Audra, P., De Waele, J., Bentaleb, I., Chroňáková, A.,
Krištůfek, V., D'Angeli, I. M., Carbone, C., Madonia, G., Vattano,
M., Scopelliti, G., Cailhol, D., Vanara, N., Temovski, M., Bigot, J.-Y.,
Nobécourt, J.-C., Galli, E., Rull, F., and Sanz-Aranz, A.: Guano-related
phosphate-rich minerals in European caves, Int. J. Speleology, 48,
75–105, https://doi.org/10.5038/1827-806X.48.1.2252, 2019.
Balenzano, F., Dell'Anna, L., and Di Pierro, M.: Ricerche
mineralogiche su alcuni fosfati rinvenuti nelle grotte di Castellana (Bari):
strengite aluminifera, vivianite, taranakite, brushite e idrossiapatite,
Rend. Soc. Ital. Miner. Petr., 30, 543–573, 1974.
Balenzano, F., Dell'Anna, L., and Di Pierro, M.: Francoanellite,
H
6K
3Al
5(PO
4)
8⋅ 13H
2O, a new mineral from the caves of Castellana,
Puglia, southern Italy, N. Jb. Miner. Mh., 2, 49–57, 1976.
Ballirano, P., Maras, A., Meloni, S., and Caminiti R.: The monoclinic
I2
structure of bassanite, calcium sulphate hemihydrate (CaSO
4 ⋅ 0.5H
2O), Eur. J. Miner., 13, 985–993,
https://doi.org/10.1127/0935-1221/2001/0013/0985, 2001.
Bărbulescu, A.: Late Jurassic bivalvia of Central Dobrogea, Acta
Paleontologica Romaniae, 2, 39–51, 1999.
Benoit, P. H.: Adaptation to microcomputer of the Appleman-Evans program for
indexing and least-squares refinement of powder-diffraction data for
unit-cell dimensions, Am. Mineral., 72, 1018–1019, 1987.
Bigi, A., Falini, G., Foresti, E., Gazzano, M., Ripamonti, A., and Roveri,
N.: Rietveld structure refinements of calcium hydroxylapatite containing
magnesium, Acta Crystallogr., B52, 87–92,
https://doi.org/10.1107/S0108768195008615, 1996.
Brunet, F., Allan, D. R., Redfern, A. T. S., Angel, R. J., Miletich, R.,
Reichmann, H. J., Sergent, J., and Hanfland, M.: Compressibility and thermal
expansivity of synthetic apatites, Ca
5(PO
4)3X with X
= OH,
F and Cl, Eur. J. Mineral., 11, 1023–1035,
https://doi.org/10.1127/ejm/11/6/1023, 1999.
Catti, M., Ferraris, G., and Mason, S. A.: Low-temperature ordering
of hydrogen atoms in CaHPO
4 (monetite): X-ray and neutron diffraction
study at 145 K, Acta Crystallogr., 36, 254–259,
https://doi.org/10.1107/S0567740880003056, 1980.
Cole, W. F. and Lancucki, C. J.: A refinement of the crystal
structure of gypsum, CaSO
4 ⋅ 2H
2O, Acta Crystallogr., 30, 921–929,
https://doi.org/10.1107/S0567740874004055, 1974.
Curry, N. A. and Jones, D. W.: Crystal structure of brushite, calcium hydrogen
orthophosphate dihydrate: a neutron diffraction investigation, J. Chem.
Soc., 1971, 3725–3729, https://doi.org/10.1039/j19710003725,
1971.
Dick, S., Gossner, U., Weiss, A., Robl, C., Grossman, G, Ohms, G., and
Zeiske, T.: Taranakite – the mineral with the longest crystallographic
axis, Inorg. Chim. Acta, 269, 47–57, 1998.
Dick, S. and Zeiske, T.: Francoanellit K
3Al
5(HPO
4)
6 ⋅ 12H
2O: Struktur und Synthese durch topochemische Entwasserung von Taranakit, Z. Naturforsch., 53, 711–719, https://doi.org/10.1515/znb-1998-0711, 1998 (in German with English abstract).
Dickens, B., Bowen, J. S., and Brown, W. E.: A refinement of the crystal
structure of CaHPO
4 (synthetic monetite), Acta Crystallogr., 28,
797–806, https://doi.org/10.1107/S056774087200322X, 1971.
Dorozhkin, S. V. and Epple, M.: Die biologische und medizinische Bedeutung von
Calciumphosphaten, Angew. Chem., 114, 3260–3277,
https://doi.org/10.1002/1521-3757(20020902)114:17<3260::AID-ANGE3260>3.0.CO;2-S, 2002.
Dosen, A. and Giese, R. F.: Thermal decomposition of brushite,
CaHPO
4 ⋅ 2H
2O to monetite CaHPO
4 and the formation
of an amorphous phase, Am. Mineral., 96, 368–373,
https://doi.org/10.2138/am.2011.3544, 2011.
Dumitraş, D. G.: A re-investigation of ardealite from the type locality,
the “dry” Cioclovina Cave (Şureanu Mountains, Romania), Eur. J.
Mineral., 29, 1055–1066, https://doi.org/10.1127/ejm/2017/0029-2655, 2017.
Dumitraş, D. G., Hatert, F., Bilal, E., and Marincea, Ş.: Gypsum and
bassanite in the bat guano deposit from the “dry” Cioclovina cave (Sureanu
Mountains, Romania), Rom. J. Mineral Dep., 81, 84–87, 2004.
Elliott, J. C.: Structure and chemistry of the apatites and the other
calcium orthophosphates, Elsevier, Amsterdam, 404 pp., 1994.
Fialips, C.-I., Petit, S., Decarreau, A., and Beaufort, D.:
Influence of synthesis pH on kaolinite “crystallinity” and surface
properties, Clay. Clay Miner., 48, 2, 173–184,
https://doi.org/10.1346/CCMN.2000.0480203, 2000.
Forti, P.: Biogenic speleothems: an overview, Int. J. Speleology, 30, 39–56, https://doi.org/10.5038/1827-806X.30.1.4, 2001.
Frost, R. L. and Palmer, S. J.: Thermal stability of the “cave” mineral brushite
CaHPO
4 ⋅ 2H
2O, Mechanism of formation and decomposition,
Thermochim. Acta, 521, 14–17, https://doi.org/10.1016/j.tca.2011.03.035,
2011.
Frost, R. L., Palmer, S. J., and Pogson, R.: Thermal stability of the
“cave” mineral ardealite
Ca
2(HPO
4)(SO
4)
⋅ 4H
2O, J. Therm. Anal. Calorimetry, 107, 549–553,
https://doi.org/10.1007/s10973-011-1458-0, 2012.
Giurgiu, A. and Tămaş, T.: Mineralogical data on bat guano deposits
from three Romanian caves, Studia UBB, Geologia, 58, 13–18,
https://doi.org/10.5038/1937-8602.58.2.2, 2013.
Hill, C. and Forti, P.: Cave minerals of the world, 2nd edn., National
Speleological Society, Hunstville, Alabama, 463 pp., 1997.
Karkanas, P., Bar-Yosef, O., Goldberg, P., and Weiner, S.: Diagenesis in
prehistoric caves: the use of minerals thatform in situ to assess the completeness
of the archaeological record, J. Archaeol. Sci., 27, 915–929,
http://https://doi.org/10.1006/jasc.1999.0506, 2000.
Lehr, J. R., Brown, E. H., Frazier, A. W., Smith, J. P., and Thrasher, R. D.:
Crystallographic properties of fertilizer compounds, Chem. Eng.
Bull. Tenessee Valley Authority, 6, 1–166, 1967.
MacLennan, G. and Beevers, C. A.: The crystal structure of dicalcium
phosphate, CaHPO
4, Acta Crystallogr., 8, 579–583,
https://doi.org/10.1107/S0365110X55001795, 1955.
Mandarino, J. A.: The Gladstone-Dale relationship. I. Derivation of new
constants, Can. Mineral., 14, 498–502, 1976.
Mandarino, J. A.: The Gladstone-Dale relationship. IV. The compatibility
concept and its application, Can. Mineral., 19, 441–450, 1981.
Marincea, Ş. and Dumitraş, D.: The occurrence of taranakite in the
“dry” Cioclovina Cave (Şureanu Mountains, Romania), N. Jb. Miner. Mh.,
3, 127–144, https://doi.org/10.1127/0028-3649/2003/2003-0127, 2003.
Marincea, Ş., Dumitraş, D. G., Diaconu, G., and Fransolet, A.-M.:
Mineralogical data on the bat guano deposit from Gura Ponicovei Cave
(Almăj Mountains, Romania), Rom. J. Mineral Dep., 81,
126–129, 2004.
McFarlane, D. A. and Lundberg, J.: New records of guano-associated minerals
from caves in northwestern Borneo, Int. J. Speleology, 47, 119–126,
https://doi.org/10.5038/1827-806X.47.2.2169, 2018.
Mees, F. and Stoops, G.: Circumgranular bassanite in a gypsum crust from
eastern Algeria – a potential palaeosurface indicator, Sedimentology, 50,
1139–1145, https://doi.org/10.1046/J.1365-3091.2003.00598, 2003.
Morgan, H., Wilson, R. M., Elliott, J. C., Dowker, S. E. P. and Anderson, P.:
Preparation and characterization of monoclinic hydroxyapatite and its
precipitated carbonate apatite intermediate, Biomaterials, 21,
617–627, https://doi.org/10.1016/S0142-9612(99)00225-2, 2000.
Onac, B. P. and Forti, P.: Minerogenetic mechanisms occurring in the cave
environment: an overview, Int. J. Speleology, 40, 79–98,
https://doi.org/10.5038/1827-806X.40.2.1, 2011.
Onac, B. P. and Vereş, D. Ş.: Sequence of secondary phosphates
deposition in a karst environment: evidence from Măgurici Cave
(Romania), Eur. J. Mineral., 15, 741–745,
http://https://doi.org/10.1127/0935-1221/2003/0015-0741, 2003.
Pak, C. Y. C.: Potential etiologic role of brushite in the formation of
calcium (renal) stones, J. Cryst. Growth, 53, 202–208,
https://doi.org/10.1016/0022-0248(81)90066-X, 1981.
Posnjak, E.: The system CaSO
4-H
2O, Am. J. Sci., 35, 247–272,
1938.
Queffelec, A., Bertran, P., Bos, T., and Lemée, L.: Mineralogical and
organic study of bat and chough guano: implications for guano identification
in ancient context, J. Cave Karst Studies, 80, 1–17,
https://doi.org/10.4311/2017ES0102, 2018.
Ross, S. D.: Phosphates and other oxy-anions of group V, in: The infrared spectra of minerals, edited by: Farmer,
V. C., Mineralogical Society Monograph 4, London, 383–422, https://doi.org/10.1180/mono-4.17, 1974.
Sakae, T., Nagata, H., and Sudo, T.: The crystal structure of
synthetic calcium phosphate-sulfate hydrate,
Ca
2HPO
4SO
4 ⋅ 4H
2O and its relation to brushite
and gypsum, Am. Mineral., 63, 520–527, 1978.
Sakae, T. and Sudo, T.: Taranakite from the Onino-Iwaya limestone cave at
Hiroshima Prefecture, Japan: A new occurrence, Am. Mineral., 60, 331–334,
1975.
Shellis, R. P., Heywood, B. R., and Wahab, F. K.: Formation of brushite,
monetite and whitlockite during equilibration of human enamel with acid
solutions at 37
∘C, Caries Research, 31, 71–77,
https://doi.org/10.1159/000262377, 1997.
Simpson, D. R.: The nature of alkali carbonate apatites, Am. Mineral.,
49, 363–376, 1964.
Smykatz-Closs, W., Istrate, G., and Hötzl, H.: Occurrence and formation
of bassanite, CaSO
4 ⋅ 1/2 H
2O, in the gypsum karst area
of Foum Tataouine, Southern Tunisia, Chemie der Erde, 44, 67–77, 1985.
Van Driesche, A. E. S., Benning, L. G., Rodriguez-Blanco, J. D., Ossorio, M.,
Bots, P., and Garcia-Ruiz, J. M.: The role and implications of bassanite as a
stable precursor phase to gypsum precipitation, Science, 336, 69–72,
https://doi.org/10.1126/science.1215648, 2012.
Vieillefon, J.: Etude de l'application des phénomènes de
déshydratation et réhydratation du sulfate de calcium à
l'estimation des teneurs en eau et en gypse des sols gypseux, O.R.S.T.O.M.
Tunisie, E.S.146, 1–36, 1978.