Articles | Volume 35, issue 2
https://doi.org/10.5194/ejm-35-219-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-35-219-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dislocation and disclination densities in experimentally deformed polycrystalline olivine
UMR 5243, Géosciences Montpellier, Université de Montpellier, CNRS,
34095 Montpellier, France
UMR 6524, Laboratoire Magmas et Volcans, Université Clermont Auvergne,
CNRS, IRD, OPGC, 63170 Aubière, France
Manuel Thieme
UMR 5243, Géosciences Montpellier, Université de Montpellier, CNRS,
34095 Montpellier, France
Fabrice Barou
UMR 5243, Géosciences Montpellier, Université de Montpellier, CNRS,
34095 Montpellier, France
Benoit Beausir
Laboratoire d'Étude des Microstructures et de Mécanique des Matériaux (LEM3), Université de Lorraine, CNRS, 57000 Metz, France
Laboratory of Excellence Design of Alloy Metals for low-mAss
Structures (DAMAS), University of Lorraine, 57073 Metz, France
Vincent Taupin
Laboratoire d'Étude des Microstructures et de Mécanique des Matériaux (LEM3), Université de Lorraine, CNRS, 57000 Metz, France
Laboratory of Excellence Design of Alloy Metals for low-mAss
Structures (DAMAS), University of Lorraine, 57073 Metz, France
Patrick Cordier
UMR 8207, Unité Matériaux et Transformations (UMET), Université de Lille, CNRS, INRAE, Centrale Lille,
59000 Lille, France
Institut Universitaire de France, 75005 Paris, France
Related authors
Sylvie Demouchy
Eur. J. Mineral., 33, 249–282, https://doi.org/10.5194/ejm-33-249-2021, https://doi.org/10.5194/ejm-33-249-2021, 2021
Short summary
Short summary
Olivine, a ferromagnesian orthosilicate, is the most abundant mineral in Earth’s upper mantle but also in Mars' and Venus'. The olivine atomic structure is also used to manufacture lithium batteries. Like any other crystalline solid, olivine never occurs with a perfect crystalline structure: defects in various dimensions are ubiquitous. In this contribution, I review the current state of the art of defects in olivine and several implications for key processes in geodynamics.
Billy Clitton Nzogang, Manuel Thieme, Alexandre Mussi, Sylvie Demouchy, and Patrick Cordier
Eur. J. Mineral., 32, 13–26, https://doi.org/10.5194/ejm-32-13-2020, https://doi.org/10.5194/ejm-32-13-2020, 2020
Thierry Decrausaz, Marguerite Godard, Manuel D. Menzel, Fleurice Parat, Emilien Oliot, Romain Lafay, and Fabrice Barou
Eur. J. Mineral., 35, 171–187, https://doi.org/10.5194/ejm-35-171-2023, https://doi.org/10.5194/ejm-35-171-2023, 2023
Short summary
Short summary
The carbonation of peridotites occurs during the fluxing of reactive CO2-bearing fluids, ultimately producing listvenites (magnesite and quartz assemblage). We studied the most extended outcrops of listvenites worldwide, found at the base of the Semail Ophiolite (Oman). Our study highlights the partitioning of iron during early pervasive carbonation revealed by chemical zoning in matrix magnesites, and we discuss the conditions favoring the formation of Fe-rich magnesite.
Sylvie Demouchy
Eur. J. Mineral., 33, 249–282, https://doi.org/10.5194/ejm-33-249-2021, https://doi.org/10.5194/ejm-33-249-2021, 2021
Short summary
Short summary
Olivine, a ferromagnesian orthosilicate, is the most abundant mineral in Earth’s upper mantle but also in Mars' and Venus'. The olivine atomic structure is also used to manufacture lithium batteries. Like any other crystalline solid, olivine never occurs with a perfect crystalline structure: defects in various dimensions are ubiquitous. In this contribution, I review the current state of the art of defects in olivine and several implications for key processes in geodynamics.
Billy Clitton Nzogang, Manuel Thieme, Alexandre Mussi, Sylvie Demouchy, and Patrick Cordier
Eur. J. Mineral., 32, 13–26, https://doi.org/10.5194/ejm-32-13-2020, https://doi.org/10.5194/ejm-32-13-2020, 2020
Anne-Marie Boullier, Odile Robach, Benoît Ildefonse, Fabrice Barou, David Mainprice, Tomoyuki Ohtani, and Koichiro Fujimoto
Solid Earth, 9, 505–529, https://doi.org/10.5194/se-9-505-2018, https://doi.org/10.5194/se-9-505-2018, 2018
Short summary
Short summary
The paper describes microstructures in granitic rocks located 50 m away from the Nojima fault in Japan. Although macroscopically undeformed, the sample displays evidence for intense dynamic damage at the microscopic scale. Elastic strain and high residual stresses stored in quartz grains suggest that they were produced by propagating rupture fronts associated with M6 to M7 earthquakes and contributed to the widening of the damaged fault zone along the Nojima fault during the Paleocene.
Related subject area
Electron microscopy of minerals and rocks
Late metamorphic veins with dominant PS-15 polygonal serpentine in the Monte Avic ultramafite
Appearance, study and a possible correction for boron: a phenomenon in ultra-soft X-ray measurements using a synthetic multilayer crystal and the EPMA
Weathering of stannite–kësterite [Cu2(Fe,Zn)SnS4] and the environmental mobility of the released elements
The hierarchical internal structure of labradorite
Automatic element and mineral detection in thin sections using hyperspectral transmittance imaging microscopy (HyperTIM)
Vanadium carbides in shungite
Multi-scale characterization of glaucophane from Chiavolino (Biella, Italy): implications for international regulations on elongate mineral particles
Investigating crystal orientation patterns of foraminiferal tests by electron backscatter diffraction analysis
Luca Barale, Giancarlo Capitani, Paolo Castello, Roberto Compagnoni, Roberto Cossio, Gianluca Fiore, Linda Pastero, and Marcello Mellini
Eur. J. Mineral., 35, 347–360, https://doi.org/10.5194/ejm-35-347-2023, https://doi.org/10.5194/ejm-35-347-2023, 2023
Short summary
Short summary
The first occurrence of centimeter-thick PS-15 polygonal serpentine veins from ultramafics of Monte Avic, Val d'Aosta, is here reported. The combined mineralogical study led by three techniques with different resolutions has provided new analytical tools capable of recognizing the PS-15 polygonal serpentine. In particular, X-ray powder diffraction data (XRPD) and micro-Raman recognize polygonal serpentine more quickly and easily than transmission electron microscopy (TEM) but equally rigorously.
Franziska Daniela Helena Wilke
Eur. J. Mineral., 35, 59–64, https://doi.org/10.5194/ejm-35-59-2023, https://doi.org/10.5194/ejm-35-59-2023, 2023
Short summary
Short summary
When detecting the light element boron in solid materials with, in part, considerably lower concentrations of boron than present in natural tourmalines by using the electron microprobe, irregularities become visible in the analyses. This was for the first time experienced in synthetic diamond that was contaminated with boron to achieve a blue color. With this work, one can check if boron analyses are reasonable, and if not, one can correct them.
Patrick Haase, Stefan Kiefer, Kilian Pollok, Petr Drahota, and Juraj Majzlan
Eur. J. Mineral., 34, 493–506, https://doi.org/10.5194/ejm-34-493-2022, https://doi.org/10.5194/ejm-34-493-2022, 2022
Short summary
Short summary
Stannite decomposition leads to the precipitation of an amorphous and metastable Sn–Fe–As-rich phase. With ageing, goethite and cassiterite crystallize from the precursor and mark the end of the weathering cycle. Other elements are lost in the initial stage of weathering (e.g. Zn, S) or after full oxidation of the sulfidic material (e.g. Cu, Ag). Electron microprobe (EMP) and transmission electron microscopy (TEM) analyses were performed to witness the mobility of the released elements.
Emilia Götz, Hans-Joachim Kleebe, and Ute Kolb
Eur. J. Mineral., 34, 393–410, https://doi.org/10.5194/ejm-34-393-2022, https://doi.org/10.5194/ejm-34-393-2022, 2022
Short summary
Short summary
Labradorite displays various structural features which have received attention in science for a long time. In this paper an electron microscopy study was performed investigating the hierarchical structure and connecting its features over several orders of magnitude. In addition, the atomic structure was solved with three-dimensional electron diffraction, showing results comparable to X-ray diffraction data and demonstrating the potential of the method to solve complicated crystal structures.
Helge L. C. Daempfling, Christian Mielke, Nicole Koellner, Melanie Lorenz, Christian Rogass, Uwe Altenberger, Daniel E. Harlov, and Michael Knoper
Eur. J. Mineral., 34, 275–284, https://doi.org/10.5194/ejm-34-275-2022, https://doi.org/10.5194/ejm-34-275-2022, 2022
Short summary
Short summary
In this study we present a novel method for the automatic detection of minerals and elements using hyperspectral transmittance imaging microscopy measurements of complete thin sections (HyperTIM).
Vladimir V. Kovalevski and Igor A. Moshnikov
Eur. J. Mineral., 34, 131–141, https://doi.org/10.5194/ejm-34-131-2022, https://doi.org/10.5194/ejm-34-131-2022, 2022
Short summary
Short summary
Vanadium carbides in shungite are shown to be present in several forms, which reflects the distinctive conditions of their formation. An ordered carbon film revealed on the vanadium carbide particles could protect the particles from transformations for a long time. The parageneses of vanadium carbide and roscoelite occur, indicating that roscoelite in shungite rocks may be a secondary mineral formed upon vanadium carbide decomposition.
Ruggero Vigliaturo, Sabrina M. Elkassas, Giancarlo Della Ventura, Günther J. Redhammer, Francisco Ruiz-Zepeda, Michael J. O'Shea, Goran Dražić, and Reto Gieré
Eur. J. Mineral., 33, 77–112, https://doi.org/10.5194/ejm-33-77-2021, https://doi.org/10.5194/ejm-33-77-2021, 2021
Stephanie Pabich, Christian Vollmer, and Nikolaus Gussone
Eur. J. Mineral., 32, 613–622, https://doi.org/10.5194/ejm-32-613-2020, https://doi.org/10.5194/ejm-32-613-2020, 2020
Short summary
Short summary
Electron backscatter diffraction (EBSD) is a powerful tool to visualize and differentiate between foraminiferal test structures, by providing information on crystal orientation and crystal sizes. This can be used to trace diagenetic recrystallization, altering geochemical proxy signals. The sediment samples from a core from the equatorial Pacific used here, spanning the last 45 Myr, showed no evidence for foraminiferal recrystallization, highlighting the suitability as geochemical proxy archive.
Cited articles
Acharya, A. and Fressengeas, C.: Continuum mechanics of the interactions
between phase boundaries and dislocations in solids, in: Differential Geometry and Continuum
Mechanics, edited by: Chen, G. Q.,
Grinfeld, M., and Knops, R. J., Vol. 137, Springer Proceedings in Mathematics and Statistics,
125–168, https://doi.org/10.1007/978-3-319-18573-6_5, 2015.
Bachmann, F., Hielscher, R., and Schaeben, H.:Texture Analysis with MTEX –
Free and Open Source Software Toolbox, in: Presented at the Texture and Anisotropy of Polycrystals III, edited by: Klein, H. and Schwarzer, R. A., Trans.
Tech. Pub. Ltd., Durnten-Zurich, Swizerland, p. 63,
https://doi.org/10.4028/www.scientific.net/SSP.160.63, 2010.
Bernard, R. E., Behr, W. M., Becker, T. W., and Young, D. J.: Relationships
Between Olivine CPO and Deformation Parameters in Naturally Deformed Rocks
and Implications for Mantle Seismic Anisotropy, Geochem. Geophy. Geosy.,
20, 3469–3494, https://doi.org/10.1029/2019GC008289, 2019.
Beausir, B. and Fressengeas, C.: Disclination densities from EBSD
orientation mapping, Int. J. Solids Struct., 50, 137–146, https://doi.org/10.1016/j.ijsolstr.2012.09.016, 2013.
Beausir, B. and Fundenberger, J.-J.: Analysis Tools For Electron And X-ray
diffraction, ATEX – software,
Université de Lorraine – Metz, http://www.atex-software.eu (last access: 24 March 2023), 2017.
Beeman, M. L. and Kohlstedt, D. L.: Deformation of fine-grained aggregates of
olivine plus melt at high temperatures and pressures, J. Geophys. Res., 98,
6443–6452, https://doi.org/10.1029/92JB02697, 1993.
Berbenni, S. and Taupin, V.: Fast Fourier transform-based micromechanics of
interfacial line defects in crystalline materials, J. Micromechan.
Molecul. Phys., 3, 1840007, https://doi.org/10.1142/S2424913018400076, 2018.
Berbenni, S., Taupin, V., Djaka, K. S., and Fressengeas, C.: A numerical
spectral approach for solving elasto-static dislocation and g-disclination
mechanics, Int. J. Sol. Struct., 51, 4157–4175, https://doi.org/10.1016/j.ijsolstr.2014.08/009, 2014.
Britton, T. B. and Wilkinson, A. J.: Measurement of residual elastic strain
and lattice rotations with high resolution electron backscatter diffraction,
Ultramicroscopy, 111, 1395–1404, https://doi.org/10.1016/j.ultramic.2011.05.007, 2011.
Buening, D. K. and Buseck, P. R.: Fe-Mg lattice diffusion in olivine, J.
Geophys. Res., 78, 6852–6862,
https://doi.org/10.1029/JB078i029p06852, 1973.
Cahn, J. W., Mishin, Y., and Suzuki, A.: Coupling grain boundary motion to shear
deformation, Acta Mater., 54, 4953–4975, https://doi.org/10.1016/J.actamat.2006.08.004,
2006.
Combe, N., Mompiou, F., and Legros, M.: Disconnections kinks and competing modes
in shear-coupled grain boundary migration, Phys. Rev. B, 93, 024109, https://doi.org/10.1103/PhysRevB.93.024109, 2016.
Cordier, P., Demouchy, S., Beausir, B., Taupin, V., Barou, F., and
Fressengeas, C.: Disclinations provide the missing mechanism for deforming
olivine-rich rocks in the mantle, Nature, 507, 51–56, https://doi.org/10.1038/nature13043, 2014.
Demouchy, S.: Diffusion of hydrogen in olivine grain boundaries and
implications for the survival of water-rich zones in the Earth's mantle,
Earth Planet. Sc. Lett., 295, 305–313, https://doi.org/10.1016/j.epsl.2010.04.019, 2010.
Demouchy, S.: Defects in olivine, Eur. J. Mineral., 33, 249–282, https://doi.org/10.5194/ejm-33-249-2021, 2021.
Demouchy, S.: Set of CFT files from EBSD maps, Zenodo [data set], https://doi.org/10.5281/zenodo.7486136, 2022.
Demouchy, S., Tommasi, A., Barou, F., Mainprice, D., and Cordier, P.:
Deformation of olivine in torsion under hydrous conditions, Phys. Earth
Planet. In., 202/203, 56–70, https://doi.org/10.1016/j.pepi.2012.05.001, 2012.
Demouchy, S., Tommasi, A., Ballaran, T. B., and Cordier, P.: Low strength of
Earth's uppermost mantle inferred from tri-axial deformation experiments on
dry olivine crystals, Phys. Earth Planet. In., 220,
37–49, https://doi.org/10.1016/j.pepi.2013.04.008, 2013.
Demouchy, S., Mussi, A., Barou, F., Tommasi, A., and Cordier, P.:
Viscoplasticity of polycrystalline olivine experimentally deformed at high
pressure and 900 ∘C, Tectonophysics, 623, 123–135,
https://doi.org/10.1016/j.tecto.2014.03.022, 2014.
Demouchy, S., Tommasi, A., Ionov, D., Higgie, K., and Carlson, R. W.:
Microstructures, Water Contents, and Seismic Properties of the Mantle
Lithosphere beneath the Northern limit of the Hangay Dome, Mongolia,
Geochem. Geophy. Geosy., 20, 2018GC007931, https://doi.org/10.1029/2018GC007931, 2019.
de Wit, R.: Linear theory of static disclinations, in: Fundamental aspects
of
dislocation theory, edited by: Simmons, J. A., de Wit, R., and Bullough, R., National Bureau of Standards, Washington,
DC, NBS
Spec.
Publ., 317, Vol. 1, 651–680, ISBN: 9781483274928, 1970.
Djaka, K. S., Villani, A., Taupin, V., Capolungo, L., and Berbenni, S.: Field
Dislocation Mechanics for Heterogeneous elastic materials: A numerical
spectral approach, Comput. Method. Appl. Mech. Eng., 315, 921–942,
https://doi.org/10.1016/j.cma.2016.11.036, 2017.
Evans, B. and Goetze, C.: The temperature variation of hardness of olivine
and its implication for polycrystalline yield stress, J. Geophys.
Res., 84, 5505–5524, 1979.
Faul, U.: Dislocation structure of deformed olivine single crystals from
conventional EBSD maps, Phys. Chem. Mineral., 48, 35,
https://doi.org/10.1007/s00269-021-01157-3, 2021.
Frank, F. C.: I. Liquid crystals, On the theory of liquid crystals, Discuss.
Faraday Soc.,
25, 19–28, https://doi.org/10.1039/df9582500019, 1958.
Fressengeas, C. and Beausir, B.: Tangential continuity of the curvature
tensor at grain boundaries underpins disclination density determination from
spatially mapped orientation data, Int. J. Sol. Struct., 156/157, 210–215, https://doi.org/10.1016/j.ijsolstr.2018.08.015,
2018.
Fressengeas, C., Taupin, V., and Capolungo, L.: An elasto-plastic theory of
dislocation and disclination fields, Int. J. Solid. Struct., 48, 3499–3509,
https://doi.org/10.1016/j.ijsolstr.2011.09.002, 2011.
Frey, F. A. and Prinz, M.: Ultramafic inclusions from San Carlos, Arizona:
petrologic and geochemical data bearing on their petrogenesis, Dev. Petrol.,
5, 129–176, https://doi.org/10.1016/B978-0-444-41658-2.50013-4, 1978.
Friedel, G.: The mesomorphic states of matter, Ann. Phys., 18, 273–474,
https://doi.org/10.1201/9780203022658.ch1b, 1922.
Gasc, J., Demouchy, S., Barou, F., Koizumi, S., and Cordier, P.: Creep
mechanisms in the lithospheric mantle inferred from deformation of iron-free
forsterite aggregates at 900–1200 ∘C, Tectonophysics, 761,
16–30, https://doi.org/10.1016/j.tecto.2019.04.009, 2019.
Goetze, C.: The mechanisms of creep in olivine, Philos. T.
R. Soc. Lond. A, 288, 99–119, 1978.
Gouriet, K., Cordier, P., Garel, F., Thoraval, C., Demouchy, S., Tommasi, A.,
and Carrez, P.: Dislocation dynamics modelling of the power-law breakdown in
olivine single crystals: Toward a unified creep law for the upper mantle,
Earth Planet. Sc. Lett., 506, 282–291, https://doi.org/10.1016/j.epsl.2018.10.049,
2019.
Gueguen, Y. and Darot, M.: Microstructure and stresses in Naturally
deformed peridotites, Rock Mech. Suppl., 9, 159–172, https://doi.org/10.1007/978-3-7091-8588-9_17, 1980.
Hansen, L. N., Wallis, D., Breithaupt, T., Thom, C. A., and Kempton, I.:
Dislocation Creep of Olivine: Backstress Evolution Controls Transient Creep
at High Temperatures, J. Geophys. Res.-Sol. Ea., 126, 1–21,
https://doi.org/10.1029/2020JB021325, 2021.
Hansen, L. N., Zimmerman, M. E., Dillman, A. M., and Kohlstedt, D. L.: Strain
localization in olivine aggregates at high temperature: a laboratory
comparison of constant-strain rate and constant-stress boundary conditions,
Earth Planet. Sc. Lett., 333/334, 134–145,
https://doi.org/10.1016/j.epsl.2012.04.016, 2012.
Heinemann, S., Wirth, R., Gottschalk, M., and Dresen, G.: Synthetic [100]
tilt grain boundaries in forsterite: 9.9 to 21.5 ∘, Phys. Chem.
Miner., 32, 229–240, https://doi.org/10.1007/s00269-005-0448-9, 2005.
Hielscher, R. and Schaeben, H.: A novel pole figure inversion method:
specification of the MTEX algorithm, J. Appl. Cryst., 41, 1024–1037,
https://doi.org/10.1107/S0021889808030112, 2008.
Hirth, G. and Kohlstedt, D. L.: Rheology of the Upper Mantle and the
Mantle Wedge: A View from the Experimentalists in The Subduction Factory,
edited by: Eiler, J., American Geophysical Union Geophysical Monograph 138, 83–105, https://doi.org/10.1029/138GM06, 2003.
Hirth, J. P. and Lothe, J.: Theory of Dislocations, McGraw-Hill, New
York, ISBN: 0894646176, 1982.
Hirth, J. P. and Pond, R. C.: Steps, dislocations and disconnections as
interface defects relating to structure and phase transformations, Acta
Mater., 44, 4749–4163, https://doi.org/10.1016/S1359-6454(96)00132-2, 1996.
Hirth, J. P., Wang, J., and Hirth, G.: A topological model for defects and
interfaces in complex crystal structures, Am. Mineral., 104, 966–972,
https://doi.org/10.2138/am-2019-6892, 2019.
Hirth, J. P., Hirth, G., and Wang, J.: Disclinations and disconnections
in minerals and metals, P. Natl. Acad. Sci. USA, 117,
196–204, https://doi.org/10.1073/pnas.1915140117, 2020.
Hutchinson, J. W.: Creep and plasticity of hexagonal polycrystals as related
to single crystal slip, Metall. Trans. A, 8, 1465–1469, https://doi.org/10.1007/BF02642860, 1977.
Idrissi, H, Béché, A., Gauquelin, N., Ul Haq, I., Bollinger, C.,
Demouchy, S., Verbeeck, J., Pardoen, T., Schryvers, D., and Cordier, P.: On the
formation mechanisms of shear bands in olivine by stress-induced
amorphization, Acta Mater., 239, 118247, https://doi.org/10.1016/j.actamat.2022.118247, 2022.
Kleman, M. and Friedel, J.: Disclinations, dislocations, and continuous
defects: a
reappraisal, Rev. Mod. Phys., 80, 61–115, https://doi.org/10.1103/RevModPhys.80.61, 2008.
Kohlstedt, D. L., Goetze, C., Durham, W. B., and Vander Sande, J.: New
technique for decorating dislocations in olivine, Science, 191, 1045–1046,
https://doi.org/10.1126/science.191.4231.1045, 1976.
Langdon, T. G.: Grain boundary sliding revisited: developments in sliding
over four
decades, J. Mater. Sci., 41, 597–609, https://doi.org/10.1007/s10853-006-6476-0, 2006.
Li, J. C. M.: Disclination model of high angle grain boundaries, Surface Sci.
31, 12–26, https://doi.org/10.1016/0039-6028(72)90251-8, 1972.
Lopez-Sanchez, M. A., Tommasi, A., Ben Ismail, W., and Barou, F.: Dynamic
recrystallization by subgrain rotation in olivine revealed by electron
backscatter diffraction, Tectonophysics, 815, 228916,
https://doi.org/10.1016/j.tecto.2021.228916, 2021.
Ma, J., Liu, W., Zhang, J., and Liu, C.: Intracrystalline deformation
microstructures in natural olivine with implications for stress estimation,
Sci. Rep., 12, 20069, https://doi.org/10.1038/s41598-022-24538-2, 2022.
Mughrabi, H.: On the role of strain gradients and long-range internal
stresses in the composite model of crystal plasticity, Mat. Sci. Eng. A,
317, 171–180, https://doi.org/10.1016/S0921-5093(01)01173-X, 2001.
Mussi, A., Cordier, P., Demouchy, S., and Vanmansart, C.: Characterization of
the glide planes of the [001] screw dislocations in olivine using electron
tomography, Phys. Chem. Mineral., 41, 537–545, https://doi.org/10.1007/s00269-014-0665-1,
2014.
Mussi, A., Cordier, P., and Demouchy, S.: Characterization of dislocation
interactions in olivine using electron tomography, Phil. Mag., 95, 335–345,
https://doi.org/10.1080/14786435.2014.1000996, 2015.
Miyazaki, T., Sueyoshi, K., and Hiraga, T.: Olivine crystals align during
diffusion creep of Earth's upper mantle, Nature, 502, 321–326,
https://doi.org/10.1038/nature12570, 2013.
Paterson, M. S.: Rock deformation experimentation, Geophys. Monogr., 56,
187–194, https://doi.org/10.1029/GM056p0187, 1990.
Paterson, M. S. and Olgaard, D. L.: Rock deformation tests to large shear
strains in torsion, J. Struct. Geol., 22, 1341–1358,
https://doi.org/10.1016/S0191-814(00)00042-0, 2000.
Raleigh, C. B.: Mechanism of plastic deformation of olivine, J. Geophys. Res.,
73, 5391–5406, https://doi.org/10.1029/JB073i016p05391, 1968.
Read, W. T. and Shockley, W.: Dislocation models of crystal grain boundaries,
Phys. Rev. Mater., 78, 275–289, https://doi.org/10.1103/PhysRev.78.275, 1950.
Romanov, A. E. and Kolesnikova, A. L.: Application of disclination concept to
solid structures, Prog. Mater. Sci., 54, 740–769,
https://doi.org/10.1016/j.pmatsci.2009.03.002, 2009.
Romanov, A. E. and Vladimirov, V. I.: Disclinations in crystalline
solids, in: Dislocations in Solids, edited by: Nabarro,
F. R. N., Vol. 9, Elsevier, Amsterdam, p. 191, https://doi.org/10.1002/pssa.2210780102, 1992.
Samae, V., Cordier, P., Demouchy, S., Bollinger, C., Gasc, J., Koizumi, S.,
Mussi, A., Schryvers, D., and Idrissi, H.: Stress-induced amorphization
triggers deformation in the lithospheric mantle, Nature, 591, 82–86,
https://doi.org/10.1038/s41586-021-03238-3, 2021.
Sun, X.-Y., Cordier, P., Taupin, V., Fressengeas, C., and Jahn, S.:
Continuous description of a grain boundary in forsterite from atomic scale
simulations: the role of disclinations, Phil. Mag., 96, 1757–1772,
https://doi.org/10.1080/14786435.2016.1177232, 2016.
Sun, X. Y., Fressengeas, C., Taupin, V., Cordier, P., and Combe, N.:
Disconnections, dislocations and generalized disclinations in grain boundary
ledges, Int. J. Plasticity, 104, 134–146,
https://doi.org/10.1016/j.ijplas.2018.02.003, 2018.
Sutton, A. P. and Vitek, V.: On the structure of tilt grain boundaries in
cubic metals,
I. Symmetrical tilt boundaries, Philos. T. R. Soc. Lond. A, 309, 1–36, https://doi.org/10.1098/rsta.1983.0020, 1983.
Taupin, V, Capolungo, L., and Fressengeas, C.: Disclination mediated
plasticity in shear-coupled boundary, Int. J. Past, 53, 179–192, 2014.
Taupin, V., Capolungo, L., Fressengeas, C., Das, A., and Upadhyay, M.: Grain
boundary modeling using an elasto-plastic theory of dislocation and
disclination fields, J. Mech. Phys. Solid., 61, 370–384,
https://doi.org/10.1016/j.mps.2012.10.001, 2013.
Thieme, M., Demouchy, S., Mainprice, D., Barou, F., and Cordier, P.: Stress
evolution and associated microstructure during transient creep of olivine at
1000–1200 ∘C, Phys. Earth Planet. Int., 278,
34–46, https://doi.org/10.1016/j.pepi.2018.03.002, 2018.
Tommasi, A. and Vauchez, A.: Heterogeneity and anisotropy in the
lithospheric mantle, Tectonophysics, 661, 11–37,
https://doi.org/10.1016/j.tecto.2015.07.026, 2015.
Upadhyay, M., Capolungo, L., Taupin, V., and Fressengeas, C.: Grain boundary
and triple junction energies in crystalline media: A disclination based
approach, Int. J. Solid. Struct., 48, 3176–3193,
https://doi.org/10.1016/j.ijsolstr.2011.07.009, 2011.
Volterra, V.: Sur l'équilibre des corps élastiques multiplement
connexes, Ann.
Sci. Ecol. Norm. Sup. III, 24, 401–517, https://doi.org/10.24033/asens.583, 1907.
Von Mises, R.: Mechanik der plastischen Formaenderung von Kristallen, Z.
Angew. Math. Mech., 8, 161–185, https://doi.org/10.1002/zamm.19280080302,
1928.
Wallis, D., Hansen, L. N., Britton, B. T., and Wilkinson, A. J.: Geometrically
necessary dislocation densities in olivine obtained using high-angular
resolution electron backscatter diffraction, Ultramicroscopy, 168, 34–45,
https://doi.org/10.1016/j.ultramic.2016.06.002, 2016.
Wallis, D., Hansen, L. N., Britton, T. B., and Wilkinson, A. J.: Dislocation
Interactions in Olivine Revealed by HR-EBSD, J. Geophys. Res.-Sol. Ea., 122, 7659–7678,
https://doi.org/10.1002/2017JB014513, 2017.
Wallis, D., Sep, M., and Hansen, L. N.: Transient creep in subduction zones by
long-range dislocation interaction in olivine, J. Geophys. Res., 127, e2021JB022618, https://doi.org/10.1029/2021JB022618, 2022.
Wang, N., Chen, Y., Wu, G., Zhao, Q., Zhang, Z., Zhu, L., and Luo, J.:
Non-equivalence contribution of geometrically necessary dislocation and
statistically stored dislocation in work-hardened metals, Mater. Sci. Eng. A, 836, 142728, https://doi.org/10.1016/j.msea.2022.142728, 2022.
Warren, J. M. and Hirth, G.: Grain size sensitive deformation mechanisms in
naturally deformed peridotites, Earth Planet. Sc. Lett., 248, 423–435, https://doi.org/10.1016/J.epsl.2006.06.006, 2006.
Zimmerman, M. E. and Kohlsredt, D. L.: Rheological Properties of Partially
Molten Lherzolite, J. Petrol., 45, 275–298, https://doi.org/10.1093/petrology/egg089,
2004.
Zoller, K., Kalácska, S., Ispánovity, P. D., and Schulz, K.:
Microstructure evolution of compressed micropillars investigated by in situ
HR-EBSD analysis and dislocation density simulations, Comptes Rendus.
Phys., 22, 267–293, https://doi.org/10.5802/crphys.55, 2021.
Short summary
We report a comprehensive data set characterizing and quantifying two types of mineral defects in the most abundant mineral of Earth's upper mantle: olivine. Namely, we investigate translation defects of dislocation and rotation defects, called disclinations, in polycrystalline olivine deformed in uniaxial compression or torsion, at high temperature and pressure. The defects are identified via mapping of the crystallographic disorientation detected using electron backscatter diffraction.
We report a comprehensive data set characterizing and quantifying two types of mineral defects...