Articles | Volume 34, issue 5
https://doi.org/10.5194/ejm-34-469-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-34-469-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A snapshot of the transition from monogenetic volcanoes to composite volcanoes: case study on the Wulanhada Volcanic Field (northern China)
Diao Luo
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Marc K. Reichow
School of Geography, Geology and the Environment (SGGE), University of Leicester, Leicester, LE1 7RH, UK
Tong Hou
CORRESPONDING AUTHOR
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Institute of Mineralogy, Leibniz Universität Hannover, Callinstr. 3, 30167 Hanover, Germany
M. Santosh
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Department of Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
Zhaochong Zhang
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Meng Wang
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Jingyi Qin
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Daoming Yang
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Ronghao Pan
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Xudong Wang
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
François Holtz
Institute of Mineralogy, Leibniz Universität Hannover, Callinstr. 3, 30167 Hanover, Germany
Roman Botcharnikov
Institut für Geowissenschaften, Johannes Gutenberg-Universität Mainz, J.-J.-Becherweg 21, 55128, Mainz, Germany
Related authors
No articles found.
André Stechern, Magdalena Blum-Oeste, Roman E. Botcharnikov, François Holtz, and Gerhard Wörner
Eur. J. Mineral., 36, 721–748, https://doi.org/10.5194/ejm-36-721-2024, https://doi.org/10.5194/ejm-36-721-2024, 2024
Short summary
Short summary
Lascar volcano, located in northern Chile, is among the most active volcanoes of the Andes. Its activity culminated in the last major explosive eruption in April 1993. We carried out experiments at high temperatures (up to 1050 °C) and pressures (up to 5000 bar) in the lab, and we used a wide variety of geochemical methods to provide comprehensive constraints on the depth and temperature of the magma chamber beneath Lascar volcano.
Diego González-García, Florian Pohl, Felix Marxer, Stepan Krasheninnikov, Renat Almeev, and François Holtz
Eur. J. Mineral., 36, 623–640, https://doi.org/10.5194/ejm-36-623-2024, https://doi.org/10.5194/ejm-36-623-2024, 2024
Short summary
Short summary
We studied the exchange of chemical elements by diffusion between magmas of tephritic and phonolitic composition from the Canary Islands, performing experiments at high pressure and high temperature with different amounts of added water. Our results characterize the way water and temperature affect the diffusion process, and we also find unexpectedly high mobility of aluminium, which may be related to its variable chemical bonding in highly alkaline melts.
Carina Silke Hanser, Tobias Häger, and Roman Botcharnikov
Eur. J. Mineral., 36, 449–472, https://doi.org/10.5194/ejm-36-449-2024, https://doi.org/10.5194/ejm-36-449-2024, 2024
Short summary
Short summary
The structure of beryl has been a topic of research for decades but is still not entirely understood. This especially applies to substitutions by Fe ions and the occupation of the channels of beryl by H2O and alkalis. The growing amount of studies makes it difficult to gain an overview on these topics. Therefore, this article reviews the current consensus and debates found in the literature.
Roman Botcharnikov, Max Wilke, Jan Garrevoet, Maxim Portnyagin, Kevin Klimm, Stephan Buhre, Stepan Krasheninnikov, Renat Almeev, Severine Moune, and Gerald Falkenberg
Eur. J. Mineral., 36, 195–208, https://doi.org/10.5194/ejm-36-195-2024, https://doi.org/10.5194/ejm-36-195-2024, 2024
Short summary
Short summary
The new spectroscopic method, based on the syncrotron radiation, allows for determination of Fe oxidation state in tiny objects or in heterogeneous samples. This technique is expected to be an important tool in geosciences unraveling redox conditions in rocks and magmas as well as in material sciences providing constraints on material properties.
Xudong Wang, Tong Hou, Meng Wang, Chao Zhang, Zhaochong Zhang, Ronghao Pan, Felix Marxer, and Hongluo Zhang
Eur. J. Mineral., 33, 621–637, https://doi.org/10.5194/ejm-33-621-2021, https://doi.org/10.5194/ejm-33-621-2021, 2021
Short summary
Short summary
In this paper we calibrate a new empirical clinopyroxene-only thermobarometer based on new models. The new models show satisfying performance in both calibration and the test dataset compared with previous thermobarometers. Our new thermobarometer has been tested on natural clinopyroxenes in the Icelandic eruptions. The results show good agreement with experiments. Hence, it can be widely used to elucidate magma storage conditions.
Chuansong He and M. Santosh
Solid Earth, 8, 1141–1151, https://doi.org/10.5194/se-8-1141-2017, https://doi.org/10.5194/se-8-1141-2017, 2017
Short summary
Short summary
Our work demonstrated that the Emeishan large igneous province was generated by the crustal and/or mantle lithospheric delamination rather than the upwelling mantle plume.
Related subject area
Igneous petrology
Magmatic to solid-state evolution of a shallow emplaced agpaitic tinguaite (the Suc de Sara dyke, Velay volcanic province, France): implications for peralkaline melt segregation and extraction in ascending magmas
Granite magmatism and mantle filiation
Inclusions in magmatic zircon from Slavonian mountains (eastern Croatia): anatase, kumdykolite and kokchetavite and implications for the magmatic evolution
Confocal μ-XANES as a tool to analyze Fe oxidation state in heterogeneous samples: the case of melt inclusions in olivine from the Hekla volcano
Constraining the volatile evolution of mafic melts at Mt. Somma–Vesuvius, Italy, based on the composition of reheated melt inclusions and their olivine hosts
Contrasting appinites, vaugnerites and related granitoids from the NW Iberian Massif: insight into mantle and crustal sources
Reactive interaction between migmatite-related melt and mafic rocks: clues from the Variscan lower crust of Palmi (southwestern Calabria, Italy)
ICDP Oman Drilling Project: varitextured gabbros from the dike–gabbro transition within drill core GT3A
40Ar/39Ar dating of a hydrothermal pegmatitic buddingtonite–muscovite assemblage from Volyn, Ukraine
Geochronology of granites of the western Korosten AMCG complex (Ukrainian Shield): implications for the emplacement history and origin of miarolitic pegmatites
A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems
Quantification of major and trace elements in fluid inclusions and gas bubbles by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with no internal standard: a new method
New evidence for upper Permian crustal growth below Eifel, Germany, from mafic granulite xenoliths
Contaminating melt flow in magmatic peridotites from the lower continental crust (Rocca d'Argimonia sequence, Ivrea–Verbano Zone)
Thomas Pereira, Laurent Arbaret, Juan Andújar, Mickaël Laumonier, Monica Spagnoli, Charles Gumiaux, Gautier Laurent, Aneta Slodczyk, and Ida Di Carlo
Eur. J. Mineral., 36, 491–524, https://doi.org/10.5194/ejm-36-491-2024, https://doi.org/10.5194/ejm-36-491-2024, 2024
Short summary
Short summary
This work presents the results on deformation-enhanced melt segregation and extraction in a phonolitic magma emplaced at shallow depth in the Velay volcanic province (France). We provide evidence of the segregation and subsequent extraction of the residual melt during magma ascent and final emplacement. We highlight that melt segregation started by compaction as a loose packing of microlites emerged and continued with melt filling of a shear band network.
Michel Pichavant, Arnaud Villaros, Julie A.-S. Michaud, and Bruno Scaillet
Eur. J. Mineral., 36, 225–246, https://doi.org/10.5194/ejm-36-225-2024, https://doi.org/10.5194/ejm-36-225-2024, 2024
Short summary
Short summary
Models for the generation of silicic magmas are divided into two groups: intra-crustal melting and basaltic origin. Peraluminous felsic leucogranites are considered as the only granite examples showing no mantle input. This interpretation is re-evaluated, and we show that leucogranites, as most other crustal granite types, can have a mantle filiation. This stresses the critical importance of the mantle for granite generation and opens the way for unification of silicic magma generation models.
Petra Schneider and Dražen Balen
Eur. J. Mineral., 36, 209–223, https://doi.org/10.5194/ejm-36-209-2024, https://doi.org/10.5194/ejm-36-209-2024, 2024
Short summary
Short summary
The acid igneous rocks of eastern Croatia related to the Late Cretaceous closure of the Neotethys Ocean contain zircon as a main accessory mineral. Among others, zircon has inclusions of anatase, hematite and melt (nanogranitoids) with kokchetavite and kumdykolite. The first finding here of kokchetavite and kumdykolite in a magmatic nanogranitoid proves that these are not exclusively ultra-high pressure phases. The detected inclusions indicate rapid uplift and cooling of the oxidised magma.
Roman Botcharnikov, Max Wilke, Jan Garrevoet, Maxim Portnyagin, Kevin Klimm, Stephan Buhre, Stepan Krasheninnikov, Renat Almeev, Severine Moune, and Gerald Falkenberg
Eur. J. Mineral., 36, 195–208, https://doi.org/10.5194/ejm-36-195-2024, https://doi.org/10.5194/ejm-36-195-2024, 2024
Short summary
Short summary
The new spectroscopic method, based on the syncrotron radiation, allows for determination of Fe oxidation state in tiny objects or in heterogeneous samples. This technique is expected to be an important tool in geosciences unraveling redox conditions in rocks and magmas as well as in material sciences providing constraints on material properties.
Rosario Esposito, Daniele Redi, Leonid V. Danyushevsky, Andrey Gurenko, Benedetto De Vivo, Craig E. Manning, Robert J. Bodnar, Matthew Steele-MacInnis, and Maria-Luce Frezzotti
Eur. J. Mineral., 35, 921–948, https://doi.org/10.5194/ejm-35-921-2023, https://doi.org/10.5194/ejm-35-921-2023, 2023
Short summary
Short summary
Despite many articles published about eruptions at Mt. Somma–Vesuvius (SV), the volatile contents of magmas associated with mafic (quasi-primitive) melts were not directly analyzed for many eruptions based on melt inclusions (MIs). We suggest that several high-Fo olivines formed at depths greater than those of the carbonate platform based on MI chemical composition. We also estimated that 347 to 686 t d-1 of magmatic CO2 exsolved from SV magmas during the last 3 centuries of volcanic activity.
Gumer Galán, Gloria Gallastegui, Andrés Cuesta, Guillermo Corretgé, Ofelia Suárez, and Luis González-Menéndez
Eur. J. Mineral., 35, 845–871, https://doi.org/10.5194/ejm-35-845-2023, https://doi.org/10.5194/ejm-35-845-2023, 2023
Short summary
Short summary
Two examples of granites in the Variscan Iberian Massif were studied because they are associated with mafic rocks (appinites and vaugnerites), which raise the question of the role of mantle magma in the formation of granitic rocks. We conclude that appinites and vaugnerites derived from melting of different mantle sources, both previously modified by interaction with crustal materials. Subsequent differentiation of appinites and vaugnerites was influenced by contamination with coeval granites.
Maria Rosaria Renna
Eur. J. Mineral., 35, 1–24, https://doi.org/10.5194/ejm-35-1-2023, https://doi.org/10.5194/ejm-35-1-2023, 2023
Short summary
Short summary
Distribution of major and trace elements during anatexis at the source area was investigated in a portion of Variscan mid–lower crust exposed at Palmi (Calabria, Italy). Reactive migration of migmatitic melt imparted a mineralogical and chemical signature in mafic rocks associated with migmatites and promoted the crystallization of amphibole by a coupled dissolution–precipitation process. Amphibole and accessory allanite control the distribution of incompatible elements from the anatectic zone.
Artur Engelhardt, Jürgen Koepke, Chao Zhang, Dieter Garbe-Schönberg, and Ana Patrícia Jesus
Eur. J. Mineral., 34, 603–626, https://doi.org/10.5194/ejm-34-603-2022, https://doi.org/10.5194/ejm-34-603-2022, 2022
Short summary
Short summary
We present a detailed petrographic, microanalytical and bulk-chemical investigation of 36 mafic rocks from drill hole GT3A from the dike–gabbro transition zone. These varitextured gabbros are regarded as the frozen fillings of axial melt lenses. The oxide gabbros could be regarded as frozen melts, whereas the majority of the rocks, comprising olivine-bearing gabbros and gabbros, show a distinct cumulate character. Also, we present a formation scenario for the varitextured gabbros.
Gerhard Franz, Masafumi Sudo, and Vladimir Khomenko
Eur. J. Mineral., 34, 7–18, https://doi.org/10.5194/ejm-34-7-2022, https://doi.org/10.5194/ejm-34-7-2022, 2022
Short summary
Short summary
The age of formation of buddingtonite, ammonium-bearing feldspar, can be dated with the Ar–Ar method; however, it may often give only minimum ages due to strong resetting. In the studied example it gives a Precambrian minimum age of fossils, associated with this occurrence, and the age of the accompanying mineral muscovite indicates an age near 1.5 Ga. We encourage more dating attempts of buddingtonite, which will give valuable information of diagenetic or hydrothermal events.
Leonid Shumlyanskyy, Gerhard Franz, Sarah Glynn, Oleksandr Mytrokhyn, Dmytro Voznyak, and Olena Bilan
Eur. J. Mineral., 33, 703–716, https://doi.org/10.5194/ejm-33-703-2021, https://doi.org/10.5194/ejm-33-703-2021, 2021
Short summary
Short summary
In the paper we discuss the origin of large chamber pegmatite bodies which contain giant gem-quality crystals of black quartz (morion), beryl, and topaz. We conclude that these pegmatites develop under the influence of later intrusions of mafic rocks that cause reheating of the partly crystallized granite massifs and that they supply a large amount of fluids that facilitate the
inflationof pegmatite chambers and crystallization of giant crystals of various minerals.
Xudong Wang, Tong Hou, Meng Wang, Chao Zhang, Zhaochong Zhang, Ronghao Pan, Felix Marxer, and Hongluo Zhang
Eur. J. Mineral., 33, 621–637, https://doi.org/10.5194/ejm-33-621-2021, https://doi.org/10.5194/ejm-33-621-2021, 2021
Short summary
Short summary
In this paper we calibrate a new empirical clinopyroxene-only thermobarometer based on new models. The new models show satisfying performance in both calibration and the test dataset compared with previous thermobarometers. Our new thermobarometer has been tested on natural clinopyroxenes in the Icelandic eruptions. The results show good agreement with experiments. Hence, it can be widely used to elucidate magma storage conditions.
Anastassia Y. Borisova, Stefano Salvi, German Velasquez, Guillaume Estrade, Aurelia Colin, and Sophie Gouy
Eur. J. Mineral., 33, 305–314, https://doi.org/10.5194/ejm-33-305-2021, https://doi.org/10.5194/ejm-33-305-2021, 2021
Short summary
Short summary
We developed a new method for quantifying elemental concentrations in natural and synthetic fluid inclusions and gas bubbles using a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method with no internal standard. The method may be applied to estimate trace (metal and metalloid) elemental concentrations in hydrous carbonic (C–O–H) fluid inclusions and bubbles with uncertainty below 25 %.
Cliff S. J. Shaw
Eur. J. Mineral., 33, 233–247, https://doi.org/10.5194/ejm-33-233-2021, https://doi.org/10.5194/ejm-33-233-2021, 2021
Short summary
Short summary
Volcanic activity in the West Eifel region of Germany over the past million years has brought many samples of the Earth's mantle and crust to the surface. The samples from this study are pieces of the deep crust that formed between 264 and 253 million years ago at a depth of ~ 30 km. Samples like these reveal how the Earth's crust has grown and been modified over time.
Marta Antonicelli, Riccardo Tribuzio, Tong Liu, and Fu-Yuan Wu
Eur. J. Mineral., 32, 587–612, https://doi.org/10.5194/ejm-32-587-2020, https://doi.org/10.5194/ejm-32-587-2020, 2020
Short summary
Short summary
We present a petrological–geochemical investigation of peridotites of magmatic origin from the Ivrea–Verbano Zone (Italian Alps), a large-scale section of lower continental crust. The main purpose is to provide new insights into the processes governing the evolution of primitive mantle magmas. We propose that studied peridotites were formed by reaction of a melt-poor olivine-rich crystal mush, or a pre-existing peridotite, with upward-migrating melts possessing a substantial crustal component.
Cited articles
Ablay, G. J., Carroll, M. R., Palmer, M. R., Martí, J., and Sparks, R.
S. J.: Basanite–phonolite lineages of the Teide–Pico Viejo volcanic
complex, Tenerife, Canary Islands, J. Petrol., 39, 905–936, https://doi.org/10.1093/petroj/39.5.905, 1998.
Armienti, P., Perinelli, C., and Putirka, K. D.: A new model to estimate
deep-level magma ascent rates, with applications to Mt. Etna (Sicily,
Italy), J. Petrol., 54, 795–813, https://doi.org/10.1093/petrology/egs085, 2013.
Bai, Z.-D., Wang, J.-M., Xu, G.-L., Liu, L., and Xu, D.-B.: Quaternary
Volcano Cluster of Wulanhada, Right-back-banner, Chabaer, Inner Mongolia.,
Acta Petrol. Sin., 24, 2585–2594, 2008 (in Chinese with English abstract).
Boivin, P. and Thouret, J.-C.: The volcanic Chaîne des Puys: a unique collection of simple and compound monogenetic edifices, in: Landscapes and landforms of France, edited by: Fort, M. and Andre, M.-F., Springer, 81–91, https://doi.org/10.1007/978-94-007-7022-5_9, 2014.
Blondes, M. S., Reiners, P. W., Ducea, M. N., Singer, B. S., and Chesley,
J.: Temporal–compositional trends over short and long time-scales in
basalts of the Big Pine Volcanic Field, California, Earth Planet. Sc.
Lett., 269, 140–154, 2008.
Brenna, M., Cronin, S. J., Smith, I. E., Sohn, Y. K., and Németh, K.:
Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju
Island, South Korea, Contrib. Mineral. Petr., 160, 931–950, https://doi.org/10.1007/s00410-010-0515-1, 2010.
Brenna, M., Cronin, S. J., Smith, I. E. M., Sohn, Y. K., and Maas, R.:
Spatio-temporal evolution of a dispersed magmatic system and its
implications for volcano growth, Jeju Island Volcanic Field, Korea, Lithos,
148, 337–352, https://doi.org/10.1016/j.lithos.2012.06.021,
2012.
Brenna, M., Cronin, S. J., Smith, I. E. M., Tollan, P. M. E., Scott, J. M.,
Prior, D. J., Bambery, K., and Ukstins, I. A.: Olivine xenocryst diffusion
reveals rapid monogenetic basaltic magma ascent following complex storage at
Pupuke Maar, Auckland Volcanic Field, New Zealand, Earth Planet. Sc. Lett.,
499, 13–22, https://doi.org/10.1016/j.epsl.2018.07.015, 2018.
Brenna, M., Ubide, T., Nichols, A. R., Mollo, S., and Pontesilli, A.:
Anatomy of Intraplate Monogenetic Alkaline Basaltic Magmatism: Clues From
Magma, Crystals, and Glass, Crustal Magmat. Syst. Evol. Anat. Archit.
Physico-Chemical Process., 79–103, https://doi.org/10.1002/9781119564485.ch4, 2021.
Bucchi, F., Lara, L. E., and Gutiérrez, F.: The Carrán–Los Venados
volcanic field and its relationship with coeval and nearby polygenetic
volcanism in an intra-arc setting, J. Volcanol. Geoth. Res., 308, 70–81,
https://doi.org/10.1016/j.jvolgeores.2015.10.013, 2015.
Cañón-Tapia, E.: Reappraisal of the significance of volcanic fields,
J. Volcanol. Geoth. Res., 310, 26–38, https://doi.org/10.1016/j.jvolgeores.2015.11.010, 2016.
Cañón-Tapia, E. and Walker, G. P. L.: Global aspects of volcanism:
the perspectives of “plate tectonics” and “volcanic systems”, Earth-Sci.
Rev., 66, 163–182, https://doi.org/10.1016/j.earscirev.2003.11.001, 2004.
Chen, C., Liu, Y., Foley, S. F., Ducea, M. N., He, D., Hu, Z., Chen, W., and
Zong, K.: Paleo-Asian oceanic slab under the North China craton revealed by
carbonatites derived from subducted limestones, Geology, 44, 1039–1042,
https://doi.org/10.1130/G38365.1, 2016.
Coote, A., Shane, P., Stirling, C., and Reid, M.: The origin of plagioclase
phenocrysts in basalts from continental monogenetic volcanoes of the
Kaikohe-Bay of Islands field, New Zealand: implications for magmatic
assembly and ascent, Contrib. Mineral. Petr., 173, 1–19, 2018.
Coote, A., Shane, P., and Fu, B.: Olivine phenocryst origins and mantle
magma sources for monogenetic basalt volcanoes in northern New Zealand from
textural, geochemical and δ18O isotope data, Lithos, 344, 232–246,
https://doi.org/10.1016/j.lithos.2019.06.026, 2019.
Corazzato, C. and Tibaldi, A.: Fracture control on type, morphology and
distribution of parasitic volcanic cones: an example from Mt. Etna, Italy,
J. Volcanol. Geoth. Res., 158, 177–194, https://doi.org/10.1016/j.jvolgeores.2006.04.018, 2006.
Crossingham, T. J., Ubide, T., Vasconcelos, P. M., and Mallmann, G.:
Parallel plumbing systems feeding a pair of coeval volcanoes in eastern
Australia, J. Petrol., 59, 1035–1066, https://doi.org/10.1093/petrology/egy054, 2018.
Dasgupta, R., Hirschmann, M. M., and Withers, A. C.: Deep global cycling of
carbon constrained by the solidus of anhydrous, carbonated eclogite under
upper mantle conditions, Earth Planet. Sc. Lett., 227, 73–85, https://doi.org/10.1016/j.epsl.2004.08.004, 2004.
Dasgupta, R., Hirschmann, M. M., and Stalker, K.: Immiscible transition from
carbonate-rich to silicate-rich melts in the 3 GPa melting interval of
eclogite + CO2 and genesis of silica-undersaturated ocean island
lavas, J. Petrol., 47, 647–671, https://doi.org/10.1093/petrology/egi088, 2006.
Dasgupta, R., Hirschmann, M. M., and Smith, N. D.: Partial melting
experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean
island basalts, J. Petrol., 48, 2093–2124, https://doi.org/10.1093/petrology/egm053, 2007.
Dasgupta, R., Hirschmann, M. M., McDonough, W. F., Spiegelman, M., and
Withers, A. C.: Trace element partitioning between garnet lherzolite and
carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the
mantle and of mantle-derived melts, Chem. Geol., 262, 57–77, https://doi.org/10.1016/j.chemgeo.2009.02.004, 2009.
Dasgupta, R., Mallik, A., Tsuno, K., Withers, A. C., Hirth, G., and
Hirschmann, M. M.: Carbon-dioxide-rich silicate melt in the Earth's upper
mantle, Nature, 493, 211–215, https://doi.org/10.1038/nature11731, 2013.
Davis, F. A., Hirschmann, M. M., and Humayun, M.: The composition of the
incipient partial melt of garnet peridotite at 3 GPa and the origin of OIB,
Earth Planet. Sc. Lett., 308, 380–390, https://doi.org/10.1016/j.epsl.2011.06.008, 2011.
Devine, J. D., Rutherford, M. J., Norton, G. E., and Young, S. R.: Magma
Storage Region Processes Inferred from Geochemistry of Fe–Ti Oxides in
Andesitic Magma, Soufrière Hills Volcano, Montserrat, W.I., J. Petrol., 44, 1375–1400,
https://doi.org/10.1093/petrology/44.8.1375, 2003.
Dvir, O. and Kessel, R.: The effect of CO2 on the water-saturated
solidus of K-poor peridotite between 4 and 6 GPa, Geochim. Cosmochim. Ac.,
206, 184–200, https://doi.org/10.1016/j.gca.2017.02.028, 2017.
Elardo, S. M. and Shearer Jr., C. K.: Magma chamber dynamics recorded by
oscillatory zoning in pyroxene and olivine phenocrysts in basaltic lunar
meteorite Northwest Africa 032, Am. Mineral., 99, 355–368, https://doi.org/10.2138/am.2014.4552, 2014.
Elazar, O., Frost, D., Navon, O., and Kessel, R.: Melting of H2O and
CO2-bearing eclogite at 4–6 GPa and 900–1200 ∘C:
implications for the generation of diamond-forming fluids, Geochim.
Cosmochim. Ac., 255, 69–87, https://doi.org/10.1016/j.gca.2019.03.025, 2019.
Fan, Q.-C., Chen, S.-S., Zhao, Y.-W., Zou, H.-B., Li, N., and Sui, J.-L.:
Petrogenesis and evolution of Quaternary basaltic rocks from the Wulanhada
area, North China, Lithos, 206, 289–302, https://doi.org/10.1016/j.lithos.2014.08.007, 2014.
Foley, S. F., Yaxley, G. M., Rosenthal, A., Buhre, S., Kiseeva, E. S., Rapp,
R. P., and Jacob, D. E.: The composition of near-solidus melts of peridotite
in the presence of CO2 and H2O between 40 and 60 kbar, Lithos,
112, 274–283, https://doi.org/10.1016/j.lithos.2009.03.020,
2009.
Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y., and Schilling, J.-G.: The
mean composition of ocean ridge basalts, Geochem. Geophys. Geosy., 14,
489–518, https://doi.org/10.1029/2012GC004334, 2013.
Gamble, J. A., Price, R. C., Smith, I. E., McIntosh, W. C., and Dunbar, N.
W.: geochronology of magmatic activity, magma flux and hazards at
Ruapehu volcano, Taupo Volcanic Zone, New Zealand, J. Volcanol. Geoth.
Res., 120, 271–287, https://doi.org/10.1016/S0377-0273(02)00407-9, 2003.
Gerbode, C. and Dasgupta, R.: Carbonate-fluxed melting of MORB-like
pyroxenite at 2.9 GPa and genesis of HIMU ocean island basalts, J. Petrol.,
51, 2067–2088, https://doi.org/10.1093/petrology/egq049, 2010.
Gernon, T. M., Upton, B. G. J., Ugra, R., Yücel, C., Taylor, R. N., and
Elliott, H.: Complex subvolcanic magma plumbing system of an alkali basaltic
maar-diatreme volcano (Elie Ness, Fife, Scotland), Lithos, 264, 70–85,
https://doi.org/10.1016/j.lithos.2016.08.001, 2016.
Ghosh, S., Litasov, K., and Ohtani, E.: Phase relations and melting of
carbonated peridotite between 10 and 20 GPa: a proxy for alkali-and
CO2-rich silicate melts in the deep mantle, Contrib. Mineral. Petr.,
167, 1–23, https://doi.org/10.1007/s00410-014-0964-z, 2014.
Ginibre, C., Kronz, A., and Wörner, G.: High-resolution quantitative
imaging of plagioclase composition using accumulated backscattered electron
images: new constraints on oscillatory zoning, Contrib. Mineral. Petr.,
142, 436–448, https://doi.org/10.1007/s004100100298, 2002.
Hammouda, T.: High-pressure melting of carbonated eclogite and experimental
constraints on carbon recycling and storage in the mantle, Earth Planet.
Sc. Lett., 214, 357–368, https://doi.org/10.1016/S0012-821X(03)00361-3, 2003.
Hasebe, N., Fukutani, A., Sudo, M., and Tagami, T.: Transition of eruptive
style in an arc–arc collision zone: K–Ar dating of Quaternary monogenetic
and polygenetic volcanoes in the Higashi-Izu region, Izu peninsula, Japan,
Bull. Volcanol., 63, 377–386, https://doi.org/10.1007/s004450100158, 2001.
Herzberg, C.: Petrology and thermal structure of the Hawaiian plume from
Mauna Kea volcano, Nature, 444, 605–609, https://doi.org/10.1038/nature05254, 2006.
Herzberg, C.: Identification of source lithology in the Hawaiian and Canary
Islands: Implications for origins, J. Petrol., 52, 113–146, https://doi.org/10.1093/petrology/egq075, 2011.
Hildreth, W.: Quaternary magmatism in the Cascades: Geologic perspectives, edited by: Handley, J. W., US Geological Survey, 125 pp., http://pubs.usgs.gov/pp/pp1744/ (last access: 12 October 2022), 2007.
Hirose, K.: Partial melt compositions of carbonated peridotite at 3 GPa and
role of CO2 in alkali-basalt magma generation, Geophys. Res. Lett., 24,
2837–2840, https://doi.org/10.1029/97GL02956, 1997.
Hirose, K. and Kushiro, I.: Partial melting of dry peridotites at high
pressures: determination of compositions of melts segregated from peridotite
using aggregates of diamond, Earth Planet. Sc. Lett., 114, 477–489,
https://doi.org/10.1016/0012-821X(93)90077-M, 1993.
Hirschmann, M. M., Kogiso, T., Baker, M. B., and Stolper, E. M.: Alkalic
magmas generated by partial melting of garnet pyroxenite, Geology, 31,
481–484, https://doi.org/10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2, 2003.
Hoernle, K., Tilton, G., Le Bas, M. J., Duggen, S., and Garbe-Schönberg,
D.: Geochemistry of oceanic carbonatites compared with continental
carbonatites: mantle recycling of oceanic crustal carbonate, Contrib. Mineral. Petr., 142, 520–542, https://doi.org/10.1007/s004100100308, 2002.
Hofmann, A. W., Jochum, K. P., Seufert, M., and White, W. M.: Nb and Pb in
oceanic basalts: new constraints on mantle evolution, Earth Planet. Sc.
Lett., 79, 33–45, https://doi.org/10.1016/0012-821X(86)90038-5, 1986.
Howarth, G. H. and Taylor, L. A.: Multi-stage kimberlite evolution tracked
in zoned olivine from the Benfontein sill, South Africa, Lithos, 262,
384–397, https://doi.org/10.1016/j.lithos.2016.07.028, 2016.
Huang, J. and Zhao, D.: High-resolution mantle tomography of China and
surrounding regions, J. Geophys. Res.-Sol. Ea., 111, B09305, https://doi.org/10.1029/2005JB004066, 2006.
Irvine, T. N. and Baragar, W.: A Guide to the Chemical Classification of the
Common Volcanic Rocks, Can. J. Earth Sci., 8, 523–548, https://doi.org/10.1139/e71-055, 1971.
Kahl, M., Chakraborty, S., Costa, F., and Pompilio, M.: Dynamic plumbing
system beneath volcanoes revealed by kinetic modeling, and the connection to
monitoring data: An example from Mt. Etna, Earth Planet. Sc. Lett., 308,
11–22, https://doi.org/10.1016/j.epsl.2011.05.008, 2011.
Kiseeva, E. S., Yaxley, G. M., Hermann, J., Litasov, K. D., Rosenthal, A.,
and Kamenetsky, V. S.: An experimental study of carbonated eclogite at
3.5–5.5 GPa – implications for silicate and carbonate metasomatism in the
cratonic mantle, J. Petrol., 53, 727–759, https://doi.org/10.1093/petrology/egr078, 2012.
Klemme, S., Blundy, J. D., and Wood, B. J.: Experimental constraints on
major and trace element partitioning during partial melting of eclogite,
Geochim. Cosmochim. Ac., 66, 3109–3123, https://doi.org/10.1016/S0016-7037(02)00859-1, 2002.
Kogiso, T., Hirschmann, M. M., and Frost, D. J.: High-pressure partial
melting of garnet pyroxenite: possible mafic lithologies in the source of
ocean island basalts, Earth Planet. Sc. Lett., 216, 603–617, https://doi.org/10.1016/S0012-821X(03)00538-7, 2003.
Kogiso, T., Hirschmann, M. M., and Reiners, P. W.: Length scales of mantle
heterogeneities and their relationship to ocean island basalt geochemistry,
Geochim. Cosmochim. Ac., 68, 345–360, https://doi.org/10.1016/S0016-7037(03)00419-8, 2004.
Lambart, S., Laporte, D., and Schiano, P.: Markers of the pyroxenite
contribution in the major-element compositions of oceanic basalts: Review of
the experimental constraints, Lithos, 160, 14–36, https://doi.org/10.1016/j.lithos.2012.11.018, 2013.
Le Bas, M. L., Le Maitre, R. W., Streckeisen, A., Zanettin, B., and IUGS
Subcommission on the Systematics of Igneous Rocks: A chemical
classification of volcanic rocks based on the total alkali-silica diagram,
J. Petrol., 27, 745–750, https://doi.org/10.1093/petrology/27.3.745, 1986.
Le Roux, V., Lee, C.-T., and Turner, S. J.: Zn/Fe systematics in mafic and
ultramafic systems: Implications for detecting major element heterogeneities
in the Earth's mantle, Geochim. Cosmochim. Ac., 74, 2779–2796, https://doi.org/10.1016/j.gca.2010.02.004, 2010.
Li, J.-Y.: Permian geodynamic setting of Northeast China and adjacent
regions: closure of the Paleo-Asian Ocean and subduction of the
Paleo-Pacific Plate, J. Asian Earth Sci., 26, 207–224, https://doi.org/10.1016/j.jseaes.2005.09.001, 2006.
Lindsay, J. M., Leonard, G. S., Smid, E. R., and Hayward, B. W.: Age of the
Auckland Volcanic Field: a review of existing data, New Zeal. J. Geol. Geop.,
54, 379–401, https://doi.org/10.1080/00288306.2011.595805,
2011.
Litasov, K. D., Shatskiy, A. F., and Pokhilenko, N. P.: Phase relations and melting in the systems of peridotite-H2O-CO2 and eclogite-H2O-CO2 at pressures up to 27 GPa, Dokl. Earth Sc., 437, 498–502, https://doi.org/10.1134/S1028334X11040143, 2011.
Liu, M., Cui, X., and Liu, F.: Cenozoic rifting and volcanism in eastern
China: a mantle dynamic link to the Indo–Asian collision?, Tectonophysics,
393, 29–42, https://doi.org/10.1016/j.tecto.2004.07.029, 2004.
Liu, R. X., Chen, W. J., and Sun, J. Z.: The K-Ar age and tectonic environment of Cenozoic volcanic rock in China, The Age and Geochemistry of Cenozoic Volcanic Rock in China, edited by: Liu, R., Seismic Press, Beijing, 1–43, 1992.
Liu, X., Zhao, D., Li, S., and Wei, W.: Age of the subducting Pacific slab
beneath East Asia and its geodynamic implications, Earth Planet. Sc. Lett.,
464, 166–174, https://doi.org/10.1016/j.epsl.2017.02.024,
2017.
Longpré, M.-A., Klügel, A., Diehl, A., and Stix, J.: Mixing in
mantle magma reservoirs prior to and during the 2011–2012 eruption at El
Hierro, Canary Islands, Geology, 42, 315–318, https://doi.org/10.1130/G35165.1, 2014.
Lu, J.-C., Wei, X.-Y., Cao, X.-D., and Zhang, R.-L.: Research on CO2 gas
pool-geological conditions in Shangdu area, Inner Mongolia, Northwest.
Geol., 35, 122–134, 2002 (in Chinese with English abstract).
Luo, D.: Supplementary information of Tables S1–S5, Zenodo [data set], https://doi.org/10.5281/zenodo.7188369, 2022.
Lynch, D. J., Musselman, T. E., Gutmann, J. T., and Patchett, P. J.:
Isotopic evidence for the origin of Cenozoic volcanic rocks in the Pinacate
volcanic field, northwestern Mexico, Lithos, 29, 295–302, https://doi.org/10.1016/0024-4937(93)90023-6, 1993.
Ma, X.: Lithospheric dynamics atlas of China, China Cartogr., Publ. House
Beijing, 1989.
Martin, U. and Németh, K.: How Strombolian is a “Strombolian” scoria
cone? Some irregularities in scoria cone architecture from the Transmexican
Volcanic Belt, near Volcán Ceboruco,(Mexico) and Al Haruj (Libya), J. Volcanol. Geoth. Res., 155, 104–118, https://doi.org/10.1016/j.jvolgeores.2006.02.012, 2006.
Maruyama, S.: Pacific-type orogeny revisited: Miyashiro-type orogeny
proposed, Isl. Arc, 6, 91–120, https://doi.org/10.1111/j.1440-1738.1997.tb00042.x, 1997.
McGee, L. E. and Smith, I. E.: Interpreting chemical compositions of small
scale basaltic systems: a review, J. Volcanol. Geoth. Res., 325, 45–60,
https://doi.org/10.1016/j.jvolgeores.2016.06.007, 2016.
McGee, L. E., Beier, C., Smith, I. E., and Turner, S. P.: Dynamics of
melting beneath a small-scale basaltic system: a U-Th–Ra study from
Rangitoto volcano, Auckland volcanic field, New Zealand, Contrib. Mineral. Petr., 162, 547–563, https://doi.org/10.1007/s00410-011-0611-x, 2011.
McGee, L. E., Smith, I. E., Millet, M.-A., Handley, H. K., and Lindsay, J.
M.: Asthenospheric control of melting processes in a monogenetic basaltic
system: a case study of the Auckland Volcanic Field, New Zealand, J.
Petrol., 54, 2125–2153, https://doi.org/10.1093/petrology/egt043, 2013.
McLeod, O. E., Brenna, M., Briggs, R. M., and Pittari, A.: Slab tear as a cause of coeval arc-intraplate volcanism in the Alexandra Volcanic Group, New Zealand, Lithos, 408, 106564, https://doi.org/10.1016/j.lithos.2021.106564, 2022.
Morimoto, N.: Nomenclature of pyroxenes, Mineral. Petrol., 39, 55–76,
https://doi.org/10.1007/BF01226262, 1988.
Muffler, L. J. P., Clynne, M. A., Calvert, A. T., and Champion, D. E.:
Diverse, discrete, mantle-derived batches of basalt erupted along a short
normal fault zone: The Poison Lake chain, southernmost Cascades, Bulletin,
123, 2177–2200, 2011.
Neave, D. A. and Putirka, K. D.: A new clinopyroxene-liquid barometer, and
implications for magma storage pressures under Icelandic rift zones, Am.
Mineral., 102, 777–794, https://doi.org/10.2138/am-2017-5968,
2017.
Neill, O. K., Larsen, J. F., Izbekov, P. E., and Nye, C. J.: Pre-eruptive
magma mixing and crystal transfer revealed by phenocryst and microlite
compositions in basaltic andesite from the 2008 eruption of Kasatochi Island
volcano, Am. Mineral., 100, 722–737, https://doi.org/10.2138/am-2015-4967, 2015.
Németh, K. and Kereszturi, G.: Monogenetic volcanism: personal views and
discussion, Int. J. Earth Sci., 104, 2131–2146, https://doi.org/10.1007/s00531-015-1243-6, 2015.
Niu, Y. L.: Generation and evolution of basaltic magmas: some basic concepts
and a new view on the origin of Mesozoic–Cenozoic basaltic volcanism in
eastern China, Geol. J. China Univ., 11, 9–46, 2005.
Niu, Y. L. and O'Hara, M. J.: Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations, J. Geophys. Res.-Sol. Ea., 108, 2209, https://doi.org/10.1029/2002JB002048, 2003.
Peccerillo, A. and Taylor, S. R.: Geochemistry of Eocene calc-alkaline
volcanic rocks from the Kastamonu area, northern Turkey, Contrib. Mineral. Petr., 58, 63–81, https://doi.org/10.1007/BF00384745, 1976.
Perinelli, C., Mollo, S., Gaeta, M., De Cristofaro, S. P., Palladino, D. M.,
Armienti, P., Scarlato, P., and Putirka, K. D.: An improved
clinopyroxene-based hygrometer for Etnean magmas and implications for
eruption triggering mechanisms, Am. Mineral., 101, 2774–2777, https://doi.org/10.2138/am-2016-5916, 2016.
Pertermann, M. and Hirschmann, M. M.: Anhydrous partial melting experiments
on MORB-like eclogite: phase relations, phase compositions and mineral–melt
partitioning of major elements at 2–3 GPa, J. Petrol., 44, 2173–2201,
https://doi.org/10.1093/petrology/egg074, 2003.
Pertermann, M., Hirschmann, M. M., Hametner, K., Günther, D., and
Schmidt, M. W.: Experimental determination of trace element partitioning
between garnet and silica-rich liquid during anhydrous partial melting of
MORB-like eclogite, Geochem. Geophys. Geosy., 5, Q05A01, https://doi.org/10.1029/2003GC000638, 2004.
Pilet, S., Baker, M. B., and Stolper, E. M.: Metasomatized lithosphere and
the origin of alkaline lavas, Science, 320, 916–919, https://doi.org/10.1126/science.1156563, 2008.
Pintér, Z., Foley, S. F., Yaxley, G. M., Rosenthal, A., Rapp, R. P.,
Lanati, A. W., and Rushmer, T.: Experimental investigation of the
composition of incipient melts in upper mantle peridotites in the presence
of CO2 and H2O, Lithos, 396, 106224, https://doi.org/10.1016/j.lithos.2021.106224, 2021.
Pontesilli, A., Brenna, M., Ubide, T., Mollo, S., Masotta, M., Caulfield,
J., Le Roux, P., Nazzari, M., Scott, J. M., and Scarlato, P.: Intraplate
basalt alkalinity modulated by a lithospheric mantle filter at the Dunedin
Volcano (New Zealand), J. Petrol., 62, egab062, https://doi.org/10.1093/petrology/egab062, 2021.
Putirka, K.: Clinopyroxene + liquid equilibria to 100 kbar and 2450 K,
Contrib. Mineral. Petr., 135, 151–163, https://doi.org/10.1007/s004100050503, 1999.
Putirka, K. D.: Thermometers and barometers for volcanic systems, Rev.
Mineral. Geochem., 69, 61–120, https://doi.org/10.2138/rmg.2008.69.3, 2008.
Re, G., Palin, J. M., White, J. D. L., and Parolari, M.: Unravelling the
magmatic system beneath a monogenetic volcanic complex (Jagged Rocks
Complex, Hopi Buttes, AZ, USA), Contrib. Mineral. Petr., 172, 1–27,
https://doi.org/10.1007/s00410-017-1410-9, 2017.
Roeder, P. L. and Emslie, R.: Olivine-liquid equilibrium, Contrib. Mineral. Petr., 29, 275–289, https://doi.org/10.1007/BF00371276,
1970.
Rudnick, R. L., McDonough, W. F., and Chappell, B. W.: Carbonatite
metasomatism in the northern Tanzanian mantle: petrographic and geochemical
characteristics, Earth Planet. Sc. Lett., 114, 463–475, https://doi.org/10.1016/0012-821X(93)90076-L, 1993.
Sakuyama, T., Tian, W., Kimura, J.-I., Fukao, Y., Hirahara, Y., Takahashi,
T., Senda, R., Chang, Q., Miyazaki, T., and Obayashi, M.: Melting of
dehydrated oceanic crust from the stagnant slab and of the hydrated mantle
transition zone: Constraints from Cenozoic alkaline basalts in eastern
China, Chem. Geol., 359, 32–48, https://doi.org/10.1016/j.chemgeo.2013.09.012, 2013.
Sengor, A. M. C. and Natalin, B. A.: Paleotectonics of Asia: fragments of a synthesis, The tectonic evolution of Asia, edited by: Yin, A. and Harrison, T. M., Cambridge University Press, 486–640, 1996.
Shaw, D. M.: Trace element fractionation during anatexis, Geochim.
Cosmochim. Ac., 34, 237–243, https://doi.org/10.1016/0016-7037(70)90009-8, 1970.
Shea, J. J. and Foley, S. F.: Evidence for a carbonatite-influenced source
assemblage for intraplate basalts from the Buckland Volcanic Province,
Queensland, Australia, Minerals, 9, 546, https://doi.org/10.3390/min9090546, 2019.
Shore, M. and Fowler, A. D.: Oscillatory zoning in minerals; a common
phenomenon, Can. Mineral., 34, 1111–1126, 1996.
Smith, I. E. M. and Németh, K.: Source to surface model of monogenetic
volcanism: a critical review, Geol. Soc. Lond. Spec. Publ., 446, 1–28,
https://doi.org/10.1144/SP446.14, 2017.
Sobolev, A. V., Hofmann, A. W., Sobolev, S. V., and Nikogosian, I. K.: An
olivine-free mantle source of Hawaiian shield basalts, Nature, 434,
590–597, https://doi.org/10.1038/nature03411, 2005.
Sobolev, A. V., Hofmann, A. W., Kuzmin, D. V., Yaxley, G. M., Arndt, N. T.,
Chung, S.-L., Danyushevsky, L. V., Elliott, T., Frey, F. A., and Garcia, M.
O.: The amount of recycled crust in sources of mantle-derived melts,
Science, 316, 412–417, 2007.
Spandler, C., Yaxley, G., Green, D. H., and Rosenthal, A.: Phase relations
and melting of anhydrous K-bearing eclogite from 1200 to 1600 ∘C
and 3 to 5 GPa, J. Petrol., 49, 771–795, https://doi.org/10.1093/petrology/egm039, 2008.
Sparks, R. S. J., Annen, C., Blundy, J. D., Cashman, K. V., Rust, A. C., and Jackson, M. D.: Formation and dynamics of magma reservoirs, Philos. T. R. Soc. A, 377, 20180019, https://doi.org/10.1098/rsta.2018.0019, 2018.
Streck, M. J.: Mineral textures and zoning as evidence for open system
processes, Rev. Mineral. Geochem., 69, 595–622, https://doi.org/10.2138/rmg.2008.69.15, 2008.
Sun, P., Niu, Y., Guo, P., Cui, H., Ye, L., and Liu, J.: The evolution and
ascent paths of mantle xenolith-bearing magma: Observations and insights
from Cenozoic basalts in Southeast China, Lithos, 310, 171–181, https://doi.org/10.1016/j.lithos.2018.04.015, 2018.
Sun, S. S. and McDonough, W. F.: Chemical and isotopic systematics of ocean
basalts: Implications for mantle composition and processes, in Magmatism in
the Ocean Basins, Geol. Soc. Lond. Spec. Publ., 423, 13–345, 1989.
Sun, Y., Teng, F.-Z., and Pang, K.-N.: The presence of paleo-Pacific slab
beneath northwest North China Craton hinted by low-δ26Mg
basalts at Wulanhada, Lithos, 386, 106009, https://doi.org/10.1016/j.lithos.2021.106009, 2021.
Takada, A.: The influence of regional stress and magmatic input on styles of
monogenetic and polygenetic volcanism, J. Geophys. Res.-Sol. Ea., 99,
13563–13573, https://doi.org/10.1029/94JB00494, 1994.
Takahashi, E. and Kushiro, I.: Melting of a dry peridotite at high pressures
and basalt magma genesis, Am. Mineral., 68, 859–879, 1983.
Takahashi, E. and Scarfe, C. M.: Melting of peridotite to 14 GPa and the
genesis of komatiite, Nature, 315, 566–568, https://doi.org/10.1038/315566a0, 1985.
Takahashi, E., Shimazaki, T., Tsuzaki, Y., and Yoshida, H.: Melting study of
a peridotite KLB-1 to 6.5 GPa, and the origin of basaltic magmas, Philos.
T. Roy. Soc. A, 342, 105–120, https://doi.org/10.1098/rsta.1993.0008, 1993.
Tanaka, K. L., Shoemaker, E. M., Ulrich, G. E., and Wolfe, E. W.: Migration
of volcanism in the San Francisco volcanic field, Arizona, Geol. Soc. Am.
Bull., 97, 129–141, https://doi.org/10.1130/0016-7606(1986)97<129:MOVITS>2.0.CO;2, 1986.
Tchamabé, B. C., Kereszturi, G., Németh, K., and
Carrasco-Núñez, G.: How polygenetic are monogenetic volcanoes: case
studies of some complex maar-diatreme volcanoes, Updat. Volcanol.-Volcano
Model. Volcano Geol., 13, 355–389, 2016.
Teng, F.-Z., Li, W.-Y., Ke, S., Marty, B., Dauphas, N., Huang, S., Wu,
F.-Y., and Pourmand, A.: Magnesium isotopic composition of the Earth and
chondrites, Geochim. Cosmochim. Ac., 74, 4150–4166, https://doi.org/10.1016/j.gca.2010.04.019, 2010.
Thomson, A. R., Walter, M. J., Kohn, S. C., and Brooker, R. A.: Slab melting
as a barrier to deep carbon subduction, Nature, 529, 76–79, https://doi.org/10.1038/nature16174, 2016.
Ubide, T. and Kamber, B. S.: Volcanic crystals as time capsules of eruption
history, Nat. Commun., 9, 1–12, https://doi.org/10.1038/s41467-017-02274-w, 2018.
Ubide, T., Galé, C., Larrea, P., Arranz, E., and Lago, M.: Antecrysts
and their effect on rock compositions: the Cretaceous lamprophyre suite in
the Catalonian Coastal Ranges (NE Spain), Lithos, 206, 214–233, https://doi.org/10.1016/j.lithos.2014.07.029, 2014.
Valentine, G. A. and Gregg, T. K. P.: Continental basaltic
volcanoes – processes and problems, J. Volcanol. Geoth. Res., 177,
857–873, https://doi.org/10.1016/j.jvolgeores.2008.01.050,
2008.
Valentine, G. A., Perry, F. V., Krier, D., Keating, G. N., Kelley, R. E.,
and Cogbill, A. H.: Small-volume basaltic volcanoes: Eruptive products and
processes, and posteruptive geomorphic evolution in Crater Flat
(Pleistocene), southern Nevada, Geol. Soc. Am. Bull., 118, 1313–1330,
https://doi.org/10.1130/B25956.1, 2006.
Walker, G. P.: Basaltic-volcano systems, Geol. Soc. Lond. Spec. Publ., 76,
3–38, https://doi.org/10.1144/GSL.SP.1993.076.01.01, 1993.
Walker, J. A., Singer, B. S., Jicha, B. R., Cameron, B. I., Carr, M. J., and
Olney, J. L.: Monogenetic, behind-the-front volcanism in southeastern
Guatemala and western El Salvador: ages and tectonic
implications, Lithos, 123, 243–253, https://doi.org/10.1016/j.lithos.2010.09.016, 2011.
Walter, M. J.: Melting of garnet peridotite and the origin of komatiite and
depleted lithosphere, J. Petrol., 39, 29–60, https://doi.org/10.1093/petroj/39.1.29, 1998.
Wang, Z.-Z. and Liu, S.-A.: Evolution of intraplate alkaline to tholeiitic
basalts via interaction between carbonated melt and lithospheric mantle, J.
Petrol., 62, egab025, https://doi.org/10.1093/petrology/egab025, 2021.
Watanabe, S., Widom, E., Ui, T., Miyaji, N., and Roberts, A. M.: The
evolution of a chemically zoned magma chamber: The 1707 eruption of Fuji
volcano, Japan, J. Volcanol. Geoth. Res., 152, 1–19, https://doi.org/10.1016/j.jvolgeores.2005.08.002, 2006.
Wei, H., Wang, Y., Jin, J., Gao, L., Yun, S.-H., and Jin, B.: Timescale and
evolution of the intracontinental Tianchi volcanic shield and
ignimbrite-forming eruption, Changbaishan, Northeast China, Lithos, 96,
315–324, https://doi.org/10.1016/j.lithos.2006.10.004, 2007.
Wei, W., Xu, J., Zhao, D., and Shi, Y.: East Asia mantle tomography: New
insight into plate subduction and intraplate volcanism, J. Asian Earth Sci.,
60, 88–103, https://doi.org/10.1016/j.jseaes.2012.08.001,
2012.
Wilson, L. and Head III, J. W.: Nature of local magma storage zones and
geometry of conduit systems below basaltic eruption sites: Pu'u'O'o, Kilauea
East Rift, Hawaii, example, J. Geophys. Res.-Sol. Ea., 93, 14785–14792,
https://doi.org/10.1029/JB093iB12p14785, 1988.
Workman, R. K. and Hart, S. R.: Major and trace element composition of the
depleted MORB mantle (DMM), Earth Planet. Sc. Lett., 231, 53–72,
https://doi.org/10.1016/j.epsl.2004.12.005, 2005.
Wu, F.-Y., Lin, J.-Q., Wilde, S. A., and Yang, J.-H.: Nature and
significance of the Early Cretaceous giant igneous event in eastern China,
Earth Planet. Sc. Lett., 233, 103–119, https://doi.org/10.1016/j.epsl.2005.02.019, 2005.
Xu, W.-L., Pei, F.-P., Wang, F., Meng, E., Ji, W.-Q., Yang, D.-B., and Wang,
W.: Spatial–temporal relationships of Mesozoic volcanic rocks in NE China:
constraints on tectonic overprinting and transformations between multiple
tectonic regimes, J. Asian Earth Sci., 74, 167–193, https://doi.org/10.1016/j.jseaes.2013.04.003, 2013.
Xu, Y.-G., Ma, J.-L., Frey, F. A., Feigenson, M. D., and Liu, J.-F.: Role of
lithosphere–asthenosphere interaction in the genesis of Quaternary alkali
and tholeiitic basalts from Datong, western North China Craton, Chem. Geol.,
224, 247–271, https://doi.org/10.1016/j.chemgeo.2005.08.004,
2005.
Yang, J.-H., Wu, F.-Y., Shao, J.-A., Wilde, S. A., Xie, L.-W., and Liu,
X.-M.: Constraints on the timing of uplift of the Yanshan Fold and Thrust
Belt, North China, Earth Planet. Sc. Lett., 246, 336–352, https://doi.org/10.1016/j.epsl.2006.04.029, 2006.
Yang, Z.-F., Li, J., Jiang, Q.-B., Xu, F., Guo, S.-Y., Li, Y., and Zhang,
J.: Using major element logratios to recognize compositional patterns of
basalt: Implications for source lithological and compositional
heterogeneities, J. Geophys. Res.-Sol. Ea., 124, 3458–3490, https://doi.org/10.1029/2018JB016145, 2019.
Yaxley, G. M. and Green, D. H.: Reactions between eclogite and peridotite:
mantle refertilisation by subduction of oceanic crust, Schweiz. Miner.
Petrog., 78, 243–255, 1998.
Zellmer, G. F. and Annen, C.: An introduction to magma dynamics, Geol. Soc.
Lond. Spec. Publ., 304, 1, https://doi.org/10.1144/SP304.1,
2008.
Zhang, G.-L., Chen, L.-H., Jackson, M. G., and Hofmann, A. W.: Evolution of
carbonated melt to alkali basalt in the South China Sea, Nat. Geosci., 10,
229–235, https://doi.org/10.1038/ngeo2877, 2017.
Zhang, S.-H., Zhao, Y., Liu, X.-C., Liu, D.-Y., Chen, F., Xie, L.-W., and
Chen, H.-H.: Late Paleozoic to Early Mesozoic mafic–ultramafic complexes
from the northern North China Block: constraints on the composition and
evolution of the lithospheric mantle, Lithos, 110, 229–246, https://doi.org/10.1016/j.lithos.2009.01.008, 2009.
Zhang, Y., Yuan, C., Sun, M., Huang, Z., Narantsetseg, T., Ren, Z., Li, P.,
and Zhang, Q.: Contrasting compositions between phenocrystic and xenocrystic
olivines in the Cenozoic basalts from central Mongolia: Constraints on
source lithology and regional uplift, Am. Mineral., 106, 251–264,
https://doi.org/10.2138/am-2020-7431, 2021.
Zhao, G., Wilde, S. A., Cawood, P. A., and Sun, M.: Archean blocks and their
boundaries in the North China Craton: lithological, geochemical, structural
and P–T path constraints and tectonic evolution, Precambrian Res., 107,
45–73, https://doi.org/10.1016/S0301-9268(00)00154-6, 2001.
Zhao, Y.-W., Fan, Q.-C., Zou, H.-B., and Li, N.: Tectonic controls of Late
Cenozoic monogenetic intraplate volcanism at the Wulanhada volcanic field,
Northern China, J. Volcanol. Geoth. Res., 383, 16–27, https://doi.org/10.1016/j.jvolgeores.2018.01.022, 2019.
Zhou, X. and Armstrong, R. L.: Cenozoic volcanic rocks of eastern
China – secular and geographic trends in chemistry and strontium isotopic
composition, Earth Planet. Sc. Lett., 58, 301–329, https://doi.org/10.1016/0012-821X(82)90083-8, 1982.
Zou, Z., Wang, Z., Foley, S., Xu, R., Geng, X., Liu, Y.-N., Liu, Y., and Hu,
Z.: Origin of low-MgO primitive intraplate alkaline basalts from partial
melting of carbonate-bearing eclogite sources, Geochim. Cosmochim. Ac.,
324, 240–261, https://doi.org/10.1016/j.gca.2022.02.022, 2022.
Short summary
Volcanoes on Earth are divided into monogenetic and composite volcanoes based on edifice shape. Currently the evolution from monogenetic to composite volcanoes is poorly understood. There are two distinct magma chambers, with a deeper region at the Moho and a shallow mid-crustal zone in the Wulanhada Volcanic Field. The crustal magma chamber represents a snapshot of transition from monogenetic to composite volcanoes, which experience more complex magma processes than magma stored in the Moho.
Volcanoes on Earth are divided into monogenetic and composite volcanoes based on edifice shape....