Microstructural Performance of Nanomaterials in Cementitious Composites, Materials, 14, 2950, https://doi.org/10.3390/ma14112950, 2021.
Sowa, H., Macavei, J., and Schulz, H.: The crystal structure of berlinite at high pressure, Z. Kristallogr., 192, 119–136, https://doi.org/10.1524/zkri.1990.192.14.119, 1990.
Thiéblot, L., Roux, J., and Richet, P.: High-temperature thermal expansion and decomposition of garnets, Eur. J. Mineral., 10, 7–15, https://doi.org/10.1127/ejm/10/1/0007, 1998.
Troccaz, M., Berger, C., Richard, M., and Eyraud, L.: Etude de la transformation de phase
α↔β de la variété “phosphoquartz” de l'orthophosphate d'aluminium AlPO
4, Bull. Soc. Chim. Fr., 11, 4256–4259, 1967.
Young, R. A., Sakthivel, A., Moss, T. S., and Paiva-Santos, C. O.: DBWS-9411, an upgrade of the DBWS programs for Rietveld refinement with PC and mainframe computers, J. Appl. Cryst., 28, 366–367, https://doi.org/10.1107/S0021889895002160, 1995.