Articles | Volume 33, issue 1
https://doi.org/10.5194/ejm-33-39-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-33-39-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of water on the physical properties of olivine, wadsleyite, and ringwoodite
Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang
Province, School of Earth Sciences, Zhejiang University, Hangzhou 310027,
China
Qun-Ke Xia
Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang
Province, School of Earth Sciences, Zhejiang University, Hangzhou 310027,
China
Related authors
No articles found.
Wendi Liu, Yan Yang, and Qunke Xia
Eur. J. Mineral., 32, 305–310, https://doi.org/10.5194/ejm-32-305-2020, https://doi.org/10.5194/ejm-32-305-2020, 2020
Related subject area
Physical properties of minerals
Compressibility and thermal expansion of magnesium phosphates
Shear properties of MgO inferred using neural networks
Studies on the local structure of the F ∕ OH site in topaz by magic angle spinning nuclear magnetic resonance and Raman spectroscopy
Equation of state and sound wave velocities of fayalite at high pressures and temperatures: implications for the seismic properties of the martian mantle
Intracrystalline melt migration in deformed olivine revealed by trace element compositions and polyphase solid inclusions
Sequential dehydration of the phosphate–sulfate association from Gura Dobrogei Cave, Dobrogea, Romania
Anisotropic thermal transport properties of quartz: from −120 °C through the α–β phase transition
Determination of the H2O content in minerals, especially zeolites, from their refractive indices based on mean electronic polarizabilities of cations
Catherine Leyx, Peter Schmid-Beurmann, Fabrice Brunet, Christian Chopin, and Christian Lathe
Eur. J. Mineral., 36, 417–431, https://doi.org/10.5194/ejm-36-417-2024, https://doi.org/10.5194/ejm-36-417-2024, 2024
Short summary
Short summary
This paper presents the results of an exploratory study on the pressure–volume–temperature behaviour of the main Mg-phosphates of geological interest, especially in high-pressure metamorphic rocks. The incentive for it was the growing body of experimental phase-equilibrium data acquired at high pressure in the MgO–(Al2O3)–P2O5–H2O systems, the thermodynamic evaluation of which has been begging for such volumetric data.
Ashim Rijal, Laura Cobden, Jeannot Trampert, Hauke Marquardt, and Jennifer M. Jackson
Eur. J. Mineral., 35, 45–58, https://doi.org/10.5194/ejm-35-45-2023, https://doi.org/10.5194/ejm-35-45-2023, 2023
Short summary
Short summary
Using neural networks with experimental data, we infer the relationship between pressure, temperature and shear properties of MgO. Fixing the form of the relationship, which is a common practice, provides the properties that are largely constrained by the form and not the data. Our approach provides realistic uncertainties in shear properties, which should improve uncertainty quantification in interpretations of observed shear wave speed to infer the structure and dynamics of the Earth’s mantle.
Anselm Loges, Gudrun Scholz, Nader de Sousa Amadeu, Jingjing Shao, Dina Schultze, Jeremy Fuller, Beate Paulus, Franziska Emmerling, Thomas Braun, and Timm John
Eur. J. Mineral., 34, 507–521, https://doi.org/10.5194/ejm-34-507-2022, https://doi.org/10.5194/ejm-34-507-2022, 2022
Short summary
Short summary
We investigated the effect that fluoride and protons have on each other as structural neighbors in the mineral topaz. This was done using spectroscopic methods, which measure the interaction of electromagnetic radiation with matter. The forces between atoms distort the spectroscopic signals, and this distortion can thus be used to understand the corresponding forces and their effect on the physical properties of the mineral.
Frédéric Béjina, Misha Bystricky, Nicolas Tercé, Matthew L. Whitaker, and Haiyan Chen
Eur. J. Mineral., 33, 519–535, https://doi.org/10.5194/ejm-33-519-2021, https://doi.org/10.5194/ejm-33-519-2021, 2021
Short summary
Short summary
We performed experimental measurements of elastic parameters of fayalite. The idea is to better define the effect of olivine Fe content on these parameters and test how sensitive these are when adjusting mineralogical models to seismic data. The trend of the olivine shear modulus with Fe content is well defined, but that of the bulk modulus remains less constrained, and more experiments on olivines with different Fe compositions are needed.
Valentin Basch, Martyn R. Drury, Oliver Plumper, Eric Hellebrand, Laura Crispini, Fabrice Barou, Marguerite Godard, and Elisabetta Rampone
Eur. J. Mineral., 33, 463–477, https://doi.org/10.5194/ejm-33-463-2021, https://doi.org/10.5194/ejm-33-463-2021, 2021
Short summary
Short summary
This paper investigates the possibility for melts to migrate within extensively deformed crystals and assesses the impact of this intracrystalline melt percolation on the chemical composition of the deformed crystal. We here document that the presence of melt within a crystal greatly enhances chemical diffusive re-equilibration between the percolating melt and the mineral and that such a process occurring at crystal scale can impact the large-scale composition of the oceanic lithosphere.
Delia-Georgeta Dumitraş and Ştefan Marincea
Eur. J. Mineral., 33, 329–340, https://doi.org/10.5194/ejm-33-329-2021, https://doi.org/10.5194/ejm-33-329-2021, 2021
Short summary
Short summary
The low-temperature transformations of phosphate and sulfate sequences in the fossil guano from a Romanian cave were investigated using a mineralogical and chemical approach, resulting in the finding of a quite exotic mineral association, including the rare minerals francoanellite and monetite. The dehydration process of primary guano minerals seems driven by exothermic reactions at local scale (e.g., oxidation of ammonia, organic matter, allogenic pyrite or other organic compounds).
Simon Breuer and Frank R. Schilling
Eur. J. Mineral., 33, 23–38, https://doi.org/10.5194/ejm-33-23-2021, https://doi.org/10.5194/ejm-33-23-2021, 2021
Short summary
Short summary
The knowledge of physical properties of quartz as an abundant rock-forming mineral in the Earth’s crust allows for a better understanding of its dynamic processes. The thermal transport properties of single-crystal quartz are studied between –120 °C and 800 °C using a laser flash method. First, low-temperature data as well as the role of the low-to-high quartz phase transition (e.g. a transition-related non-ballistic radiative transfer) and size effects on thermal diffusivity are discussed.
Reinhard X. Fischer, Manfred Burianek, and Robert D. Shannon
Eur. J. Mineral., 32, 27–40, https://doi.org/10.5194/ejm-32-27-2020, https://doi.org/10.5194/ejm-32-27-2020, 2020
Short summary
Short summary
It is shown here that the H2O content of hydrous minerals can be determined from their mean refractive indices with high accuracy. This is especially important when only small single crystals are available. Such small crystals are generally not suitable for thermal analyses or for other reliable methods of measuring the amount of H2O. The results are compared with the observed H2O content evaluating 157 zeolite-type compounds and 770 non-zeolitic hydrous compounds, showing good agreement.
Cited articles
Bali, E., Bolfan-Casanova, N., and Koga, K. T.: Pressure and temperature
dependence of H solubility in forsterite: An implication to water activity
in the Earth interior, Earth Planet. Sc. Lett., 268, 354–363, https://doi.org/10.1016/j.epsl.2008.01.035, 2008.
Béjina, F., Jaoul, O., and Liebermann, R. C.: Diffusion in minerals at
high pressure: a review, Phys. Earth Planet. In., 139, 3–20, https://doi.org/10.1016/S0031-9201(03)00140-7, 2003.
Bell, D. R., Rossman, G. R., Maldener, J., Endisch, D., and Rauch, F.:
Hydroxide in olivine: a quantitative determination of the absolute amount
and calibration of the IR spectrum, J. Geophys. Res., 108, 2105,
https://doi.org/10.1029/2001JB000679, 2003.
Benz, H. M. and Vidale, J. E.: Sharpness of upper-mantle discontinuities
determined from high-frequency reflections, Nature, 365, 147–150,
https://doi.org/10.1038/365147a0, 1993.
Bercovici, D. and Karato, S. I.: Whole mantle convection and the transition
zone water filter, Nature, 425, 39–44, https://doi.org/10.1038/nature01918,
2003.
Berry, A. J., Hermann, J., O'Neill, H. S. C., and Foran, G. J.:
Fingerprinting the water site in mantle olivine, Geology, 33, 869–872,
https://doi.org/10.1130/G21759.1, 2005.
Brady, J. B. and Cherniak, D. J.: Diffusion in minerals: an overview of
published experimental data, Rev. Mineral. Geochem., 72, 899–920,
https://doi.org/10.2138/rmg.2010.72.20, 2010.
Buchen, J., Marquardt, H., Speziale, S., Kawazoe, T., Ballaran, T. B., and
Kurnosov, A.: High-pressure single-crystal elasticity of wadsleyite and the
seismic signature of water in the shallow transition zone, Earth Planet. Sc. Lett., 498, 77–87, https://doi.org/10.1016/j.epsl.2018.06.027,
2018.
Caricchi, L., Gaillard, F., Mecklenburgh, J., and Le Trong, E.: Experimental
determination of electrical conductivity during deformation of melt-bearing
olivine aggregates: implications for electrical anisotropy in the oceanic
low velocity zone, Earth Planet. Sc. Lett., 302, 81–94, https://doi.org/10.1016/j.epsl.2010.11.041, 2011.
Caracas, R. and Panero, W. R.: Hydrogen mobility in transition zone
silicates, Prog. Earth Planet. Sci., 4, 9, https://doi.org/10.1186/s40645-017-0119-8, 2017.
Carrez, P., Cordier, P., Mainprice, D., and Tommasi, A.: Slip systems and
plastic shear anisotropy in Mg2SiO4 ringwoodite: insights from
numerical modelling, Eur. J. Mineral., 18, 149–160, https://doi.org/10.1127/0935-1221/2006/0018-0149, 2006.
Chakraborty, S.: Diffusion in silicate melts, in: Structure, Dynamics and
Properties of Silicate Melts, Rev. Mineral. Geochem., 32, 411–503,
https://doi.org/10.1515/9781501509384-012, 1995.
Chakraborty, S.: Diffusion in solid silicates – a tool to track timescales
of processes comes of age, Annu. Rev. Earth Planet. Sci., 36, 153–190,
https://doi.org/10.1146/annurev.earth.36.031207.124125, 2008.
Chakraborty, S.: Diffusion coefficients in olivine, wadsleyite and
ringwoodite, Rev. Mineral. Geochem., 72, 603–639, https://doi.org/10.2138/rmg.2010.72.13, 2010.
Chang, Y. Y., Hsieh, W. P., Tan, E., and Chen, J.: Hydration-reduced lattice
thermal conductivity of olivine in Earth's upper mantle, P. Natl. Acad.
Sci. USA, 114, 4078–4081, https://doi.org/10.1073/pnas.1616216114,
2017.
Chantel, J., Mahtilake, G., Andrault, D., Novella, D., Yu, T., and Wang, Y.:
Experimental evidence supports mantle partial melting in the asthenosphere,
Sci. Adv., 2, e1600246, https://doi.org/10.1126/sciadv.1600246, 2016.
Cherniak, D. J. and Watson, E. B.: Diffusion of helium in olivine at 1 atm
and 2.7 GPa, Geochim. Cosmochim. Ac., 84, 269–279, https://doi.org/10.1016/j.gca.2012.01.042, 2012.
Clauser, C.: Thermal storage and transport properties of rocks, I: Heat
capacity and latent heat, Encyclopedia of Solid Earth Geophysics, Springer,
the Netherlands, 1423–1431,
https://doi.org/10.1007/978-90-481-8702-7_238, 2011.
Clauser, C. and Huenges, E.: Thermal conductivity of rocks and minerals,
Rock Phys. Phase Rel., 3, 105–126, https://doi.org/10.1029/RF003p0105, 1995.
Coble, R. L.: A model for boundary diffusion-controlled creep in
polycrystalline materials, J. Appl. Phys., 34, 1679–1682, https://doi.org/10.1063/1.1702656, 1963.
Constable, S.: SEO3: a new model of electrical conductivity, Geophys. J.
Inter., 166, 435–437, https://doi.org/10.1111/j.1365-246X.2006.03041.x, 2006.
Costa, F. and Chakraborty, S.: The effect of water on Si and O diffusion
rates in olivine and implications for transport properties and processes in
the upper mantle, Phys. Earth Planet. In., 166, 11–29, https://doi.org/10.1016/j.pepi.2007.10.006, 2008.
Dai, L. and Karato, S. I.: Electrical conductivity of wadsleyite at high
pressures and high temperatures, Earth Planet. Sc. Lett., 287, 277–283,
https://doi.org/10.1016/j.epsl.2009.08.012, 2009.
Dai, L. and Karato, S. I.: High and highly anisotropic electrical
conductivity of the asthenosphere due to hydrogen diffusion in olivine,
Earth Planet. Sc. Lett., 408, 79–86, https://doi.org/10.1016/j.epsl.2014.10.003, 2014.
Dai, L. and Karato, S. I.: Reply to comment on “High and highly anisotropic
electrical conductivity of the asthenosphere due to hydrogen diffusion in
olivine” by Dai and Karato [Earth Planet. Sc. Lett. 408 (2014) 79-86],
Earth Planet. Sc. Lett., 427, 300–302, https://doi.org/10.1016/j.epsl.2015.06.042, 2015.
Darling, K. L., Gwanmesia, G. D., Kung, J., Li, B., and Liebermann, R. C.:
Ultrasonic measurements of the sound velocities in polycrystalline San
Carlos olivine in multi-anvil, high-pressure apparatus, Phys. Earth Planet. In., 143, 19–31, https://doi.org/10.1016/j.pepi.2003.07.018, 2004.
de Koker, N. and Stixrude, L.: Theoretical computation of diffusion in
minerals and melts, Rev. Mineral. Geochem., 72, 971–996, https://doi.org/10.2138/rmg.2010.72.22, 2010.
Demouchy, S.: Diffusion of hydrogen in olivine grain boundaries and
implications for the survival of water-rich zones in the Earth's mantle,
Earth Planet. Sc. Lett., 295, 305–313, https://doi.org/10.1016/j.epsl.2010.04.019, 2010.
Demouchy, S. and Bolfan-Casanova, N.: Distribution and transport of hydrogen
in the lithospheric mantle: A review, Lithos, 240–243, 402–425, https://doi.org/10.1016/j.lithos.2015.11.012, 2016.
Demouchy, S. and Mackwell, S. J.: Mechanisms of hydrogen incorporation and
diffusion in iron-bearing olivine, Phys. Chem. Mineral., 33, 347–355,
https://doi.org/10.1007/s00269-006-0081-2, 2006.
Demouchy, S., Schneider, S. E., Mackwell, S. J., Zimmerman, M. E., and
Kohlstedt, D. L.: Experimental deformation of olivine single crystals at
lithospheric temperatures, Geophys. Res. Lett., 36, L04304, https://doi.org/10.1029/2008GL036611, 2009.
Demouchy, S., Tommasi, A., Barou, F., Mainprice, D., and Cordier, P.:
Deformation of olivine in torsion under hydrous conditions, Phys. Earth
Planet. In., 202, 56–70, https://doi.org/10.1016/j.pepi.2012.05.001, 2012.
Demouchy, S., Tommasi, A., Boffa Ballaran, T., and Cordier, P.: Low strength
of Earth's uppermost mantle inferred from tri-axial deformation experiments
on dry olivine crystals, Phys. Earth Planet. In., 220, 37–49, https://doi.org/10.1016/j.pepi.2013.04.008, 2013.
Demouchy, S., Mussi, A., Barou, F., Tommasi, A., and Cordier, P.:
Viscoplasticity of polycrystalline olivine experimentally deformed at high
pressure and 900 ∘C, Tectonophysics, 623, 123–135, https://doi.org/10.1016/j.tecto.2014.03.022, 2014.
Demouchy, S., Thoraval, C., Bolfan-Casanova, N., and Manthilake, G.:
Diffusivity of hydrogen in iron-bearing olivine at 3 GPa, Phys. Earth Planet.
In., 260, 1–13, https://doi.org/10.1016/j.pepi.2016.08.005,
2016.
Dohmen, R., Becker, H. W., and Chakraborty, S.: Fe-Mg diffusion in olivine
I: experimental determination between 700 and 1200 ∘C as a function
of composition, crystal orientation and oxygen fugacity, Phys. Chem.
Mineral., 34, 389–407, https://doi.org/10.1007/s00269-007-0157-7, 2007.
Dohmen, R., Kasemann, S. A., Coogan, L., and Chakraborty, S.: Diffusion of
Li in olivine. Part I: experimental observations and a multi species
diffusion model, Geochim. Cosmochim. Ac., 74, 274–292, https://doi.org/10.1016/j.gca.2009.10.016, 2010.
Druzhbin, D.: Silicon and oxygen volume diffusion in wadsleyite and
implications to mantle transition zone rheology, Doctoral dissertation,
Bayreuth, 2019.
Du Frane, W. L. and Tyburczy, J. A.: Deuterium-hydrogen exchange in olivine:
implications for point defects and electrical conductivity, Geochem.
Geophys. Geosyst., 13, Q03004, https://doi.org/10.1029/2011gc003895, 2012.
Dziewonski, A. M. and Anderson, D. L.: Preliminary reference Earth model, Phys. Earth Planet. In., 25, 297–356, https://doi.org/10.1016/0031-9201(81)90046-7, 1981.
Evans, R. L., Hirth, G., Baba, K., Forsyth, D., Chave, A., and Mackie, R.:
Geophysical evidence from the MELT area for compositional controls on
oceanic plates, Nature, 437, 249–252,
https://doi.org/10.1038/nature04014, 2005.
Farla, R., Amulele, G., Girard, J., Miyajima, N., and Karato, S. I.:
High-pressure and high-temperature deformation experiments on
polycrystalline wadsleyite using the rotational Drickamer apparatus, Phys.
Chem. Mineral., 42, 541–558, https://doi.org/10.1007/s00269-015-0742-0, 2015.
Farver, J. R.: Oxygen and hydrogen diffusion in minerals, Rev. Mineral.
Geochem., 72, 447–507, https://doi.org/10.2138/rmg.2010.72.10,
2010.
Faul, U. H., Cline II, C. J., David, E. C., Berry, A. J., and Jackson, I.:
Titanium-hydroxyl defect-controlled rheology of the Earth's upper mantle, Earth Planet. Sc. Lett., 452, 227–237, https://doi.org/10.1016/j.epsl.2016.07.016, 2016.
Fei, H. and Katsura, T.: Pressure dependence of proton incorporation and
water solubility in olivine, J. Geophys. Res., 125, e2019JB018813,
https://doi.org/10.1029/2019JB018813, 2020.
Fei, H., Hegoda, C., Yamazaki, D., Wiedenbeck, M., Yurimoto, H., Shcheka,
S., and Katsura, T.: High silicon self-diffusion coefficient in dry
forsterite, Earth Planet. Sc. Lett., 345, 95–103, https://doi.org/10.1016/j.epsl.2012.06.044, 2012.
Fei, H., Wiedenbeck, M., Yamazaki, D., and Katsura, T.: Small effect of
water on upper-mantle rheology based on silicon self-diffusion coefficients,
Nature, 498, 213–215, https://doi.org/10.1038/nature12193, 2013.
Fei, H., Wiedenbeck, M., Yamazaki, D., and Katsura, T.: No effect of water
on oxygen self-diffusion rate in forsterite, J. Geophys. Res., 119,
7598–7606, https://doi.org/10.1002/2014JB011141, 2014.
Fei, H., Koizumi, S., Sakamoto, N., Hashiguchi, M., Yurimoto, H., Marquardt,
K., Miyajima, N., Yamazaki, D., and Katsura, T.: New constraints on upper
mantle creep mechanism inferred from silicon grain-boundary diffusion rates,
Earth Planet. Sc. Lett., 433, 350–359, https://doi.org/10.1016/j.epsl.2015.11.014, 2016.
Fei, H., Yamazaki, D., Sakurai, M., Miyajima, N., Ohfuji, H., Katsura, T.,
and Yamamoto, T.: A nearly water-saturated mantle transition zone inferred
from mineral viscosity, Sci. Adv., 3, e1603024,
https://doi.org/10.1126/sciadv.1603024, 2017.
Fei, H., Koizumi, S., Sakamoto, N., Hashiguchi, M., Yurimoto, H., Marquardt,
K., and Katsura, T.: Mg lattice diffusion in iron-free olivine and
implications to conductivity anomaly in the oceanic asthenosphere, Earth Planet. Sc. Lett., 484, 204–212, https://doi.org/10.1016/j.epsl.2017.12.020, 2018.
Fei, H., Druzhbin, D., and Katsura, T.: The effect of water on ionic
conductivity in olivine, J. Geophys. Res., 125, e2019JB019313,
https://doi.org/10.1029/2019JB019313, 2020.
Ferriss, E., Plank, T., Newcombe, M., Walker, D., and Hauri, E.: Rates of
dehydration of olivines from San Carlos and Kilauea Iki, Geochim. Cosmochim. Ac., 242, 165–190, https://doi.org/10.1016/j.gca.2018.08.050, 2018.
Freitas, D., Manthilake, G., Schiavi, F., Chantel, J., Bolfan-Casanova, N.,
Bouhifd, M. A., and Andrault, D.: Experimental evidence supporting a global
melt layer at the base of the Earth's upper mantle, Nat. Commun., 8, 2186,
https://doi.org/10.1038/s41467-017-02275-9, 2017.
Freitas, D., Manthilake, G., Chantel, J., Bouhifd, M. A., and Andrault, D.:
Simultaneous measurements of electrical conductivity and seismic wave
velocity of partially molten geological materials: effect of evolving melt
texture, Phys. Chem. Mineral., 46, 535–551,
https://doi.org/10.1007/s00269-019-01021-5, 2019.
Frost, H. J. and Ashby, M. F. (Eds.): Deformation Mechanism Maps, Pergamon
Press, Oxford, 1982.
Gardés, E., Gaillard, F., and Tarits, P.: Toward a unified hydrous
olivine electrical conductivity law, Geochem. Geophys. Geosyst., 15,
4984–5000, https://doi.org/10.1002/2014GC005496, 2014.
Gardés, E., Gaillard, F., and Tarits, P.: Comment to “High and highly
anisotropic electrical conductivity of the asthenosphere due to hydrogen
diffusion in olivine” by Dai and Karato [Earth Planet. Sc. Lett. 408
(2014) 79–86], Earth Planet. Sc. Lett., 427, 296–299,
https://doi.org/10.1016/j.epsl.2015.06.041, 2015.
Ge, J. H., Zhang, B. H., Xiong, Z. L., He, L. F., and Li, H. P.: Thermal
properties of harzburgite and dunite at 0.8–3 GPa and 300–823 K and
implications for the thermal evolution of Tibet, Geosci. Frontiers, 12, 947–956,
https://doi.org/10.1016/j.gsf.2020.01.008, 2021.
Girard, J., Chen, J., Raterron, P., and Holyoke, C. W.: Hydrolytic weakening
of olivine at mantle pressure: Evidence of [100](010) slip system softening
from single-crystal deformation experiments, Phys. Earth Planet. In., 216,
12–20, https://doi.org/10.1016/j.pepi.2012.10.009, 2013.
Girard, J., Amulele, G., Farla, R., Mohiuddin, A., and Karato, S. I.: Shear
deformation of bridgmanite and magnesiowüstite aggregates at lower
mantle conditions, Science, 351, 144–147,
https://doi.org/10.1126/science.aad3113, 2016.
Gouriet, K., Cordier, P., Garel, F., Thoraval, C., Demouchy, S., Tommasi,
A., and Carrez, P.: Dislocation dynamics modelling of the power-law
breakdown in olivine single crystals: Toward a unified creep law for the
upper mantle, Earth Planet. Sc. Lett., 506, 282–291, https://doi.org/10.1016/j.epsl.2018.10.049, 2019.
Gu, X. Y., Wang, P. Y., Kuritani, T., Hanski, E., Xia, Q. K., Wan, Q. Y.: Low
water content in the mantle source of the Hainan plume as a factor
inhibiting the formation of a large igneous province, Earth Planet. Sc. Lett., 515, 221–230, https://doi.org/10.1016/j.epsl.2019.03.034, 2019.
Hae, R., Ohtani, E., Kubo, T., Koyama, T., and Utada, H.: Hydrogen
diffusivity in wadsleyite and water distribution in the mantle transition
zone, Earth Planet. Sc. Lett., 243, 141–148,
https://doi.org/10.1016/j.epsl.2005.12.035, 2006.
Hansen, L. N., Zimmerman, M. E., and Kohlstedt, D. L.: Grain boundary
sliding in San Carlos olivine: Flow law parameters and
crystallographic-preferred orientation, J. Geophys. Res., 116, B08201,
https://doi.org/10.1029/2011jb008220, 2011.
Hier-Majumder, S., Anderson, I. M., and Kohlstedt, D. L.: Influence of
protons on Fe-Mg interdiffusion in olivine, J. Geophys. Res., 110,
2004JB003292, https://doi.org/10.1029/2004JB003292, 2005.
Higo, Y., Inoue, T., Irifune, T., Funakoshi, K. I., and Li, B.: Elastic wave
velocities of (Mg0.91Fe0.09)2SiO4 ringwoodite under P-T
conditions of the mantle transition region, Phys. Earth Planet. In., 166,
167–174, https://doi.org/10.1016/j.pepi.2008.01.003, 2008.
Hirschmann, M. M.: Partial melt in the oceanic low velocity zone, Phys. Earth Planet. In., 179, 60–71,
https://doi.org/10.1016/j.pepi.2009.12.003, 2010.
Hirth, G. and Kohlstedt, D. L.: Experimental constraints on the dynamics of
the partially molten upper mantle: Deformation in the diffusion creep
regime, J. Geophys. Res., 100, 1981–2001, https://doi.org/10.1029/94JB02128,
1995.
Hirth, G. and Kohlstedt, D. L.: Rheology of the upper mantle and the mantle
wedge: A view from the experimentalists, in: Inside the Subduction Factory,
edited by: Eiler, J., Geophys. Monogr. Ser., AGU, Washington, D.C., 138,
83–105, https://doi.org/10.1029/138GM06, 2003.
Hofmeister, A. M.: Mantle values of thermal conductivity and the geotherm
from phonon lifetimes, Science, 283, 1699–1706,
https://doi.org/10.1126/science.283.5408.1699, 1999.
Hofmeister, A. M.: Pressure dependence of thermal transport properties,
P. Natl. Acad. Sci. USA, 104, 9192–9197,
https://doi.org/10.1073/pnas.0610734104, 2007.
Hofmeister, A. M., Branlund, J. M., and Pertermann, M.: Properties of rock
and minerals-thermal conductivity of the Earth, in: Treatise on Geophysics,
edited by: Schubert, G., Elsevier, Amsterdam, 543–577,
https://doi.org/10.1016/B978-044452748-6.00048-1, 2007.
Holzapfel, C., Chakraborty, S., Rubie, D. C., and Frost, D. J.: Fe-Mg
interdiffusion in wadsleyite: the role of pressure, temperature and
composition and the magnitude of jump in diffusion rates at the 410 km
discontinuity, Phys. Earth Planet. In., 172, 28–33,
https://doi.org/10.1016/j.pepi.2008.09.005, 2009.
Houser, C.: Global seismic data reveal little water in the mantle transition
zone, Earth Planet. Sc. Lett., 448, 94–101,
https://doi.org/10.1016/j.epsl.2016.04.018, 2016.
Houser, C. and Williams, Q.: Reconciling Pacific 410 and 660 km
discontinuity topography, transition zone shear velocity patterns, and
mantle phase transitions, Earth Planet. Sc. Lett., 296, 255–266,
https://doi.org/10.1016/j.epsl.2010.05.006, 2010.
Huang, X., Xu, Y., and Karato, S. I.: Water content in the transition zone
from electrical conductivity of wadsleyite and ringwoodite, Nature, 434,
746–749, https://doi.org/10.1038/nature03426, 2005.
Hustoft, J., Amulele, G., Ando, J. I., Otsuka, K., Du, Z., Jing, Z., and
Karato, S. I.: Plastic deformation experiments to high strain on mantle
transition zone minerals wadsleyite and ringwoodite in the rotational
Drickamer apparatus, Earth Planet. Sc. Lett., 361, 7–15,
https://doi.org/10.1016/j.epsl.2012.11.028, 2013.
Ichiki, M., Uyeshima, M., Utada, H., Zhao, G., Tang, J., and Ma, M.: Upper
mantle conductivity structure of the back-arc region beneath northeastern
China, Geophys. Res. Lett., 28, 3773–3776,
https://doi.org/10.1029/2001GL012983, 2001.
Ichiki, M., Baba, K., Obayashi, M., and Utada, H.: Water content and
geotherm in the upper mantle above the stagnant slab: interpretation of
electrical conductivity and seismic P-wave velocity models, Phys. Earth Planet. In., 155, 1–15, https://doi.org/10.1016/j.pepi.2005.09.010,
2006.
Ingrin, J. and Blanchard, M.: Diffusion of hydrogen in minerals, Rev.
Mineral. Geochem., 62, 291–320, https://doi.org/10.2138/rmg.2006.62.13, 2006.
Inoue, T., Yurimoto, H., and Kudoh, Y.: Hydrous modified spinel,
Mg1.75SiH0.5O4, a new water reservoir in the mantle
transition zone, J. Geophys. Res., 22, 117–120,
https://doi.org/10.1029/94GL02965, 1995.
Jackson, J. M., Sinogeikin, S. V., and Bass, J. D.: Sound velocities and
elastic properties of γ-Mg2SiO4 to 873 K by Brillouin
spectroscopy, Am. Mineral., 85, 296–303,
https://doi.org/10.2138/am-2000-2-306, 2000.
Jacobsen, S. D. and Smyth, J. R.: Effect of water on the sound velocities of
ringwoodite in the transition zone, in: Earth's Deep Water Cycle, edited by:
Jacobsen, S. D. and van der Lee, S., American Geophysical Union, Washington,
D.C., 131–145, https://doi.org/10.1029/168GM10, 2006.
Jacobsen, S. D., Smyth, J. R., Spetzler, H., Holl, C. M., and Frost, D. J.:
Sound velocities and elastic constants of iron-bearing hydrous ringwoodite,
Phys. Earth Planet Inter., 143–144, 47–56,
https://doi.org/10.1016/j.pepi.2003.07.019, 2004.
Jollands, M. C., Padrón-Navarta, J. A., Hermann, J., and O'Neill, H. S.
C.: Hydrogen diffusion in Ti-doped forsterite and the preservation of
metastable point defects, Am. Mineral., 101, 1571–1583,
https://doi.org/10.2138/am-2016-55681571, 2016.
Jollands, M. C., Kempf, E., Hermann, J., and Müntener, O.: Coupled
inter-site reaction and diffusion: Rapid dehydrogenation of silicon
vacancies in natural olivine, Geochim. Cosmochim. Ac., 262, 220–242,
https://doi.org/10.1016/j.gca.2019.07.025, 2019.
Jones, A. G.: Reconciling different equations for proton conduction using
the Meyer-Neldel compensation rule, Geochem. Geophys. Geosyst., 15,
337–349, https://doi.org/10.1002/2013GC004911, 2014.
Jones, A. G.: Proton conduction and hydrogen diffusion in olivine: an
attempt to reconcile laboratory and field observations and implications for
the role of grain boundary diffusion in enhancing conductivity, Phys. Chem.
Mineral., 43, 237–265, https://doi.org/10.1007/s00269-015-0790-5, 2016.
Jung, H. and Karato, S. I.: Water-induced fabric transitions in olivine,
Science, 293, 1460–1463, https://doi.org/10.1126/science.1062235, 2001.
Jung, H., Katayama, I., Jiang, Z., Hiraga, T., and Karato, S. I.: Effect of
water and stress on the lattice-preferred orientation of olivine,
Tectonophysics, 421, 1–22, https://doi.org/10.1016/j.tecto.2006.02.011,
2006.
Karato, S. I.: The role of hydrogen in the electrical conductivity of the
upper mantle, Nature, 347, 272–273, https://doi.org/10.1038/347272a0, 1990.
Karato, S. I. (Ed.): Deformation of earth materials: introduction to the
rheology of the solid earth, Cambridge University Press, Cambridge,
https://doi.org/10.1017/CBO9780511804892, 2008.
Karato, S. I.: Water distribution across the mantle transition zone and its
implications for global material circulation, Earth Planet. Sc. Lett., 301,
413–423, https://doi.org/10.1016/j.epsl.2010.11.038, 2011.
Karato, S. I.: Water in the evolution of the Earth and other terrestrial
planets, in: Treatise on Geophysics, edited by: Schubert, G., Elsevier,
Amsterdam, 105–144, https://doi.org/10.1016/B978-0-444-53802-4.00156-1, 2015.
Karato, S. I.: Some remarks on hydrogen-assisted electrical conductivity in
olivine and other minerals, Prog. Earth Planet. Sci., 6, 55,
https://doi.org/10.1186/s40645-019-0301-2, 2019.
Karato, S. and Jung, H.: Effects of pressure on high-temperature dislocation
creep in olivine polycrystals, Philos. Mag. A., 83, 401–414,
https://doi.org/10.1080/0141861021000025829, 2003.
Karato, S. I. and Dai, L.: Comments on “Electrical conductivity of
wadsleyite as a function of temperature and water content” by Manthilake et
al., Phys. Earth Planet. In., 174, 19–21,
https://doi.org/10.1016/j.pepi.2009.01.011, 2009.
Karato, S. I., Paterson, M. S., and Fitz Gerald, J. D.: Rheology of
synthetic olivine aggregates: influence of grain-size and water, J. Geophys.
Res., 91, 8151–8176, https://doi.org/10.1029/JB091iB08p08151, 1986.
Karato, S. I., Riedel, M. R., and Yuen, D. A.: Rheological structure and
deformation of subducted slabs in the mantle transition zone: implications
for mantle circulation and deep earthquakes, Phys. Earth Planet. In.,
127, 83–108, https://doi.org/10.1016/S0031-9201(01)00223-0, 2001.
Katayama, I. and Karato, S. I.: Effects of water and iron content on the
rheological contrast between garnet and olivine, Phys. Earth Planet. In.,
166, 57–66, https://doi.org/10.1016/j.pepi.2007.10.004, 2008a.
Katayama, I. and Karato, S. I.: Low-temperature, high-stress deformation of
olivine under water-saturated conditions, Phys. Earth Planet. In., 168,
125–133, https://doi.org/10.1016/j.pepi.2008.05.019, 2008b.
Katayama, I., Jung, H., and Karato, S. I.: New type of olivine fabric from
deformation experiments at modest water content and low stress, Geology, 32,
1045–1048, https://doi.org/10.1130/G20805.1, 2004.
Katsura, T.: Thermal diffusivity of olivine under upper mantle conditions,
Geophys. J. Inter., 122, 63–69,
https://doi.org/10.1111/j.1365-246X.1995.tb03536.x, 1995.
Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T., and Ito, E.: Adiabatic
temperature profile in the mantle, Phys. Earth Planet. In., 183,
212–218, https://doi.org/10.1016/j.pepi.2010.07.001, 2010.
Kawakatsu, H., Kumar, P., Takei, Y., Shinohara, M., Kanazawa, T., Araki, E., and Suyehiro, K.: Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates, Science, 324, 499–502, https://doi.org/10.1126/science.1169499, 2009.
Kawazoe, T., Karato, S. I., Otsuka, K., Jing, Z., and Mookherjee, M.: Shear
deformation of dry polycrystalline olivine under deep upper mantle
conditions using a rotational Drickamer apparatus (RDA), Phys. Earth Planet. In., 174, 128–137, https://doi.org/10.1016/j.pepi.2008.06.027, 2009.
Kawazoe, T., Karato, S. I., Ando, J., Jing, Z., Otsuka, K., and Hustoft, J.
W.: Shear deformation of polycrystalline wadsleyite up to 2100 K at 14–17 GPa using a rotational Drickamer apparatus (RDA), J. Geophys. Res., 115,
B08208, https://doi.org/10.1029/2009JB007096, 2010.
Kawazoe, T., Ohuchi, T., Nishihara, Y., Nishiyama, N., Fujino, K., and
Irifune, T.: Seismic anisotropy in the mantle transition zone induced by
shear deformation of wadsleyite, Phys. Earth Planet. In., 216, 91–98,
https://doi.org/10.1016/j.pepi.2012.12.005, 2013.
Kawazoe, T., Nishihara, Y., Ohuchi, T., Miyajima, N., Maruyama, G., Higo,
Y., and Irifune, T.: Creep strength of ringwoodite measured at
pressure–temperature conditions of the lower part of the mantle transition
zone using a deformation–DIA apparatus, Earth Planet. Sc. Lett., 454,
10–19, https://doi.org/10.1016/j.epsl.2016.08.011, 2016.
Kelbert, A., Schultz, A., and Egbert, G.: Global electromagnetic induction
constraints on transition-zone water content variations, Nature, 460,
1003–1006, https://doi.org/10.1038/nature08257, 2009.
Kennett, B. L. N., Engdahl, E. R., and Buland, R.: Constraints on seismic
velocities in the earth from travel-times, Geophys. J. Inter., 122,
108–124, https://doi.org/10.1111/j.1365-246X.1995.tb03540.x, 1995.
Kohlstedt, D. L.: The role of water in high-temperature rock deformation,
Rev. Miner. Geochem., 62, 377–396, https://doi.org/10.2138/rmg.2006.62.16,
2006.
Kohlstedt, D. L., Keppler, H., and Rubie, D. C.: Solubility of water in the
α, β and γ phases of (Mg,Fe)2SiO4, Contrib.
Mineral. Petrol., 123, 345–357, https://doi.org/10.1007/s004100050161,
1996.
Kubo, T., Shimojuku, A., and Ohtani, E.: Mg-Fe interdiffusion rates in
wadsleyite and the diffusivity jump at the 410-km discontinuity, Phys. Chem.
Mineral., 31, 456–464, https://doi.org/10.1007/s00269-004-0412-0, 2004.
Kudo, T., Ohtani, E., Hae, R., and Shimojuku, R.: Diffusion of hydrogen in
ringwoodite, in: AIP conference proceedings, American Institute of Physics, New York,
148–149, https://doi.org/10.1063/1.2207093, 2006.
Kustowski, B., Ekström, G., and Dziewoński, A. M.: Anisotropic shear
wave velocity structure of the Earth's mantle: A global model, J. Geophys.
Res., 113, B06306, https://doi.org/10.1029/2007JB005169, 2008.
Kuvshinov, A. and Olsen, N.: A global model of mantle conductivity derived
from 5 years of CHAMP, Ørsted, and SAC-C magnetic data, Geophys. Res.
Lett., 33, L18301, https://doi.org/10.1029/2006GL027083, 2006.
Le Losq, C., Jollands, M. C., Tollan, P. M. E., Hawkins, R., and O'Neill, H.
S. C.: Point defect populations of forsterite revealed by two-stage
metastable hydroxylation experiments, Contrib. Mineral. Petrol., 174, 53,
https://doi.org/10.1007/s00410-019-1590-6, 2019.
Li, B.: Compressional and shear wave velocities of ringwoodite γ-Mg2SiO4 to 12 GPa, Am. Mineral., 88, 1312–1317,
https://doi.org/10.2138/am-2003-8-913, 2003.
Li, B. and Liebermann, R. C.: Sound velocities of wadsleyite β-(Mg0.88Fe0.12)2SiO4 to 10 GPa, Am. Mineral., 85,
292–295, https://doi.org/10.2138/am-2000-2-305, 2000.
Li, B. and Liebermann, R. C.: Study of the Earth's interior using
measurements of sound velocities in minerals by ultrasonic interferometry,
Phys. Earth Planet. In., 233, 135–153,
https://doi.org/10.1016/j.pepi.2014.05.006, 2014.
Li, B., Gwanmesia, G. D., and Liebermann, R. C.: Sound velocities of olivine
and beta polymorphs of Mg2SiO4 at Earth's transition zone
pressures, Geophys. Res. Lett., 23, 2259–2262,
https://doi.org/10.1029/96GL02084, 1996.
Li, B., Kung, J., and Liebermann, R. C.: Modern techniques in measuring
elasticity of Earth materials at high pressure and high temperature using
ultrasonic interferometry in conjunction with synchrotron X-radiation in
multi-anvil apparatus, Phys. Earth Planet. In., 143, 559–574,
https://doi.org/10.1016/j.pepi.2003.09.020, 2004.
Liu, H. Y., Zhu, Q., and Yang, X. Z.: Electrical conductivity of OH-bearing
omphacite and garnet in eclogite: The quantitative dependence on water
content, Contrib. Mineral. Petrol., 174, 57,
https://doi.org/10.1007/s00410-019-1593-3, 2019.
Liu, W., Kung, J., and Li, B.: Elasticity of San Carlos olivine to 8 GPa and 1073 K, Geophys. Res. Lett., 32, L16301,
https://doi.org/10.1029/2005GL023453, 2005.
Liu, W., Kung, J., Li, B., Nishiyama, N., and Wang, Y.: Elasticity of
(Mg0.87Fe0.13)2SiO4 wadsleyite to 12 GPa and 1073 K, Phys. Earth Planet. In., 174, 98–104,
https://doi.org/10.1016/j.pepi.2008.10.020, 2009.
Manthilake, G., Matsuzaki, T., Yoshino, T., Yamashita, S., Ito, E., and
Katsura, T.: Electrical conductivity of wadsleyite as a function of
temperature and water content, Phys. Earth Planet. In., 174, 10–18,
https://doi.org/10.1016/j.pepi.2009.01.012, 2009.
Mao, Z., Jacobsen, S. D., Jiang, F., Smyth, J. R., Holl, C. M., Frost, D.
J., and Duffy, T. S.: Velocity crossover between hydrous and anhydrous
forsterite at high pressures, Earth Planet. Sc. Lett., 293, 250–258,
https://doi.org/10.1016/j.epsl.2010.02.025, 2010.
Mao, Z., Jacobsen, S. D., Frost, D. J., McCammon, C. A., Hauri, E. H., and
Duffy, T. S.: Effect of hydration on the single-crystal elasticity of
Fe-bearing wadsleyite to 12 GPa, Am. Mineral., 96, 1606–1612,
https://doi.org/10.2138/am.2011.3807, 2011.
Mao, Z., Lin, J. F., Jacobsen, S. D., Duffy, T. S., Chang, Y. Y., Smyth, J.
R., Frost, D. J., Hauri, E. H., and Prakapenka, V. B.: Sound velocities of
hydrous ringwoodite to 16 GPa and 673 K, Earth Planet. Sc. Lett., 331,
112–119, https://doi.org/10.1016/j.epsl.2012.03.001, 2012.
Mao, Z., Fan, D., Lin, J. F., Yang, J., Tkachev, S. N., Zhuravlev, K., and
Prakapenka, V. B.: Elasticity of single-crystal olivine at high pressures
and temperatures, Earth Planet. Sc. Lett., 426, 204–215,
https://doi.org/10.1016/j.epsl.2015.06.045, 2015.
Marzotto, E., Hsieh, W. P., Ishii, T., Chao, K. H., Golabek, G. J.,
Thielmann, M., and Ohtani, E.: Effect of water on lattice thermal
conductivity of ringwoodite and its implications for the thermal evolution
of descending slabs, Geophys. Res. Lett., 47, e2020GL087607,
https://doi.org/10.1029/2020GL087607, 2020.
Mayama, N., Suzuki, I., Saito, T., Ohno, I., Katsura, T., and Yoneda, A.:
Temperature dependence of the elastic moduli of ringwoodite, Phys. Earth
Planet. Inter., 148, 353–359, https://doi.org/10.1016/j.pepi.2004.09.007,
2005.
Mehrer, H. (Ed.): Diffusion in solids: fundamentals, methods, materials,
diffusion-controlled processes, Springer, Berlin, 2007.
Mei, S. and Kohlstedt, D. L.: Influence of water on plastic deformation of
olivine aggregates: 1. Diffusion creep regime, J. Geophys. Res., 105,
21457–21469, https://doi.org/10.1029/2000JB900179, 2000a.
Mei, S. and Kohlstedt, D. L.: Influence of water on plastic deformation of
olivine aggregates: 2. Dislocation creep regime, J. Geophys. Res., 105,
21471–21481, https://doi.org/10.1029/2000JB900180, 2000b.
Moine, B. N., Bolfan-Casanova, N., Radu, I. B., Ionov, D. A., Costin, G.,
Korsakov, A. V., Golovin, A. V., Oleinikov, O. B., Deloule, E., and Cottin,
J. Y.: Molecular hydrogen in minerals as a clue to interpret ∂D
variations in the mantle, Nat. Commun., 11, 3614, https://doi.org/10.1038/s41467-020-17442-8, 2020.
Mosenfelder, J. L., Deligne, N. I., Asimow, P. D. and Rossman, G. R.:
Hydrogen incorporation in olivine from 2–12 GPa, Am. Mineral., 91, 285–294,
https://doi.org/10.2138/am.2006.1943, 2006.
Mrosko, M., Lenz, S., McCammon, C. A., Taran, M., Wirth, R., and
Koch-Müller, M.: Hydrogen incorporation and the oxidation state of iron
in ringwoodite: A spectroscopic study, Am. Mineral., 98, 629–636,
https://doi.org/10.2138/am.2013.4245, 2013.
Naif, S., Key, K., Constable, S., and Evans, R. L.: Melt-rich channel
observed at the lithosphere–asthenosphere boundary, Nature, 495, 356–359,
https://doi.org/10.1038/nature11939, 2013.
Ni, H., Hui, H., and Steinle-Neumann, G.: Transport properties of silicate
melts, Rev. Geophys., 53, 715–744, https://doi.org/10.1002/2015RG000485,
2015.
Nishihara, Y., Shinmei, T., and Karato, S. I.: Effects of chemical
environments on the hydrogen-defects in wadsleyite, Am. Mineral., 93,
831–843, https://doi.org/10.2138/am.2008.2653, 2008.
Nishihara, Y., Ohuchi, T., Kawazoe, T., Spengler, D., Tasaka, M., Kikegawa,
T., and Ohtani, E.: Rheology of fine-grained forsterite aggregate at deep
upper mantle conditions, J. Geophys. Res., 119, 253–273,
https://doi.org/10.1002/2013JB010473, 2014.
Novella, D., Jacobsen, B., Weber, P. K., Tyburczy, J. A., Ryerson, F. J.,
and Du Frane, W. L.: Hydrogen self-diffusion in single crystal olivine and
electrical conductivity of the Earth's mantle, Sci. Rep.-UK, 7, 1–10,
https://doi.org/10.1038/s41598-017-05113-6, 2017.
Núñez Valdez, M., Wu, Z., Yu, Y. G., Revenaugh, J., and
Wentzcovitch, R. M.: Thermoelastic properties of ringwoodite
(FexMg1−x)2SiO4: Its relationship to the 520 km
seismic discontinuity, Earth Planet. Sc. Lett., 351–352, 115–122,
https://doi.org/10.1016/j.epsl.2012.07.024, 2012.
Ohtani, E., Litasov, D. K., Hosoya, T., Kubo, T., and Kondo, T.: Water
transport into the deep mantle and formation of a hydrous transition zone,
Phys. Earth Planet. In., 143–144, 255–269, https://doi.org/10.1016/j.pepi.2003.09.015, 2004.
Ohuchi, T. and Irifune, T.: Development of A-type olivine fabric in
water-rich deep upper mantle, Earth Planet. Sc. Lett., 362, 20–30,
https://doi.org/10.1016/j.epsl.2012.11.029, 2013.
Ohuchi, T., Kawazoe, T., Nishihara, Y., and Irifune, T.: Change of olivine
a-axis alignment induced by water: Origin of seismic anisotropy in
subduction zones, Earth Planet. Sc. Lett., 317, 111–119, https://doi.org/10.1016/j.epsl.2011.11.022, 2012.
Ohuchi, T., Kawazoe, T., Higo, Y., and Suzuki, A.: Flow behavior and
microstructures of hydrous olivine aggregates at upper mantle pressures and
temperatures, Contrib. Mineral. Petrol., 172, 65, https://doi.org/10.1007/s00410-017-1375-8, 2017.
Ohuchi, T., Lei, X., Higo, Y., Tange, Y., Sakai, T., and Fujino, K.:
Semi-brittle behavior of wet olivine aggregates: the role of aqueous fluid
in faulting at upper mantle pressures, Contrib. Mineral. Petrol., 173, 88,
https://doi.org/10.1007/s00410-018-1515-9, 2018.
Osako, M., Ito, E., and Yoneda, A.: Simultaneous measurements of thermal
conductivity and thermal diffusivity for garnet and olivine under high
pressure, Phys. Earth Planet. In., 143–144, 311–320, https://doi.org/10.1016/j.pepi.2003.10.010, 2004.
Osako, M., Yoneda, A., and Ito, E.: Thermal diffusivity, thermal
conductivity and heat capacity of serpentine (antigorite) under high
pressure, Phys. Earth Planet. In., 183, 229–233, https://doi.org/10.1016/j.pepi.2010.07.005, 2010.
Padrón-Navarta, J. A. and Hermann, J.: A subsolidus olivine water
solubility equation for the Earth's upper mantle, J. Geophys. Res., 122,
9862–9880, https://doi.org/10.1002/2017JB014510, 2017.
Padrón-Navarta, J. A., Hermann, J., and O'Neill, H. S. C.: Site-specific
hydrogen diffusion rates in forsterite, Earth Planet. Sc. Lett., 392,
100–112, https://doi.org/10.1016/j.epsl.2014.01.055, 2014.
Paterson, M. S.: The determination of hydroxyl by infrared absorption in
quartz, silicate glasses and similar materials, Bull. Mineral., 105, 20–29,
https://doi.org/10.3406/bulmi.1982.7582, 1982.
Pearson, D. G., Brenker, F. E., Nestola, F., McNeill, J., Nasdala, L.,
Hutchison, M. T., Matveev, S., Mather, K., Silversmit, G., Schmitz, S.,
Vekemans, B., and Vincze, L.: Hydrous mantle transition zone indicated by
ringwoodite included within diamond, Nature, 507, 221–224, https://doi.org/10.1038/nature13080, 2014.
Poe, B. T., Romano, C., Nestola, F., and Smyth, J. R.: Electrical
conductivity anisotropy of dry and hydrous olivine at 8 GPa, Phys. Earth Planet. In., 181, 103–111, https://doi.org/10.1016/j.pepi.2010.05.003, 2010.
Pommier, A.: Interpretation of magnetotelluric results using laboratory
measurements, Surv. Geophys., 35, 41–84, https://doi.org/10.1007/s10712-013-9226-2, 2013.
Pommier, A., Leinenweber, K., Kohlstedt, D. L., Qi, C., Garnero, E. J.,
Mackwell, S. J., and Tyburczy, J. A.: Experimental constraints on the
electrical anisotropy of the lithosphere-asthenosphere system, Nature, 522,
202–206, https://doi.org/10.1038/nature14502, 2015.
Purevjav, N., Okuchi, T., Tomioka, N., Abe, J., and Harjo, S.: Hydrogen site
analysis of hydrous ringwoodite in mantle transition zone by pulsed neutron
diffraction, Geophys. Res. Lett., 41, 6718–6724, https://doi.org/10.1002/2014GL061448, 2014.
Purevjav, N., Okuchi, T., Tomioka, N., Wang, X., and Hoffmann, C.:
Quantitative analysis of hydrogen sites and occupancy in deep mantle hydrous
wadsleyite using single crystal neutron diffraction, Sci. Rep.-UK, 6, 34988,
https://doi.org/10.1038/srep34988, 2016.
Revenaugh, J. and Jordan, T. H.: Mantle layering from ScS reverberations: 2.
The transition zone, J. Geophys. Res., 96, 19763–19780,
https://doi.org/10.1029/91JB01486, 1991.
Ritterbex, S., Carrez, P. H., Gouriet, K., and Cordier, P.: Modeling
dislocation glide in Mg2SiO4 ringwoodite: Towards rheology under
transition zone conditions, Phys. Earth Planet. In., 248, 20–29,
https://doi.org/10.1016/j.pepi.2015.09.001, 2015.
Romano, C., Poe, B. T., Tyburczy, J., and Nestra, F.: Electrical conductivity of
hydrous wadsleyite, Eur. J. Mineral., 21, 615–622,
https://doi.org/10.1127/0935-1221/2009/0021-1933, 2009.
Schmandt, B., Jacobsen, S. D., Becker, T. W., Liu, Z., and Dueker, K. G.:
Dehydration melting at the top of the lower mantle, Science, 344,
1265–1268, https://doi.org/10.1126/science.1253358, 2014.
Schmerr, N.: The Gutenberg discontinuity: Melt at the lithosphere–asthenosphere boundary, Science, 335, 1480–1483,
https://doi.org/10.1126/science.1215433, 2012.
Schulze, K., Marquardt, H., Kawazoe, T., Ballaran, T. B., McCammon, C.,
Koch-Müller, M., Kurnosov, A., and Marquardt, K.: Seismically invisible
water in Earth's transition zone? Earth Planet. Sc. Lett., 498, 9–16,
https://doi.org/10.1016/j.epsl.2018.06.021, 2018.
Shimizu, H., Koyama, T., Baba, H., and Utada, H.: Revised 1-D mantle electrical
conductivity structure beneath the north Pacific, Geophys. J. Inter., 180,
1030–1048, https://doi.org/10.1111/j.1365-246X.2009.04466.x, 2010.
Shimojuku, A., Kubo, T., Ohtani, E., and Yurimoto, H.: Silicon
self-diffusion in wadsleyite: Implications for rheology of the mantle
transition zone and subducting plates, Geophys. Res. Lett., 31, L13606,
https://doi.org/10.1029/2004GL020002, 2004.
Shimojuku, A., Kubo, T., Ohtani, E., Nakamura, T., Okazaki, R., Chakraborty,
S., and Dohmen, R.: Si and O diffusion in (Mg,Fe)2SiO4 wadsleyite
and ringwoodite and its implication for rheology of the mantle transition
zone, Earth Planet. Sc. Lett., 284, 103–112,
https://doi.org/10.1016/j.epsl.2009.04.014, 2009.
Shimojuku, A., Kubo, T., Ohtani, E., Nakamura, T., and Okazaki, R.: Effects
of hydrogen and iron on the silicon diffusivity of wadsleyite, Phys. Earth
Planet. Inter., 183, 175–182, https://doi.org/10.1016/j.pepi.2010.09.011,
2010.
Sieminski, A., Debayle, E., and Lévêque, J. J.: Seismic evidence for
deep low-velocity anomalies in the transition zone beneath West Antarctica, Earth Planet. Sc. Lett., 216, 645–661,
https://doi.org/10.1016/S0012-821X(03)00518-1, 2003.
Sinogeikin, S. V., Bass, J. D., and Katsura, T.: Single-crystal elasticity
of ringwoodite to high pressures and high temperatures: implications for 520
km seismic discontinuity, Phys. Earth Planet. In., 136, 41–66,
https://doi.org/10.1016/S0031-9201(03)00022-0, 2003.
Smyth, J. R., Frost, D. J., Nestola, F., Holl, C. M., and Bromiley, G.:
Olivine hydration in the deep upper mantle: Effects of temperature and
silica activity, Geophys. Res. Lett., 33, L15301,
https://doi.org/10.1029/2006GL026194, 2006.
Song, T. R. A., Helmberger, D. V., and Grand, S. P.: Low-velocity zone atop
the 410-km seismic discontinuity in the northwestern United States, Nature,
427, 530–533, https://doi.org/10.1038/nature02231, 2004.
Stern, T. A., Henrys, S. A., Okaya, D., Louie, J. N., Savage, M. K., Lamb,
S., Sato, H., Sutherland, R., and Iwasaki, T.: A seismic reflection image
for the base of a tectonic plate, Nature, 518, 85–88,
https://doi.org/10.1038/nature14146, 2015.
Sun, W., Yoshino, T., Sakamoto, N., and Yurimoto, H.: Hydrogen
self-diffusivity in single crystal ringwoodite: implications for water
content and distribution in the mantle transition zone, Geophys. Res. Lett.,
42, 6582–6589, https://doi.org/10.1002/2015GL064486, 2015.
Sun, W., Yoshino, T., Sakamoto, N., and Yurimoto, H.: Supercritical fluid in
the mantle transition zone deduced from H-D interdiffusion of wadsleyite,
Earth Planet. Sc. Lett., 484, 309–317, https://doi.org/10.1016/j.epsl.2017.12.032, 2018.
Sun, W., Yoshino, T., Kuroda, M., Sakamoto, N., and Yurimoto, H.: H-D
interdiffusion in single-crystal olivine: Implications for electrical
conductivity in the upper mantle, J. Geophys. Res., 124, 5696–5707,
https://doi.org/10.1029/2019JB017576, 2019.
Tachibana, S., Tamada, S., Kawasaki, H., Ozawa, K., and Nagahara, H.:
Interdiffusion of Mg-Fe in olivine at 1400–1600 ∘C and 1 atm total
pressure, Phys. Chem. Mineral., 40, 511–519, https://doi.org/10.1007/s00269-013-0588-2, 2013.
Tarits, P., Hautot, S., and Perrier, F.: Water in the mantle: results from
electrical conductivity beneath the French Alps, Geophys. Res. Lett., 31,
L06612, https://doi.org/10.1029/2003GL019277, 2004.
Tasaka, M., Zimmerman, M. E., and Kohlstedt, D. L.: Creep behavior of
Fe-bearing olivine under hydrous conditions, J. Geophys. Res., 120,
6039–6057, https://doi.org/10.1002/2015JB012096, 2015.
Tasaka, M., Zimmerman, M. E., and Kohlstedt, D. L.: Evolution of the
rheological and microstructural properties of olivine aggregates during
dislocation creep under hydrous conditions, J. Geophys. Res., 121, 92–113,
https://doi.org/10.1002/2015jb012134, 2016.
Tauzin, B., Debayle, E., and Wittlinger, G.: Seismic evidence for a global
low-velocity layer within the Earth's upper mantle, Nat. Geosci., 3,
718–721, https://doi.org/10.1038/ngeo969, 2010.
Tielke, J. A., Zimmerman, M. E., and Kohlstedt, D. L.: Hydrolytic weakening
in olivine single crystals, J. Geophys. Res., 122, 3465–3479, https://doi.org/10.1002/2017JB014004, 2017.
Tielke, J., Mecklenburgh, J., Mariani, E., and Wheeler, J.: The influence of
water on the strength of olivine dislocation slip systems, J. Geophys. Res.,
124, 6542–6559, https://doi.org/10.1029/2019JB017436, 2019.
Toffelmier, D. A. and Tyburczy, J. A.: Electromagnetic detection of a 410-km
deep melt layer in the southwestern United States, Nature, 447, 991–994,
https://doi.org/10.1038/nature05922, 2007.
Tollan, P. M. E., Smith, R., O'Neill, H. S. C., and Hermann, J.: The
responses of the four main substitution mechanisms of H in olivine to
H2O activity at 1050 ∘C and 3 GPa, Prog. Earth Planet. Sci.,
4, 14, https://doi.org/10.1186/s40645-017-0128-7, 2017.
Tollan, P. M. E., O'Neill, H. S. C., and Hermann, J.: The role of trace
elements in controlling H incorporation in San Carlos olivine, Contrib.
Mineral. Petrol., 173, 89, https://doi.org/10.1007/s00410-018-1517-7, 2018.
Tommasi, A., Gibert, B., Seipold, U., and Mainprice, D.: Anisotropy of
thermal diffusivity in the upper mantle, Nature, 411, 783–786, https://doi.org/10.1038/35081046, 2001.
Tschauner, O., Huang, S., Greenberg, E., Prakapenka, V. B., Ma, C., Rossman,
G. R., Shen, A. H., Zhang, D., Newville, M., Lanzirotti, A., and Tait, K.:
Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth's deep
mantle, Science, 359, 1136–1139, https://doi.org/10.1126/science.aao3030, 2018.
Utada, H., Koyama, T., Shimizu, H., and Chave, A. D.: A semi-global
reference model for electrical conductivity in the mid-mantle beneath the
north Pacific region, Geophys. Res. Lett., 30, 1194, https://doi.org/10.1029/2002GL016092, 2003.
Walker, A. M., Hermann, J., Berry, A. J., and O'Neill, H. S. C.: Three water
sites in upper mantle olivine and the role of titanium in the water
weakening mechanism, J. Geophys. Res., 112, B05211, https://doi.org/10.1029/2006JB004620, 2007.
Wallis, D., Hansen, L. N., Tasaka, M., Kumamoto, K. M., Parsons, A. J.,
Lloyd, G. E., Kohlstedt, D. L., and Wilkinson, A. J.: The impact of water on
slip system activity in olivine and the formation of bimodal
crystallographic preferred orientations, Earth Planet. Sc. Lett., 508,
51–61, https://doi.org/10.1016/j.epsl.2018.12.007, 2019.
Wang, D., Mookherjee, M., Xu, Y., and Karato, S. I.: The effect of water on
the electrical conductivity of olivine, Nature, 443, 977–980, https://doi.org/10.1038/nature05256, 2006.
Wang, J., Sinogeikin, S. V., Inoue, T., and Bass, J. D.: Elastic properties
of hydrous ringwoodite at high-pressure conditions, Geophys. Res. Lett., 33,
L14308, https://doi.org/10.1029/2006GL026441, 2006.
Wang, J., Bass, J. D., and Kastura, T.: Elastic properties of iron-bearing
wadsleyite to 17.7 GPa: Implications for mantle mineral models, Phys. Earth
Planet. Inter., 228, 92–96, https://doi.org/10.1016/j.pepi.2014.01.015, 2014.
Wang, W., Walter, M. J., Peng, Y., Redfern, S., and Wu, Z.: Constraining
olivine abundance and water content of the mantle at the 410-km
discontinuity from the elasticity of olivine and wadsleyite, Earth Planet.
Sci. Lett., 519, 1–11, https://doi.org/10.1016/j.epsl.2019.04.018, 2019.
Wang, Y., Durham, W. B., Getting, I. C., and Weidner, D. J.: The
deformation-DIA: A new apparatus for high temperature triaxial deformation
to pressures up to 15 GPa, Rev. Sci. Instrum., 74, 3002–3011, https://doi.org/10.1063/1.1570948, 2003.
Watson, E. B. and Baxter, E. F.: Diffusion in solid-Earth systems, Earth Planet. Sc. Lett., 253, 307–327, https://doi.org/10.1016/j.epsl.2006.11.015, 2007.
Weertman, J.: Microstructural mechanisms of creep, in: Mechanics and
Materials: Fundamentals and Linkages, edited by: Meyers, M. A., Armstrong,
R. W., and Kirschner, H., John Wiley and Sons, Boston, 451–488, 1999.
Withers, A. C., Bureau, H., Raepsaet, C. and Hirschmann, M. M.: Calibration
of infrared spectroscopy by elastic recoil detection analysis of H in
synthetic olivine, Chem. Geol., 334, 92–98, https://doi.org/10.1016/j.chemgeo.2012.10.002, 2012.
Wright, K. and Catlow, C. R. A.: Calculations on the energetics of water
dissolution in wadsleyite, Phys. Chem. Mineral., 23, 38–41, https://doi.org/10.1007/BF00202991, 1996.
Xia, Q. K., Yang, X. Z., Deloule, E., Sheng, Y. M., and Hao, Y. T.:
Water in the lower crustal granulite xenoliths from Nushan, SE China, J.
Geophys. Res., 111, B11202, https://doi.org/10.1029/2006JB004296, 2006.
Xia, Q. K., Liu, J., Liu, S. C., Kovács, I., Feng, M., and
Dang, L.: High water content in Mesozoic primitive basalts of the North
China Craton and implications for the destruction of cratonic mantle
lithosphere, Earth Planet. Sc. Lett., 361, 85–97, https://doi.org/10.1016/j.epsl.2012.11.024, 2013.
Xia, Q. K., Liu, J., Kovács, I., Hao, Y. T., Li, P., Yang, X.
Z., Chen, H., and Sheng, Y. M.: Water in the upper mantle and deep crust of
eastern China: Concentration, distribution and implications, Natl. Sci.
Rev., 6, 125–144, https://doi.org/10.1093/nsr/nwx016, 2019.
Xiong, Z. L. and Zhang, B. H.: Thermal properties of olivine, wadsleyite and
ringwoodite – a review, Minerals, 9, 519, https://doi.org/10.3390/min9090519, 2019.
Xu, Y., Poe, B. T., Shankland, T. J., and Rubie, D. C.: Electrical
conductivity of olivine, wadsleyite, and ringwoodite under upper-mantle
conditions, Science, 280, 1415–1418, https://doi.org/10.1126/science.280.5368.1415, 1998.
Xu, Y., Shankland, T. J., and Poe, B. T.: Laboratory-based electrical
conductivity in the Earth's mantle, J. Geophys. Res., 105, 27865–27875,
https://doi.org/10.1029/2000JB900299, 2000.
Xu, Y., Weidner, D. J., Chen, J., Vaughan, M. T., Wang, Y., and Uchida, T.:
Flow-law for ringwoodite at subduction zone conditions, Phys. Earth Planet.
In., 136, 3–9, https://doi.org/10.1016/S0031-9201(03)00026-8, 2003.
Xu, Y., Shankland, T. J., Linhardt, S., Rubie, D. C., Langenhorst, F., and
Klasinski, K.: Thermal diffusivity and conductivity of olivine, wadsleyite
and ringwoodite to 20 GPa and 1373 K, Phys. Earth Planet. In., 143,
321–336, https://doi.org/10.1016/j.pepi.2004.03.005, 2004.
Yamazaki, D. and Karato, S. I.: Some mineral physics constraints on the
rheology and geothermal structure of Earth's lower mantle, Am. Mineral., 86,
385–391, https://doi.org/10.2138/am-2001-0401, 2001.
Yang, X.: Orientation-related electrical conductivity of hydrous olivine,
clinopyroxene and plagioclase and implications for the structure of the
lower continental crust and uppermost mantle, Earth Planet. Sc. Lett.,
317–318, 241–250, https://doi.org/10.1016/j.epsl.2011.11.011,
2012.
Yoshino, T.: Laboratory electrical conductivity measurement of mantle
minerals, Surv. Geophys., 31, 163–206, https://doi.org/10.1007/s10712-009-9084-0, 2010.
Yoshino, T. and Katsura, T.: Reply to comments on “Electrical conductivity
of wadsleyite as a function of temperature and water content” by Manthilake
et al., Phys. Earth Planet. In., 174, 22–23, https://doi.org/10.1016/j.pepi.2009.01.012, 2009.
Yoshino, T. and Katsura, T.: Re-evaluation of electrical conductivity of
anhydrous and hydrous wadsleyite, Earth Planet. Sc. Lett., 337–338,
56–67, https://doi.org/10.1016/j.epsl.2012.05.023, 2012.
Yoshino, T. and Katsura, T.: Electrical conductivity of mantle
minerals: role of water in conductivity anomalies, Annu. Rev. Earth Planet.
Sci., 41, 605–628, https://doi.org/10.1146/annurev-earth-050212-124022, 2013.
Yoshino, T., Matsuzaki, T., Yamashita, S., and Katsura, T.: Hydrous olivine
unable to account for conductivity anomaly at the top of the asthenosphere,
Nature, 443, 973–976, https://doi.org/10.1038/nature05223,
2006.
Yoshino, T., Manthilake, G., Matsuzaki, T., and Katsura, T.: Dry mantle
transition zone inferred from electrical conductivity of wadsleyite and
ringwoodite, Nature, 451, 326–329, https://doi.org/10.1038/nature06427, 2008.
Yoshino, T., Matsuzaki, T., Shatskiy, A., and Katsura, T.: The effect of
water on the electrical conductivity of olivine aggregates and its
implications for the electrical structure of the upper mantle, Earth Planet. Sc. Lett., 288, 291–300, https://doi.org/10.1016/j.epsl.2009.09.032, 2009.
Yoshino, T., Laumonier, M., McIsaac, E., and Katsura, T.: Electrical
conductivity of basaltic and carbonatite melt-bearing peridotites at high
pressures: implications for melt distribution and melt fraction in the upper
mantle, Earth Planet. Sc. Lett., 295, 593–602, https://doi.org/10.1016/j.epsl.2010.04.050, 2010.
Zha, C. S., Duffy, T. S., Downs, R. T., Mao, H. K., and Hemley, R. J.: Sound velocity and elasticity of single-crystal forsterite to 16 GPa, J. Geophys. Res., 101, 17535–17545, https://doi.org/10.1029/96JB01266, 1996.
Zhang, B. H.: Diffusion of hydrogen in (Mg,Fe)2SiO4 and high
pressure polymorphs refined by the cBΩ model, J. Asian Earth Sci.,
54–55, 9–17, https://doi.org/10.1016/j.jseaes.2012.02.017,
2012.
Zhang, B. H.: An overview of Fe-Mg interdiffusion in mantle minerals, Surv.
Geophys., 38, 727–755, https://doi.org/10.1007/s10712-017-9415-5, 2017.
Zhang, B. H. and Shan, S. M.: Thermodynamic calculations of Fe-Mg
interdiffusion in (Mg,Fe)2SiO4 polymorphs and perovskite, J. Appl.
Phys., 117, 054906, https://doi.org/10.1063/1.4907576, 2015a.
Zhang, B. H. and Shan, S. M.: Application of the cBΩ model to the
calculation of diffusion parameters of Si in silicates, Geochem. Geophys.
Geosyst., 16, 705–718, https://doi.org/10.1002/2014GC005551,
2015b.
Zhang, B. H. and Yoshino, T.: Temperature-enhanced electrical conductivity
anisotropy in partially molten peridotite under shear deformation, Earth Planet. Sc. Lett., 530, 115922, https://doi.org/10.1016/j.epsl.2019.115922, 2020.
Zhang, B. H., Wu, X. P., Xu, J. S., and Zhou, R. L.: Application of the
cBΩ model for the calculation of oxygen self-diffusion coefficients
in minerals, J. Appl. Phys., 108, 053505, https://doi.org/10.1063/1.3476283, 2010.
Zhang, B. H., Wu, X. P., and Zhou, R. L.: Calculation of oxygen
self-diffusion coefficients in Mg2SiO4 polymorphs and MgSiO3
perovskite based on the compensation law, Solid State Ionics, 186, 20–28,
https://doi.org/10.1016/j.ssi.2011.01.007, 2011.
Zhang, B. H., Yoshino, T., Wu, X. P., Matsuzaki, T., Shan, S., and Katsura,
T.: Electrical conductivity of enstatite as a function of water content:
implications for the electrical structure in the upper mantle, Earth Planet. Sc. Lett., 357–358, 11–20, https://doi.org/10.1016/j.epsl.2012.09.020, 2012.
Zhang, B. H., Yoshino, T., Yamazaki, D., Manthilake, G., and Katsura, T.:
Electrical conductivity anisotropy in partially molten peridotite under
shear deformation, Earth Planet. Sc. Lett., 405, 98–109, https://doi.org/10.1016/j.epsl.2014.08.018, 2014.
Zhang, B. H., Ge, J. H., Xiong, Z. L., and Zhai, S. M.: Effect of water on
the thermal properties of olivine with implications for lunar internal
temperature, J. Geophys. Res., 124, 3469–3481, https://doi.org/10.1029/2019JE006194, 2019a.
Zhang, B. H., Yoshino, T., and Zhao, C. C.: The effect of water on Fe-Mg
interdiffusion rates in ringwoodite and implications for the electrical
conductivity in the mantle transition zone, J. Geophys. Res., 124,
2510–2524, https://doi.org/10.1029/2018JB016415, 2019b.
Zhang, B. H., Zhao, C. C., Ge, J. H., and Yoshino, T.: Electrical conductivity of omphacite as a function of water content and implications for high
conductivity anomalies in the Dabie-Sulu UHPM belts and Tibet, J. Geophys.
Res., 124, 12523–12536, https://doi.org/10.1029/2019JB018826,
2019c.
Zhang, B. H., Zhao, C. C., and Yoshino, T.: Fe-Mg interdiffusion in
wadsleyite and implications for water content of the transition zone, Earth Planet. Sc. Lett., 554, 116672, https://doi.org/10.1016/j.epsl.2020.116672, 2021.
Zhang, J. S. and Bass, J. D.: Sound velocities of olivine at high pressures
and temperatures and the composition of Earth's upper mantle, Geophys. Res.
Lett., 43, 9611–9618, https://doi.org/10.1002/2016GL069949, 2016.
Zhang, Y.: Diffusion in minerals and melts: theoretical background, Rev.
Mineral. Geochem., 72, 5–59, https://doi.org/10.2138/rmg.2010.72.2, 2010.
Zhang, Y., Yoshino, T., Yoneda, A., and Osako, M.: Effect of iron content on
thermal conductivity of olivine with implications for cooling history of
rocky planets, Earth Planet. Sc. Lett., 519, 109–119, https://doi.org/10.1016/j.epsl.2019.04.048, 2019.
Zhao, C. C. and Yoshino, T.: Electrical conductivity of mantle clinopyroxene
as a function of water content and its implication on electrical structure
of uppermost mantle, Earth Planet. Sc. Lett., 447, 1–9,
https://doi.org/10.1016/j.epsl.2016.04.028, 2016.
Zimmerman, M. E. and Kohlstedt, D. L.: Rheological properties of partially
molten lherzolite, J. Petrol., 45, 275–298,
https://doi.org/10.1093/petrology/egg089, 2004.
Short summary
Water plays an important role in the physical properties (i.e., diffusivity, electrical conductivity, thermal conductivity, sound velocity, and rheology) of olivine, wadsleyite, and ringwoodite. Remarkably, there are numerous discrepancies and debates between experimental and theoretical studies. Here we provide a comprehensive review of the recent advances in the influence of water on the physical properties of olivine, wadsleyite, and ringwoodite, together with their applications.
Water plays an important role in the physical properties (i.e., diffusivity, electrical...