Articles | Volume 34, issue 6
https://doi.org/10.5194/ejm-34-627-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-34-627-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Molecular overtones and two-phonon combination bands in the near-infrared spectra of talc, brucite and lizardite
Etienne Balan
CORRESPONDING AUTHOR
Sorbonne Université, CNRS, MNHN, IRD, Institut de Minéralogie,
de Physique des Matériaux et de Cosmochimie (IMPMC), 4 place Jussieu,
75252 Paris CEDEX 05, France
Lorenzo Paulatto
Sorbonne Université, CNRS, MNHN, IRD, Institut de Minéralogie,
de Physique des Matériaux et de Cosmochimie (IMPMC), 4 place Jussieu,
75252 Paris CEDEX 05, France
Qianyu Deng
Sorbonne Université, CNRS, MNHN, IRD, Institut de Minéralogie,
de Physique des Matériaux et de Cosmochimie (IMPMC), 4 place Jussieu,
75252 Paris CEDEX 05, France
Keevin Béneut
Sorbonne Université, CNRS, MNHN, IRD, Institut de Minéralogie,
de Physique des Matériaux et de Cosmochimie (IMPMC), 4 place Jussieu,
75252 Paris CEDEX 05, France
Maxime Guillaumet
Sorbonne Université, CNRS, MNHN, IRD, Institut de Minéralogie,
de Physique des Matériaux et de Cosmochimie (IMPMC), 4 place Jussieu,
75252 Paris CEDEX 05, France
Benoît Baptiste
Sorbonne Université, CNRS, MNHN, IRD, Institut de Minéralogie,
de Physique des Matériaux et de Cosmochimie (IMPMC), 4 place Jussieu,
75252 Paris CEDEX 05, France
Related authors
Michael C. Jollands, Shiyun Jin, Martial Curti, Maxime Guillaumet, Keevin Béneut, Paola Giura, and Etienne Balan
Eur. J. Mineral., 35, 873–890, https://doi.org/10.5194/ejm-35-873-2023, https://doi.org/10.5194/ejm-35-873-2023, 2023
Short summary
Short summary
The infrared spectrum of hydrous defects in corundum is routinely used in gemology, but the assignment of absorption bands to specific defects remains elusive. Here, we theoretically study selected defects and compare the results with available experimental data. The main results are the assignment of the
3161 cm−1 seriesto OH groups associated with Fe2+ ions and the interpretation of bands below 2700 cm−1 in corundum containing divalent cations in terms of overtones of OH bending modes.
Etienne Balan, Guillaume Radtke, Chloé Fourdrin, Lorenzo Paulatto, Heinrich A. Horn, and Yves Fuchs
Eur. J. Mineral., 35, 105–116, https://doi.org/10.5194/ejm-35-105-2023, https://doi.org/10.5194/ejm-35-105-2023, 2023
Short summary
Short summary
Assignment of OH-stretching bands to specific atomic-scale environments in tourmaline is still debated, which motivates detailed theoretical studies of their vibrational properties. We have theoretically investigated the OH-stretching spectrum of foitite, showing that specific OH bands observed in the vibrational spectra of iron-rich and Na-deficient tourmalines are affected by the magnetic configuration of iron ions and X-site vacancy ordering.
Yves Fuchs, Chloé Fourdrin, and Etienne Balan
Eur. J. Mineral., 34, 239–251, https://doi.org/10.5194/ejm-34-239-2022, https://doi.org/10.5194/ejm-34-239-2022, 2022
Short summary
Short summary
Information about the local structure of tourmaline-group minerals can be obtained from the characteristic OH stretching bands in their vibrational spectra. However, their assignment to specific atomic-scale environments is debated. We address this question theoretically by investigating a series of dravite models. Our results support a local role of cationic occupancies in determining the OH stretching frequencies and bring constraints for the interpretation of the vibrational spectra.
Emmanuel Fritsch, Etienne Balan, Sabine Petit, and Farid Juillot
Eur. J. Mineral., 33, 743–763, https://doi.org/10.5194/ejm-33-743-2021, https://doi.org/10.5194/ejm-33-743-2021, 2021
Short summary
Short summary
The study presents and discusses mid- and near-infrared spectra of three Mg–Ni mineral series (serpentine-like and talc-like minerals, sepiolite) commonly found in reactivated faults and sequences of clay infillings of the New Caledonian Ni-silicate deposits. This spectroscopic study sheds light on the nature of the residual mineral phases found in the clay infillings (serpentine-like minerals) and reveals the aptitude of the newly formed minerals (talc-like minerals and sepiolite) to store Ni.
Etienne Balan, Emmanuel Fritsch, Guillaume Radtke, Lorenzo Paulatto, Farid Juillot, Fabien Baron, and Sabine Petit
Eur. J. Mineral., 33, 647–657, https://doi.org/10.5194/ejm-33-647-2021, https://doi.org/10.5194/ejm-33-647-2021, 2021
Short summary
Short summary
Interpretation of vibrational spectra of serpentines is complexified by the common occurrence of divalent and trivalent cationic impurities at tetrahedral and octahedral sites. We theoretically investigate the effect of Fe and Al on the vibrational properties of lizardite, focusing on the OH stretching modes. The results allow us to disentangle the specific effects related to the valence and coordination states of the impurities, supporting a detailed interpretation of the experimental spectra.
Emmanuel Fritsch, Etienne Balan, Sabine Petit, and Farid Juillot
Eur. J. Mineral., 33, 447–462, https://doi.org/10.5194/ejm-33-447-2021, https://doi.org/10.5194/ejm-33-447-2021, 2021
Short summary
Short summary
The study provides new insights into the OH stretching vibrations of serpentine species (lizardite, chrysotile, antigorite) encountered in veins of peridotite. A combination of infrared spectroscopy in the mid-infrared and near-infrared ranges and Raman spectroscopy enabled us to interpret most of the observed bands in the fundamental and first overtone regions of the spectra and to propose consistent spectral decomposition and assignment of the OH stretching bands for the serpentine species.
Etienne Balan, Emmanuel Fritsch, Guillaume Radtke, Lorenzo Paulatto, Farid Juillot, and Sabine Petit
Eur. J. Mineral., 33, 389–400, https://doi.org/10.5194/ejm-33-389-2021, https://doi.org/10.5194/ejm-33-389-2021, 2021
Short summary
Short summary
The infrared absorption spectrum of an antigorite sample, an important serpentine-group mineral, is compared to its theoretical counterpart computed at the density functional level. The model reproduces most of the observed bands, supporting their assignment to specific vibrational modes. The results provide robust interpretations of the significant differences observed between the antigorite spectrum and that of lizardite, the more symmetric serpentine variety.
Etienne Balan, Emmanuel Fritsch, Farid Juillot, Thierry Allard, and Sabine Petit
Eur. J. Mineral., 33, 209–220, https://doi.org/10.5194/ejm-33-209-2021, https://doi.org/10.5194/ejm-33-209-2021, 2021
Short summary
Short summary
The OH overtone bands of kaolinite- and serpentine-group minerals observed in their near-infrared (NIR) spectra are widely used but their relation to stretching modes involving coupled OH groups is uncertain. Here, we map a molecular model of harmonically coupled anharmonic oscillators on the spectroscopic properties of 1:1 phyllosilicates. This makes it possible to interpret most of the observed bands and support the assignment of some of them to cationic substitutions in serpentines.
Quentin Bollaert, Mathieu Chassé, Guillaume Morin, Benoît Baptiste, Alexandra Courtin, Laurence Galoisy, Gautier Landrot, Cécile Quantin, and Georges Calas
Eur. J. Mineral., 36, 55–72, https://doi.org/10.5194/ejm-36-55-2024, https://doi.org/10.5194/ejm-36-55-2024, 2024
Short summary
Short summary
X-ray absorption spectroscopy (XAS) was successfully used to investigate the atomic-scale environment of niobium (Nb) in ore minerals and Nb-doped compounds of technological importance. The demonstrated sensitivity of this technique to Nb minerals could help decipher Nb speciation in mining contexts such as hydrothermal and lateritic deposits and rationalize the origin of the enhanced physico-chemical properties of Nb-doped materials.
Michael C. Jollands, Shiyun Jin, Martial Curti, Maxime Guillaumet, Keevin Béneut, Paola Giura, and Etienne Balan
Eur. J. Mineral., 35, 873–890, https://doi.org/10.5194/ejm-35-873-2023, https://doi.org/10.5194/ejm-35-873-2023, 2023
Short summary
Short summary
The infrared spectrum of hydrous defects in corundum is routinely used in gemology, but the assignment of absorption bands to specific defects remains elusive. Here, we theoretically study selected defects and compare the results with available experimental data. The main results are the assignment of the
3161 cm−1 seriesto OH groups associated with Fe2+ ions and the interpretation of bands below 2700 cm−1 in corundum containing divalent cations in terms of overtones of OH bending modes.
Benoît Dubacq, Guillaume Bonnet, Manon Warembourg, and Benoît Baptiste
Eur. J. Mineral., 35, 831–844, https://doi.org/10.5194/ejm-35-831-2023, https://doi.org/10.5194/ejm-35-831-2023, 2023
Short summary
Short summary
Minerals in a vein network from the Aravis limestone (Haute-Savoie, France) include carbonates, quartz, fluorite and phyllosilicates, crystallized at around 7 km depth and 190 °C. The mineralogy has been studied with emphasis on the chlorite types: chamosite (iron-rich), cookeite (lithium-rich) and sudoite. The presence of the three chlorite types sheds light on their phase diagrams, and observed cationic substitutions confirm the need for more systematic measurement of lithium in chlorite.
Karina P. P. Marques, Thierry Allard, Cécile Gautheron, Benoît Baptiste, Rosella Pinna-Jamme, Guillaume Morin, Ludovic Delbes, and Pablo Vidal-Torrado
Eur. J. Mineral., 35, 383–395, https://doi.org/10.5194/ejm-35-383-2023, https://doi.org/10.5194/ejm-35-383-2023, 2023
Short summary
Short summary
We proposed a new non-destructive mineralogical methodology on sub-millimeter grains that allows us to quantify the hematite and goethite content and hematite / goethite ratio of grains prior to (U–Th) / He geochronological analysis. (U–Th) / He data performed on different aliquots with different acquisition times show no remarkable differences in age, opening a new way to investigate the (U–Th) / He data evolution in supergene lateritic duricrusts.
Etienne Balan, Guillaume Radtke, Chloé Fourdrin, Lorenzo Paulatto, Heinrich A. Horn, and Yves Fuchs
Eur. J. Mineral., 35, 105–116, https://doi.org/10.5194/ejm-35-105-2023, https://doi.org/10.5194/ejm-35-105-2023, 2023
Short summary
Short summary
Assignment of OH-stretching bands to specific atomic-scale environments in tourmaline is still debated, which motivates detailed theoretical studies of their vibrational properties. We have theoretically investigated the OH-stretching spectrum of foitite, showing that specific OH bands observed in the vibrational spectra of iron-rich and Na-deficient tourmalines are affected by the magnetic configuration of iron ions and X-site vacancy ordering.
Yves Fuchs, Chloé Fourdrin, and Etienne Balan
Eur. J. Mineral., 34, 239–251, https://doi.org/10.5194/ejm-34-239-2022, https://doi.org/10.5194/ejm-34-239-2022, 2022
Short summary
Short summary
Information about the local structure of tourmaline-group minerals can be obtained from the characteristic OH stretching bands in their vibrational spectra. However, their assignment to specific atomic-scale environments is debated. We address this question theoretically by investigating a series of dravite models. Our results support a local role of cationic occupancies in determining the OH stretching frequencies and bring constraints for the interpretation of the vibrational spectra.
Karina Patricia Prazeres Marques, Thierry Allard, Cécile Gautheron, Benoît Baptiste, Rosella Pinna-Jamme, Guillaume Morin, Ludovic Delbes, and Pablo Vidal-Torrado
Geochronology Discuss., https://doi.org/10.5194/gchron-2022-9, https://doi.org/10.5194/gchron-2022-9, 2022
Preprint withdrawn
Short summary
Short summary
We proposed a new non-destructive mineralogical methodology on inframilimetric grains that allows to quantify the hematite and goethite content and hematite/goethite ratio of grains prior to (U-Th)/He geochronological analysis. (U-Th)/He data performed on different aliquots with different acquisition time shows no remarkable differences in age, opening a new way to investigate the (U-Th)/He data evolution in supergene lateritic duricrusts.
Emmanuel Fritsch, Etienne Balan, Sabine Petit, and Farid Juillot
Eur. J. Mineral., 33, 743–763, https://doi.org/10.5194/ejm-33-743-2021, https://doi.org/10.5194/ejm-33-743-2021, 2021
Short summary
Short summary
The study presents and discusses mid- and near-infrared spectra of three Mg–Ni mineral series (serpentine-like and talc-like minerals, sepiolite) commonly found in reactivated faults and sequences of clay infillings of the New Caledonian Ni-silicate deposits. This spectroscopic study sheds light on the nature of the residual mineral phases found in the clay infillings (serpentine-like minerals) and reveals the aptitude of the newly formed minerals (talc-like minerals and sepiolite) to store Ni.
Etienne Balan, Emmanuel Fritsch, Guillaume Radtke, Lorenzo Paulatto, Farid Juillot, Fabien Baron, and Sabine Petit
Eur. J. Mineral., 33, 647–657, https://doi.org/10.5194/ejm-33-647-2021, https://doi.org/10.5194/ejm-33-647-2021, 2021
Short summary
Short summary
Interpretation of vibrational spectra of serpentines is complexified by the common occurrence of divalent and trivalent cationic impurities at tetrahedral and octahedral sites. We theoretically investigate the effect of Fe and Al on the vibrational properties of lizardite, focusing on the OH stretching modes. The results allow us to disentangle the specific effects related to the valence and coordination states of the impurities, supporting a detailed interpretation of the experimental spectra.
Emmanuel Fritsch, Etienne Balan, Sabine Petit, and Farid Juillot
Eur. J. Mineral., 33, 447–462, https://doi.org/10.5194/ejm-33-447-2021, https://doi.org/10.5194/ejm-33-447-2021, 2021
Short summary
Short summary
The study provides new insights into the OH stretching vibrations of serpentine species (lizardite, chrysotile, antigorite) encountered in veins of peridotite. A combination of infrared spectroscopy in the mid-infrared and near-infrared ranges and Raman spectroscopy enabled us to interpret most of the observed bands in the fundamental and first overtone regions of the spectra and to propose consistent spectral decomposition and assignment of the OH stretching bands for the serpentine species.
Etienne Balan, Emmanuel Fritsch, Guillaume Radtke, Lorenzo Paulatto, Farid Juillot, and Sabine Petit
Eur. J. Mineral., 33, 389–400, https://doi.org/10.5194/ejm-33-389-2021, https://doi.org/10.5194/ejm-33-389-2021, 2021
Short summary
Short summary
The infrared absorption spectrum of an antigorite sample, an important serpentine-group mineral, is compared to its theoretical counterpart computed at the density functional level. The model reproduces most of the observed bands, supporting their assignment to specific vibrational modes. The results provide robust interpretations of the significant differences observed between the antigorite spectrum and that of lizardite, the more symmetric serpentine variety.
Etienne Balan, Emmanuel Fritsch, Farid Juillot, Thierry Allard, and Sabine Petit
Eur. J. Mineral., 33, 209–220, https://doi.org/10.5194/ejm-33-209-2021, https://doi.org/10.5194/ejm-33-209-2021, 2021
Short summary
Short summary
The OH overtone bands of kaolinite- and serpentine-group minerals observed in their near-infrared (NIR) spectra are widely used but their relation to stretching modes involving coupled OH groups is uncertain. Here, we map a molecular model of harmonically coupled anharmonic oscillators on the spectroscopic properties of 1:1 phyllosilicates. This makes it possible to interpret most of the observed bands and support the assignment of some of them to cationic substitutions in serpentines.
Cited articles
Auzende, A. L., Daniel, I., Reynard, B., Lemaire, C., and Guyot, F.:
High-pressure behaviour of serpentine minerals: A Raman spectroscopic study,
Phys. Chem. Miner., 31, 269–277, https://doi.org/10.1007/s00269-004-0384-0,
2004.
Balan, E., Saitta, A. M., Mauri, F., Lemaire, C., and Guyot, F.:
First-principles calculation of the infrared spectrum of lizardite, Am.
Mineral., 87, 1286–1290, https://doi.org/10.2138/am-2002-1003, 2002.
Balan, E., Lazzeri, M., Saitta, A. M., Allard, T., Fuchs, Y., and Mauri, F.:
First-principles study of OH stretching modes in kaolinite, dickite and
nacrite, Am. Mineral., 90, 50–60, https://doi.org/10.2138/am.2005.1675,
2005.
Balan, E., Lazzeri, M., Delattre, S., Meheut, M., Refson, K., and Winkler,
B.: Anharmonicity of inner-OH stretching modes in hydrous phyllosilicates:
assessment from first-principles frozen-phonon calculations, Phys. Chem.
Miner., 34, 621–625, https://doi.org/10.1007/s00269-007-0176-4, 2007.
Balan, E., Fritsch, E., Juillot, F., Allard, T., and Petit, S.: Local mode interpretation of the OH overtone spectrum of 1 : 1 phyllosilicates, Eur. J. Mineral., 33, 209–220, https://doi.org/10.5194/ejm-33-209-2021, 2021a.
Balan, E., Fritsch, E., Radtke, G., Paulatto, L., Juillot, F., Baron, F., and Petit, S.: First-principles modeling of the infrared spectrum of Fe- and Al-bearing lizardite, Eur. J. Mineral., 33, 647–657, https://doi.org/10.5194/ejm-33-647-2021, 2021b.
Baranek, P., Lichanot, A., Orlando, R., and Dovesi, R.: Structural and
vibrational properties of solid Mg(OH)2 and Ca(OH)2 – performances
of various hamiltonians, Chem. Phys. Lett., 340, 362–369,
https://doi.org/10.1016/S0009-2614(01)00381-5, 2001.
Baron, F. and Petit, S.: Interpretation of the infrared spectra of the
lizardite-nepouite series in the near and middle infrared range, Am.
Mineral., 101, 423–430, https://doi.org/10.2138/am-2016-5352, 2016.
Beck, P., Schmitt B., Cloutis, E. A., and Vernazza, P.: Low-temperature
reflectance spectra of brucite and the primitive surface of 1-Ceres?,
Icarus, 257, 471–476, https://doi.org/10.1016/j.icarus.2015.05.031, 2015.
Berland, K., Cooper, V. R., Lee, K., Schröder, E., Thonhauser, T.,
Hyldgaard, P., and Lundqvist, B. I.: Van der Waals forces in density
functional theory: a review of the vdW-DF method, Rep. Prog. Phys., 78,
066501, https://doi.org/10.1088/0034-4885/78/6/066501, 2015.
Bishop, J. L., Murad, E., and Dyar, M. D.: The influence of octahedral and
tetrahedral cation substitution on the structure of smectites and
serpentines as observed through infrared spectroscopy, Clay Miner., 37,
617–628, https://doi.org/10.1180/0009855023740064, 2002.
Bishop, J. L., Noe Dobrea, E. Z., McKeown, N. K., Parente, M., Ehlman, B.
L., Michalski, J. R., Milliken, R. E., Poulet, F., Swayze, G. A., Mustard,
J. F., Murchie, S. L., and Bibring, J.-P.: Phyllosilicate diversity and past
aqueous activity revealed at Mawrth Vallis, Mars, Science, 321, 830–833,
https://doi.org/10.1126/science.1159699, 2008.
Blanchard, M., Méheut, M., Delon, L., Poirier, M., Micoud, P., Le
Roux, C., and Martin, F.: Infrared spectroscopic study of the synthetic
Mg-Ni talc series, Phys. Chem. Miner., 45, 843–854,
https://doi.org/10.1007/s00269-018-0966-x, 2018.
Bogani, F.: Two-phonon resonances and bound-states in molecular crystals. I.
General theory, J. Phys. C, 1, 1283–1295,
https://doi.org/10.1088/0022-3719/11/7/019, 1978a.
Bogani, F.: Two-phonon resonances and bound-states in molecular crystals.
II. Absorption coefficient, J. Phys. C, 11, 1297–1309,
https://doi.org/10.1088/0022-3719/11/7/019, 1978b.
Bogani, F., Giua, R., and Schettino, V.: Two-exciton spectra of HCl and HBr
crystals, Chem. Phys., 88, 375–389,
https://doi.org/10.1016/0301-0104(84)87004-4, 1984.
Calandra, M., Lazzeri, M., and Mauri, F.: Anharmonic and non-adiabatic effects
in MgB2: Implications for the isotope effect and interpretation of
Raman spectra, Physica C, 456, 38–44,
https://doi.org/10.1016/j.physc.2007.01.021, 2007.
Califano, S., Schettino, V., and Neto, N.: Lattice dynamics of molecular
crystals, Lecture Notes in Chemistry, Vol. 26, edited by: Berthier, G., Dewar, M. J. S., Fischer, H., Fukui, K., Hall, G. G., Hartmann, H., Jaffé, H. H., Jortner, J., Kutzelnigg, W., Ruedenberg, K., and Scrocco, E., Springer-Verlag, Berlin,
https://doi.org/10.1007/978-3-642-93186-4, 1981.
Capitani, G., Compagnoni, R., Cossio, R., Botta, S., and Mellini, M.: The intracrystalline microstructure of Monte Fico lizardite, by optics, μ-Raman spectroscopy and TEM, Eur. J. Mineral., 33, 425–432, https://doi.org/10.5194/ejm-33-425-2021, 2021.
Carter, J., Poulet, F., Bibring, J.-P., Mangold, N., and Murchie, S.:
Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging
spectrometers: Updated global view, J. Geophys. Res.-Planet., 118, 831–858,
https://doi.org/10.1029/2012JE004145, 2013.
Chalmers, J. M.: Mid-Infrared Spectroscopy: Anomalies, Artifacts and Common
Errors, in: Handbook of Vibrational Spectroscopy, edited by: Chalmers, J. M. and Griffiths, P. R., 2327–2347, https://doi.org/10.1002/0470027320.s3101, 2006.
Child, M. S.: Local mode overtone spectra, Accounts Chem. Res., 18, 45–50,
https://doi.org/10.1021/ar00110a003, 1985.
Compagnoni, R., Cossio, R., and Mellini, M.: Raman anisotropy in serpentine
minerals, with a caveat on identification, J. Raman Spectrosc., 52, 1334–1345,
https://doi.org/10.1002/jrs.6128, 2021.
Cowley, E. R.: Self-consistent phonon studies of a model diatomic
ferroelectric, Physica A, 232,
585–599, https://doi.org/10.1016/0378-4371(96)00168-9, 1996.
Dawson, P., Hadfield, C. D., and Wilkinson, G. R.: The polarized infra-red and
Raman spectra of Mg(OH)2 and Ca(OH)2, J. Phys. Chem. Solids, 34,
1217–1225, https://doi.org/10.1016/S0022-3697(73)80212-4, 1973.
De Oliveira, E. F. and Hase, Y.: Infrared study and isotopic effect of
magnesium hydroxide, Vib. Spectrosc., 25, 53–56,
https://doi.org/10.1016/S0924-2031(00)00107-7, 2001.
Dows, D. A. and Schettino, V.: Two-phonon infrared absorption spectra in
crystalline carbon dioxide, J. Chem. Phys., 58, 5009–5016,
https://doi.org/10.1063/1.1679088, 1973.
Duffy, T. S., Meade, C., Fei, Y., Mao, H.-K., and Hemley, R. J.: High-pressure
phase transition in brucite, Mg(OH)2, Am. Mineral., 80, 222–230,
https://doi.org/10.2138/am-1995-3-403, 1995.
Farmer, V. C.: Transverse and longitudinal crystal modes associated with OH
stretching vibrations in single crystals of kaolinite and dickite,
Spectrochim. Acta A, 56, 927–930,
https://doi.org/10.1016/S1386-1425(99)00182-1, 2000.
Fritsch, E., Balan, E., Petit, S., and Juillot, F.: Structural, textural, and chemical controls on the OH stretching vibrations in serpentine-group minerals, Eur. J. Mineral., 33, 447–462, https://doi.org/10.5194/ejm-33-447-2021, 2021.
Frost, R. L., Ding, Z., and Kloprogge, J. T.: The application of near-infrared
spectroscopy to the study of brucite and hydrotalcite structures, Can. J.
Anal. Sci. Spect., 45, 96–101, 2000.
Fuchs, Y., Linares, J., and Mellini, M.: Mössbauer and
infrared spectrometry of lizardite-1T from Monte Fico, Elba, Phys. Chem.
Miner., 26, 111–115, https://doi.org/10.1007/s002690050167, 1998.
Fuchs, Y., Fourdrin, C., and Balan, E.: Theoretical OH stretching vibrations in dravite, Eur. J. Mineral., 34, 239–251, https://doi.org/10.5194/ejm-34-239-2022, 2022.
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C.,
Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de
Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U.,
Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N.,
Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L.,
Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smo- gunov, A.,
Umari, P., and Wentzcovitch, R. M.: Quantum ESPRESSO: a modular and
open-source software project for quantum simulations of materials, J. Phys.
Cond. Mat., 21, 395502, https://doi.org/10.1088/0953-8984/21/39/395502,
2009 (code available at: http://www.quantum-espresso.org/, last access: 12 December 2022).
Gregorkiewitz, M., Lebech, B., Mellini, M., and Viti, C.: Hydrogen positions
and thermal expansion in lizardite-1T from Elba: A low-temperature study
using Rietveld refinement of neutron diffraction data, Am. Mineral., 81,
1111–1116, https://doi.org/10.2138/am-1996-9-1008, 1996.
Hamann, D. R.: Optimized norm-conserving Vanderbilt pseudopotentials, Phys.
Rev. B, 88, 085117, https://doi.org/10.1103/PhysRevB.88.085117, 2013.
Hermansson, K., Probst, M. M., Gajewski, G., and Mitev, P. D.: Anharmonic OH
vibrations in Mg(OH)2 (brucite): two-dimensional calculations and
crystal-induced blueshift, J. Chem. Phys., 131, 244517,
https://doi.org/10.1063/1.3266507, 2009.
Holstein, T., Orbach, R., and Alexander, S.: Cooperative optical absorption,
Phys. Rev. B, 26, 4721–4726, https://doi.org/10.1103/PhysRevB.26.4721,
1982.
Jakob, P. and Persson, B. N.: Infrared spectroscopy of overtones and
combination bands, J. Chem. Phys., 109, 8641,
https://doi.org/10.1063/1.477531, 1998.
Kimball, J. C., Fong, C. Y., and Shen, Y. R.: Anharmonicity, phonon
localization, two-phonon bound states, and vibrational spectra, Phys. Rev.
B, 23, 4946, https://doi.org/10.1103/PhysRevB.23.4946, 1981.
Klafter, J. and Jortner, J.: Two-particle vibrational excitations in
molecular crystals, J. Chem. Phys., 77,
2816, https://doi.org/10.1063/1.444172, 1982.
Langreth, D. C., Lundqvist, B. I., Chakarova-Kack, S. D., Cooper, V. R., Dion,
M., Hyldgaard, P., Kelkkanen, A., Kleis, J., Kong, L., Li, S., Moses, P. G.,
Murray, E., Puzder, A., Rydberg, H., Schröder, E., and Thonhauser, T.: A
density functional for sparse matter, J. Phys. Condens. Matter, 21, 084203,
https://doi.org/10.1088/0953-8984/21/8/084203, 2009.
Madejová, J., Gates, W. P., and Petit, S.: Chapter 5 – IR Spectra of Clay
Minerals, Dev. Clay Science, 8, 107–149,
https://doi.org/10.1016/B978-0-08-100355-8.00005-9, 2017.
Martens, R. and Freund, F.: The potential energy curve of the proton and the
dissociation energy of the OH− ion in Mg(OH)2, Phys. Stat. Sol.,
37, 97–104, https://doi.org/10.1002/pssa.2210370112, 1976.
Martin, F., Micoud, P., Delmotte, L., Maréchal, C., Le Dred, R., de
Parseval, P., Mari, A., Fortuné, J. P., Salvi, S., Béziat, D.,
Grauby, O., and Ferret, J.: The structural formula of talc from the Trimouns
deposit, Pyrénées, France, Can. Mineral., 37, 975–984, 1999.
Mathian, M., Hebert, B., Baron, F., Petit, S., Lescuyer, J.-L., Furic, R.,
and Beaufort D.: Identifying the phyllosilicate minerals of hypogene ore
deposits in lateritic saprolites using the near-IR spectroscopy second
derivative methodology, J. Geochem. Explor., 186, 298–314,
https://doi.org/10.1016/j.gexplo.2017.11.019, 2018.
Meier, R. J.: On art and science in curve-fitting vibrational spectra, Vib.
Spectrosc., 39, 266–269, https://doi.org/10.1016/j.vibspec.2005.03.003,
2005.
Mellini, M. and Viti, C.: Crystal structure of lizardite-1T from Elba,
Italy, Am. Mineral., 79, 1194–1198, 1994.
Mitev, P. D., Hermansson, K., and Briels, W. J.: Calculation of anharmonic
OH phonon dispersion curves for the Mg(OH)2 crystal, J. Chem. Phys.,
133, 034120, https://doi.org/10.1063/1.3458001, 2010.
Pascale, F., Tosoni, S., Zicovich-Wilson, C., Ugliengo, P., Orlando, R., and
Dovesi, R.: Vibrational spectrum of brucite, Mg(OH)2: a periodic ab
initio quantum mechanical calculation including OH anharmonicity, Chem.
Phys. Lett., 396, 308–315, https://doi.org/10.1016/j.cplett.2004.08.047,
2004.
Paulatto, L., Mauri, F., and Lazzeri, M.: Anharmonic properties from a
generalized third-order ab initio approach: Theory and applications to graphite and
graphene, Phys. Rev. B, 87, 214303,
https://doi.org/10.1103/PhysRevB.87.214303, 2013.
Paulatto, L., Errea, I., Calandra, M., and Mauri F.: First-principles
calculations of phonon frequencies, lifetimes, and spectral functions from
weak to strong anharmonicity: The example of palladium hydrides, Phys. Rev.
B, 91, 054304, https://doi.org/10.1103/PhysRevB.91.054304, 2015.
Perdikatsis, B. and Burzlaff, H.: Strukturverfeinerung am talk
Mg3[(OH)2Si4O10], Z. für Krist., 156, 177–186,
https://doi.org/10.1524/zkri.1981.156.3-4.177, 1981.
Petit, S., Martin, F., Wiewiora, A., De Parseval, P., and Decarreau, A.:
Crystal-chemistry of talc: a near infrared (NIR) spectroscopy study, Am.
Mineral., 89, 319–326, https://doi.org/10.2138/am-2004-2-310, 2004a.
Petit, S., Decarreau, A., Martin, F., and Robert, R.: Refined relationship
between the position of the fundamental OH stretching and the first
overtones for clays, Phys. Chem. Miner., 31, 585–592,
https://doi.org/10.1007/s00269-004-0423-x, 2004b.
Pillai, S. B., Joseph, B., and Jha, P. K.: Brucite (Mg(OH)2) under small
perturbation: A combined first principles and synchrotron X-ray diffraction
study, J. Phys. Chem. Solids, 154, 110078,
https://doi.org/10.1016/j.jpcs.2021.110078, 2021.
Prencipe, M., Noel, Y., Bruno, M., and Dovesi, R.: The vibrational spectrum
of lizardite-1T [Mg3Si2O5(OH)4] at the Γ point:
A contribution from an ab initio B3LYP calculation, Am. Mineral., 94,
986–994, https://doi.org/10.2138/am.2009.3127, 2009.
Reynard, B. and Caracas, R.: D/H isotopic fractionation between brucite
Mg(OH)2 and water from first-principles vibrational modeling, Chem.
Geol., 262, 159–168, https://doi.org/10.1016/j.chemgeo.2009.01.007, 2009.
Rosasco, G. J. and Blaha, J. J.: Raman microprobe spectra and vibrational mode
assignments of talc, Appl. Spectrosc., 34, 140–144,
https://doi.org/10.1366/0003702804730664, 1980.
Sabatini, R., Küçükbenli, E.,
Kolb, B., Thonhauser, T., and De Gironcoli, S.: Structural evolution of
amino acid crystals under stress from a non-empirical density functional, J.
Phys. Condens. Matter, 24, 424209, https://doi.org/10.1088/0953-8984/24/42/424209, 2012.
Schlipf, M. and Gygi, F.: Optimization algorithm for the generation of ONCV
pseudopotentials, Comput. Phys. Commun., 196, 36–44,
https://doi.org/10.1016/j.cpc.2015.05.011, 2015 (code available at: http://www.quantum-simulation.org/potentials/sg15_oncv/, last access: 12 December 2022).
Szalay, V., Kovács, L., Wöhlecke, M., and Libowitzky, E.: Stretching
potential and equilibrium length of the OH bonds in solids, Chem. Phys.
Lett., 354, 56–61, https://doi.org/10.1016/S0009-2614(02)00099-4, 2002.
Tarling, M. S., Demurtas, M., Smith, S. A. F., Rooney, J. S., Negrini, M., Viti, C., Petriglieri, J. R., and Gordon, K. C.: Crystallographic orientation mapping of lizardite serpentinite by Raman spectroscopy, Eur. J. Mineral., 34, 285–300, https://doi.org/10.5194/ejm-34-285-2022, 2022.
Thonhauser, T., Cooper, V. R., Li, S., Puzder, A., Hyldgaard, P., and
Langreth, D. C.: Van der Waals density functional: self-consistent potential
and the nature of the van der Waals bond, Phys. Rev. B, 76, 125112,
https://doi.org/10.1103/PhysRevB.76.125112, 2007.
Treviño, P., Garcia-Castro, A. C., Lopez-Moreno, S., Bautista-Hernandez,
A., Bobocioiu, E., Reynard, B., Caracas, R., and Romero, A. H.: Anharmonic
contribution to the stabilization of Mg(OH)2 from first principles,
Phys. Chem. Chem. Phys., 20, 17799–17808,
https://doi.org/10.1039/c8cp02490a, 2018.
Ugliengo, P., Zicovich-Wilson, C. M., Tosoni, S., and Civalleri, B.: Role of
dispersive interactions in layered materials: a periodic B3LYP and B3LYP-D*
study of Mg(OH)2, Ca(OH)2 and kaolinite, Mater. Chem., 19,
2564–2572, https://doi.org/10.1039/B819020H, 2009.
Ulian, G., Tosoni, S., and ValdreÌ, G.: Comparison between Gaussian-type
orbitals and plane wave ab initio density functional theory modeling of
layer silicates: Talc [Mg3Si4O10(OH)2] as model system,
J. Chem. Phys., 139, 204101, https://doi.org/10.1063/1.4830405, 2013.
Viti, C. and Mellini, M.: Contrasting chemical compositions in associated
lizardite and chrysotile in veins from Elba, Italy, Eur. J. Mineral., 9,
585–596, https://doi.org/10.1127/ejm/9/3/0585, 1997.
Weckler, B. and Lutz, H. D.: Near-infrared spectra of M(OH)Cl (M = Ca, Cd,
Sr), Zn(OH)F, γ-Cd(OH)2, Sr(OH)2, and brucite-type
hydroxides M(OH)2 (M = Mg, Ca, Mn, Fe, Co, Ni, Cd), Spectrochim. Acta
A, 52, 1507–1513,
https://doi.org/10.1016/0584-8539(96)01693-5, 1996.
Wilkins, R. W. T. and Ito, J.: Infrared spectra of some synthetic talcs, Am.
Mineral., 52, 1649–1661, 1967.
Wojdyr, M.: Fityk: a general-purpose peak fitting program, J. Appl.
Crystallogr., 43, 1126–1128, https://doi.org/10.1107/S0021889810030499,
2010 (code available at: https://github.com/wojdyr/fityk, last access: 12 December 2022).
Zhang, M., Qun, H., Lou, X.-J., Redfern, S. A. T., Salje, E. K. H., and
Tarantino, S. C.: Dehydroxylation, proton migration, and structural changes
in heated talc: An infrared spectroscopic study, Am. Mineral., 91, 816–825,
https://doi.org/10.2138/am.2006.1945, 2006.
Zhang, M., Salje, E. K. H., Carpenter, M. A., Wang, J. Y., Groat, L. A.,
Lager, G. A., Wang, L., Beran, A., and Bismayer, U.: Temperature dependence
of IR absorption of hydrous/hydroxyl species in minerals and synthetic
materials, Am. Mineral., 92, 1502–1517,
https://doi.org/10.2138/am.2007.2586, 2007.
Short summary
The near-infrared spectra of hydrous minerals involve OH stretching vibrations, but their interpretation is not straightforward due to anharmonicity and vibrational coupling. We analyze the spectra of well-ordered samples of talc, brucite and lizardite to better assess the various factors contributing to the absorption bands. The results clarify the relations between the overtone spectra and their fundamental counterparts and provide a sound interpretation of the two-phonon combination bands.
The near-infrared spectra of hydrous minerals involve OH stretching vibrations, but their...