Articles | Volume 32, issue 3
https://doi.org/10.5194/ejm-32-285-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-32-285-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thermodynamic properties, crystal structure and phase relations of pushcharovskite [Cu(AsO3OH)(H2O) ⋅ 0.5H2O], geminite [Cu(AsO3OH)(H2O)] and liroconite [Cu2Al(AsO4)(OH)4 ⋅ 4H2O]
Alexandra M. Plumhoff
CORRESPONDING AUTHOR
Institute of Geosciences, Friedrich-Schiller University, Burgweg 11, 07749 Jena, Germany
Jakub Plášil
Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic
Edgar Dachs
Department of Chemistry and Physics of Materials, University of
Salzburg, Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
Artur Benisek
Department of Chemistry and Physics of Materials, University of
Salzburg, Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
Jiří Sejkora
Department of Mineralogy and Petrology, National Museum, Cirkusová
1740, 19300 Prague 9, Czech Republic
Martin Števko
Department of Mineralogy and Petrology, National Museum, Cirkusová
1740, 19300 Prague 9, Czech Republic
Mike S. Rumsey
Department of Mineralogy, Natural History Museum, Cromwell Road,
London SW7 5BD, UK
Juraj Majzlan
Institute of Geosciences, Friedrich-Schiller University, Burgweg 11, 07749 Jena, Germany
Related authors
Juraj Majzlan, Alexandra Plumhoff, Martin Števko, Gwladys Steciuk, Jakub Plášil, Edgar Dachs, and Artur Benisek
Eur. J. Mineral., 35, 157–169, https://doi.org/10.5194/ejm-35-157-2023, https://doi.org/10.5194/ejm-35-157-2023, 2023
Short summary
Short summary
This research was done to understand how toxic elements, such as copper or arsenic, move through the environment. The data presented here can be used to model mobility of such elements and to improve remediation strategies at sites contaminated by mining.
Richard Pažout, Michal Dušek, Jiří Sejkora, Jakub Plášil, Gheorghe Ilinca, and Zdeněk Dolníček
Eur. J. Mineral., 36, 641–656, https://doi.org/10.5194/ejm-36-641-2024, https://doi.org/10.5194/ejm-36-641-2024, 2024
Short summary
Short summary
A new sulfosalt mineral species, lazerckerite, Ag3.7Pb4.6(Sb7.9Bi3.8)Σ11.7S24, has been found, identified, structurally solved, and approved by the IMA. The mineral belongs to the Sb–Bi mixed members of the andorite branch of the lillianite homologous series. The description and characterization of the mineral are presented, and the ways of distinguishing the mineral from other similar members of the group on the basis of chemical results are explained.
Juraj Majzlan, Anna Reichstein, Patrick Haase, Martin Števko, Jiří Sejkora, and Edgar Dachs
Eur. J. Mineral., 36, 31–54, https://doi.org/10.5194/ejm-36-31-2024, https://doi.org/10.5194/ejm-36-31-2024, 2024
Short summary
Short summary
Minerals formed by weathering of toxic materials, of either natural or human origin, act as storage containers for toxic elements. In this work, we investigated properties of common minerals which store and release arsenic in the environment. The data presented here will allow for improved modeling of the polluted sites and for better remediation strategies that could be applied to minimize the impact of the pollution on the environment.
Khulan Berkh, Juraj Majzlan, Jeannet A. Meima, Jakub Plášil, and Dieter Rammlmair
Eur. J. Mineral., 35, 737–754, https://doi.org/10.5194/ejm-35-737-2023, https://doi.org/10.5194/ejm-35-737-2023, 2023
Short summary
Short summary
Since As is detrimental to the environment, the As content of ores should be reduced before it is released into the atmosphere through a smelting process. Thus, Raman spectra of typical As minerals were investigated, and these can be used in the industrial removal of As-rich ores prior to the ore beneficiation. An additional objective of our study was an investigation of the secondary products of enargite weathering. They play a decisive role in the release or retainment of As in the waste form.
Juraj Majzlan, Alexandra Plumhoff, Martin Števko, Gwladys Steciuk, Jakub Plášil, Edgar Dachs, and Artur Benisek
Eur. J. Mineral., 35, 157–169, https://doi.org/10.5194/ejm-35-157-2023, https://doi.org/10.5194/ejm-35-157-2023, 2023
Short summary
Short summary
This research was done to understand how toxic elements, such as copper or arsenic, move through the environment. The data presented here can be used to model mobility of such elements and to improve remediation strategies at sites contaminated by mining.
Patrick Haase, Stefan Kiefer, Kilian Pollok, Petr Drahota, and Juraj Majzlan
Eur. J. Mineral., 34, 493–506, https://doi.org/10.5194/ejm-34-493-2022, https://doi.org/10.5194/ejm-34-493-2022, 2022
Short summary
Short summary
Stannite decomposition leads to the precipitation of an amorphous and metastable Sn–Fe–As-rich phase. With ageing, goethite and cassiterite crystallize from the precursor and mark the end of the weathering cycle. Other elements are lost in the initial stage of weathering (e.g. Zn, S) or after full oxidation of the sulfidic material (e.g. Cu, Ag). Electron microprobe (EMP) and transmission electron microscopy (TEM) analyses were performed to witness the mobility of the released elements.
Luboš Vrtiška, Jaromír Tvrdý, Jakub Plášil, Jiří Sejkora, Radek Škoda, Nikita V. Chukanov, Andreas Massanek, Jan Filip, Zdeněk Dolníček, and František Veselovský
Eur. J. Mineral., 34, 223–238, https://doi.org/10.5194/ejm-34-223-2022, https://doi.org/10.5194/ejm-34-223-2022, 2022
Short summary
Short summary
The study of the original material of beraunite from the type locality Hrbek, Czech Rep., from collections of the TU Bergakademie Freiberg (Germany) and National Museum Prague (Czech Republic) proved the identity of the minerals beraunite and eleonorite. Because the name beraunite has priority, we consider the name eleonorite to be redundant and proposed to abolish it. The proposal 21-D approved by the IMA discredited eleonorite and accepted the formula of beraunite Fe3+6(PO4)4O(OH)4·6H2O.
Juraj Majzlan, Stefan Kiefer, Kristina Lilova, Tamilarasan Subramani, Alexandra Navrotsky, Edgar Dachs, and Artur Benisek
Eur. J. Mineral., 33, 357–371, https://doi.org/10.5194/ejm-33-357-2021, https://doi.org/10.5194/ejm-33-357-2021, 2021
Short summary
Short summary
Chapmanite is a seemingly rare mineral, a silicate of the elements iron and antimony. In this work, we evaluated how stable and how soluble this mineral is. The goal was to determine if this mineral can store the toxic element antimony. Our results show that it is possible, but its formation in nature is hindered and slow. Yet, in some special environments, it could store and keep antimony over longer time.
Pavel Škácha, Jiří Sejkora, Jakub Plášil, Zdeněk Dolníček, and Jana Ulmanová
Eur. J. Mineral., 33, 175–187, https://doi.org/10.5194/ejm-33-175-2021, https://doi.org/10.5194/ejm-33-175-2021, 2021
Short summary
Short summary
Grimmite, sulfide of cobalt and nickel, is the new mineral for the mineralogical system.
Simon Philippo, Frédéric Hatert, Yannick Bruni, Pietro Vignola, and Jiří Sejkora
Eur. J. Mineral., 32, 449–455, https://doi.org/10.5194/ejm-32-449-2020, https://doi.org/10.5194/ejm-32-449-2020, 2020
Short summary
Short summary
Luxembourgite, ideally AgCuPbBi4Se8, is a new selenide discovered at Bivels, Grand Duchy of Luxembourg. The mineral forms tiny fibres deposited on dolomite crystals. Its crystal structure is similar to those of litochlebite and watkinsonite, and can be described as an alternation of two types of anionic layers: a pseudotetragonal layer four atoms thick and a pseudohexagonal layer one atom thick. The species named for the city of Luxembourg, close to its locality of discovery.
Aileen Meier, Anne Kastner, Dennis Harries, Maria Wierzbicka-Wieczorek, Juraj Majzlan, Georg Büchel, and Erika Kothe
Biogeosciences, 14, 4867–4878, https://doi.org/10.5194/bg-14-4867-2017, https://doi.org/10.5194/bg-14-4867-2017, 2017
Short summary
Short summary
Biomineralization of (magnesium) calcite and vaterite by bacterial isolates was observed using isolates from limestone associated groundwater, rock and soil. More than 92 % of isolates could form carbonates with different crystal macromorphologies. Using different conditions like varying temperature, pH or media components but also cocultivation to test for collaborative effects of sympatric bacteria, mechanisms of calcium carbonate formation were studied.
E. Schütze, A. Weist, M. Klose, T. Wach, M. Schumann, S. Nietzsche, D. Merten, J. Baumert, J. Majzlan, and E. Kothe
Biogeosciences, 10, 3605–3614, https://doi.org/10.5194/bg-10-3605-2013, https://doi.org/10.5194/bg-10-3605-2013, 2013
Related subject area
Crystal growth and mineral formation
An experimental study of the effect of water and chlorine on plagioclase nucleation and growth in mafic magmas: application to mafic pegmatites
Firing and post-firing dynamics of Mg- and Ca-rich bricks used in the built heritage of the city of Padua (northeastern Italy)
A case study of zeolitization process: “Tufo Rosso a Scorie Nere” (Vico volcano, Italy): inferences for a general model
On the anomalous shapes of native copper crystals from the Michigan Copper Country
Paul Heckmann, Giada Iacono-Marziano, and Sabina Strmić Palinkaš
Eur. J. Mineral., 35, 1111–1124, https://doi.org/10.5194/ejm-35-1111-2023, https://doi.org/10.5194/ejm-35-1111-2023, 2023
Short summary
Short summary
We performed experiments to investigate the effect of water and chlorine on the growth of minerals called plagioclase, motivated by the evidence for the presence of water and chlorine with the formation of rocks with large plagioclase minerals. Our study shows that indeed water has an effect on the size and abundance of that mineral. The effect of chlorine on the growth characteristic is negligible. Our results have implications for the understanding of the formation of different rock textures.
Elena Mercedes Pérez-Monserrat, Lara Maritan, and Giuseppe Cultrone
Eur. J. Mineral., 34, 301–319, https://doi.org/10.5194/ejm-34-301-2022, https://doi.org/10.5194/ejm-34-301-2022, 2022
Short summary
Short summary
A very representative type of historic brick, made of Mg- and Ca-rich illitic clays fired at high temperatures and used in the city of Padua, was studied. The mineral phases formed during the firing and the processes that took place after firing have enhanced the durability of the bricks, so the data obtained may be significant to the current ceramic industry. This study was framed within the CLAYONRISK project (MSCA-IF-2018) and was performed based on archeometric methodologies.
Daniela Novembre, Domingo Gimeno, Piergiulio Cappelletti, and Sossio Fabio Graziano
Eur. J. Mineral., 33, 315–328, https://doi.org/10.5194/ejm-33-315-2021, https://doi.org/10.5194/ejm-33-315-2021, 2021
Short summary
Short summary
Zeolites are used in several technological applications. Knowledge of their genetic mechanisms in geological deposits can help to understand the type of zeolite forming in specific conditions and their sector of possible use. The pyroclastic deposit
Tufo Rosso a Scorie Nere(Vico volcano, Latium, Italy) exhibits intense zeolitization processes at chabazite and phillipsite. This abundant presence makes the deposit worthy of being considered for possible exploitation.
Jean-Claude Boulliard, Jérôme Aléon, and Eloïse Gaillou
Eur. J. Mineral., 33, 9–21, https://doi.org/10.5194/ejm-33-9-2021, https://doi.org/10.5194/ejm-33-9-2021, 2021
Short summary
Short summary
The anomalous shapes of Michigan copper crystals are well known by mineral collectors and are curated in museums worldwide. Still, their particular habits remain enigmatic. These anomalous crystals do not seem to follow the standard crystal shape theories, maybe due to the presence of oxygen impurities. This new find is of great importance in shape-dependent catalysis, sensor characteristics, or other properties of material such as nanocrystals.
Cited articles
Arne, L.: Nature and formation processes of the supergene Pb-Zn-Cu-V
mineralisation of Bamba Kilenda, Bas-Congo province, DR Congo, PhD
Dissertation, University Gent, 121 pp., 2014.
Benisek, A., Kroll, H., and Dachs, E.: The heat capacity of fayalite at high
temperatures, Am. Mineral., 97, 657–660,
https://doi.org/10.2138/am.2012.3924, 2012.
Bethke, C.: Geochemical and biogeochemical reaction modeling, 2nd edn.,
Cambridge University Press, Cambridge, New York, xix, 543 pp., 2011.
Bethke, C., Farrell, B., and Yeakel, S.: GWB Reaction Modeling Guide, 12th
edn., Champaign, Illinois, 2019.
Brown, I. D.: Recent developments in the methods and applications of the
bond valence model, Chem. Rev., 109, 6858–6919,
https://doi.org/10.1021/cr900053k, 2009.
Brown, I. D.: The Chemical Bond in Inorganic Chemistry: The Bond Valence
Model, Oxford University Press, UK, 2002.
Bruker: TOPAS, Bruker AXS, Karlsruhe, Germany, 2009.
Burns, P. C. and Hawthorne, F. C.: Coordination-geometry structural pathways
in Cu2+ oxysalt minerals, Can. Mineral., 33, 889–905, 1995.
Burns, P. C., Eby, R. K., and Hawthorne, F. C.: Refinement of the structure
of liroconite, a heteropolyhedral framework oxysalt mineral, Acta
Crystallogr. C, 47, 916–919, https://doi.org/10.1107/S0108270190010939,
1991.
Charoy, B.: The Genesis of the Cornubian Batholith (South-West England): The
example of the Carnmenellis Pluton, J. Petrol., 27, 571–604,
https://doi.org/10.1093/petrology/27.3.571, 1986.
Chesley, J. T., Halliday, A. N., Snee, L. W., Mezger, K., Shepherd, T. J.,
and Scrivener, R. C.: Thermochronology of the Cornubian batholith in
southwest England: Implications for pluton emplacement and protracted
hydrothermal mineralization, Geochim. Cosmochim. Ac., 57, 1817–1835,
https://doi.org/10.1016/0016-7037(93)90115-D, 1993.
Chukanov, N. V.: Infrared spectra of mineral species: Extended library,
Springer Geochemistry/Mineralogy, Springer Netherlands, 2014.
Coelho, A. A.: TOPAS and TOPAS-Academic: an optimization program integrating
computer algebra and crystallographic objects written in C , J. Appl.
Crystallogr., 51, 210–218, https://doi.org/10.1107/S1600576718000183, 2018.
Cooper, M. A. and Hawthorne, F. C.: The crystal structure of geminite,
Cu2+(AsO3OH)(H2O), a heteropolyhedral sheet structure, Can.
Mineral., 1111–1118, 1995.
de Bournon, C.: Description of the Arseniates of Copper, and of Iron, from
the County of Cornwall, Proc. R. Soc. Lon. Ser.-A, 91, 169–192, 1801.
Del Nero, M. and Fritz, B.: Thermodynamic modelling of the influence of
water activity on the gibbsite-kaolinite-quartz system in lateritic
weathering conditions, Chem. Geol., 84, 45–48,
https://doi.org/10.1016/0009-2541(90)90160-9, 1990.
Frost, R. L., Martens, W. N., and Williams, P. A.: Raman spectroscopy of the
phase-related basic copper arsenate minerals olivenite, cornwallite,
cornubite and clinoclase, J. Raman Spectrosc., 33, 475–484,
https://doi.org/10.1002/jrs.880, 2002.
Gagné, O. C. and Hawthorne, F. C.: Comprehensive derivation of
bond-valence parameters for ion pairs involving oxygen, Acta Crystallogr. B,
71, 562–578, https://doi.org/10.1107/S2052520615016297, 2015.
Giuseppetti, G., Coda, A., Mazzi, F., and Tadini, C.: La struttura
cristallina della liroconite Cu2Al[(As1P)O4(OH)4]⋅4H2O, Period. Mineral, 31, 19–42, 1962.
Grenthe, I., Fuger, J., Konings, R. J. M., Lemire, R. J., Muller, A. B.,
Nguyen-Trung, C., and Wanner, H.: Chemical thermodynamics of uranium, 1,
North-Holland Amsterdam, 1992.
Grevel, K.-D. and Majzlan, J.: Internally consistent thermodynamic data for
metal divalent sulphate hydrates, Chem. Geol., 286, 301–306,
https://doi.org/10.1016/j.chemgeo.2011.05.016, 2011.
Guillemin, C.: Mineralogy of the arsenates, phosphates, and vanadates of
copper. I. Arsenates of copper, Bull. Soc. fr. minéral. cristallogr.,
79, 7–95, 1956.
Hawthorne, F. C.: A bond-topological approach to theoretical mineralogy:
Crystal structure, chemical composition and chemical reactions, Phys. Chem.
Miner., 39, 841–874, https://doi.org/10.1007/s00269-012-0538-4, 2012.
Hawthorne, F. C.: The role of OH and H2O in oxide and oxysalt minerals, Z. Kristallogr. Cryst. Mater., 201, 183–206,
https://doi.org/10.1524/zkri.1992.201.14.183, 1992.
Hawthorne, F. C. and Sokolova, E.: The role of H2O in controlling bond
topology: I. The [6]Mg(SO4)(H2O)n (n=0–11)
structures, Z. Kristallogr. Cryst. Mater., 227, 594–603,
https://doi.org/10.1524/zkri.2012.1473, 2012.
Hawthorne, F. C. and Schindler, M.: Understanding the weakly bonded
constituents in oxysalt minerals, Z. Kristallogr. Cryst. Mater., 223,
41–68, https://doi.org/10.1524/zkri.2008.0003, 2008.
Ingwersen, G.: Die sekundären Mineralbildungen der
Pb-Zn-Cu-Lagerstätte Tsumeb, Namibia (Physikalisch-chemische Modelle),
PhD Dissertation, 234 pp., 1990.
Jambor, J. R.: Mineralogy of sulfide-rich tailings and their oxidation
products, in: Environmental Geochemistry of Sulfide Mine-Wastes, 22nd edn.,
edited by: Jambor, J. R. and Blowes, D. W., Mineralogical Association of
Canada Short Course, 59–102, 1994.
Kennedy, C. A., Stancescu, M., Marriott, R. A., and White, M. A.:
Recommendations for accurate heat capacity measurements using a Quantum
Design physical property measurement system, Cryogenics, 47, 107–112,
https://doi.org/10.1016/j.cryogenics.2006.10.001, 2007.
Kiseleva, I. A., Ogorodova, L. P., Melchakova, L. V., and Bisengalieva, M.
R.: Thermodynamic properties of copper silicate: dioptase:
Cu6Si6O18⋅6H2O, J. Chem. Thermodyn., 25,
621–630, https://doi.org/10.1006/jcht.1993.1057, 1993.
Kolesova, R. V. and Fesenko, E. G.: Determination of the crystal structure
of liroconite, Cu2Al(AsO4)(OH)4(H2O)4, Kristallografiya,
13, 396–402, 1968.
Leverett, P., McKinnon A. R., and Williams, P. A.: Supergene geochemistry of
the Endeavor ore body, Cobar, NSW, and relationships to other deposits in
the Cobar basin, Regolith, 191–194, 2005.
Magalhães, M. C. F., De Jesus, J. D. P., and Williams, P. A.: The
chemistry of formation of some secondary arsenate minerals of Cu(II), Zn(II)
and Pb(II), Mineral. Mag., 52, 679–690, 1988.
Magalhães, M. C. F., Pedrosa de Jesus, J. D., and Williams, P. A.:
Stability constants and formation of Cu(II) and Zn(II) phosphate minerals in
the oxidized zone of base metal orebodies, Mineral. Mag., 50, 33–39, 1986.
Majzlan, J.: Solution calorimetry on minerals related to acid mine drainage
– methodology, checks, and balances, Acta Geol. Slovaca, 9, 171–183, 2017.
Majzlan, J.: Thermodynamic stabilization of hydrous ferric oxide by
adsorption of phosphate and arsenate, Environ. Sci. Technol., 45,
4726–4732, https://doi.org/10.1021/es1040249, 2011.
Majzlan, J., Števko, M., Dachs, E., Benisek, A., Plášil, J., and
Sejkora, J.: Thermodynamics, stability, crystal structure, and phase
relations among euchroite, Cu2(AsO4)(OH)⋅3H2O, and
related minerals, Eur. J. Mineral., 29, 5–16,
https://doi.org/10.1127/ejm/2017/0029-2584, 2017.
Majzlan, J., Zittlau, A. H., Grevel, K.-D., Schliesser, J., Woodfield, B.
F., Dachs, E., Števko, M., Chovan, M., Plášil, J., Sejkora, J.,
and Milovská, S.: Thermodynamic Properties and Phase Equilibria of the
Secondary Copper Minerals Libethenite, Olivenite, Pseudomalachite,
Kröhnkite, Cyanochroite, and Devilline, Can. Mineral., 53, 937–960,
https://doi.org/10.3749/canmin.1400066, 2015.
Majzlan, J., Plášil, J., Škoda, R., Gescher, J., Kögler, F.,
Rusznyak, A., Küsel, K., Neu, T. R., Mangold, S., and Rothe, J.:
Arsenic-rich acid mine water with extreme arsenic concentration: mineralogy,
geochemistry, microbiology, and environmental implications, Environ. Sci.
Technol., 48, 13685–13693, https://doi.org/10.1021/es5024916, 2014.
Majzlan, J., Grevel, K.-D., and Navrotsky, A.: Thermodynamics of Fe oxides:
Part II. Enthalpies of formation and relative stability of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3), Am. Mineral., 88, 855–859,
https://doi.org/10.2138/am-2003-5-614, 2003.
Martens, W. N., Frost, R. L., Kloprogge, J. T., and Williams, P. A.: The
basic copper arsenate minerals olivenite, cornubite, cornwallite, and
clinoclase: An infrared emission and Raman spectroscopic study, Am.
Mineral., 88, 501–508, https://doi.org/10.2138/am-2003-0404, 2003.
Mohs, F. and Haidinger, W.: Treatise on Mineralogy: Or The Natural History
of the Mineral Kingdom, Band 1, Archibald Constable, Edinburgh, 1825.
Nordstrom, D. K. and Archer, D. G.: Arsenic Thermodynamic Data and
Environmental Geochemistry, in: Arsenic in Ground Water: Geochemistry and
Occurrence, edited by: Welch, A. H. and Stollenwerk, K. G., Kluwer Academic
Publishers, Boston, MA, 1–25, 2003.
Nordstrom, D. K., Majzlan, J., and Königsberger, E.: Thermodynamic
Properties for Arsenic Minerals and Aqueous Species, Rev. Mineral. Geochem.,
79, 217–255, https://doi.org/10.2138/rmg.2014.79.4, 2014.
Ondruš, P., Veselovský, F., Hloušek, J., Skála, R.,
Vavřín, I., Frýda, J., Cejka, J., and Gabašová, A.:
Secondary minerals of the Jachymov (Joachimsthal) ore district, J. Geosci.,
42, 3–76, 1997.
Parker, V. B.: Thermal properties of uni-univalent electrolytes, 2, NBS Ntl.
Stand. Ref. Data Series, 66 pp., 1965.
Parkhurst, D. L. and Appelo, C. A. J.: User's guide to PHREEQC (Version 2): A
computer program for speciation, batch-reaction, one-dimensional transport,
and inverse geochemical calculations, Wat.-res. inv. report, 99, 312 pp., 1999.
Petříček, V., Dušek, M., and Palatinus, L.:
Crystallographic Computing System JANA2006: General features, Z.
Kristallogr. Cryst. Mater., 345–352,
https://doi.org/10.1515/zkri-2014-1737, 2014.
Plášil, J., Sejkora, J., Škoda, R., Novák, M., Kasatkin, A.
V., Škácha, P., Veselovský, F., Fejfarová, K., and
Ondruš, P.: Hloušekite,
(Ni,Co)Cu4(AsO4)2(AsO3OH)2(H2O)9, a new
member of the lindackerite supergroup from Jáchymov, Czech Republic,
Mineral. Mag., 78, 1341–1353, https://doi.org/10.1180/minmag.2014.078.5.16,
2014.
Plumhoff, A. and Majzlan, J.: External Appendix to Publication: “Thermodynamic properties, crystal structure and phase relations of pushcharovskite, geminite and liroconite”, Jena, Digitalen Bibliothek Thüringen (DBT), https://doi.org/10.22032/dbt.41075, 2020.
Pouchou, J. and Pichoir, F.: “PAP” (phi-rho-z) procedure for
improved quantitative microanalysis, in: Microbeam Analysis, edited by:
Armstrong, J. T., San Francisco Press, San Francisco, 104–106, 1985.
Prencipe, M., Pushcharovsky, D. Y., Sarp, H., and Ferraris, G.: Comparative
crystal chemistry of geminite Cu[AsO3OH]H2O and related minerals, Mosc. U. Geol. B., 51, 51–58, 1996.
Psyrillos, A., Manning, D. A. C., and Burley, S. D.: Geochemical constraints
on kaolinization in the St Austell Granite, Cornwall, England, J. Geol.
Soc., 155, 829–840, https://doi.org/10.1144/gsjgs.155.5.0829, 1998.
Pushcharovsky, D. Y., Teat, S. J., Zaitsev, V. N., Zubkova, N. V., and Sarp,
H.: Crystal structure of pushcharovskite, Eur. J. Mineral., 12, 95–104,
https://doi.org/10.1127/0935-1221/2000/0012-0095, 2000.
Rigaku: CrysAlis CCD and CrysAlis RED, Rigaku-Oxford Diffraction Ltd,
Yarton, Oxfordshire, UK, 2019.
Robie, R. A. and Hemingway, B. S.: Thermodynamic properties of minerals and
related substances at 298.15 K and 1 bar (105 Pascals) and at higher
temperatures, 2131, U.S. Geological Survey Bulletin, 461 pp., 1995.
Sarp, H. and Černý, R.: Description and crystal structure of
yvonite, Cu(AsO3OH)2H2O, Am. Mineral., 83, 383–389,
https://doi.org/10.2138/am-1998-3-423, 1998.
Sarp, H. and Sanz-Gysler, J.: La Pushcharovskite,
, un nouveau minéral de la mine de
Cap Garonne, Var (France), Arch. Sci., 50, 177–186, 1997.
Sarp, H. and Perroud, P.: La Geminite Cu2As2O7⋅3H2O, un Nouveau Minéral de la Mine de Cap Garonne, Var, France,
Schweiz. mineral. petro. Mitt., 70, 309–314, 1990.
Schindler, M. and Hawthorne, F. C.: The stereochemistry and chemical
composition of interstitial complexes in uranyl-oxysalt minerals, Can.
Mineral., 46, 467–501, https://doi.org/10.3749/canmin.46.2.467, 2008.
Scott, P. W., Hart, F. W., and Smith, D.: The quantitative mineralogy of
ceramic grade kaolin from the St. Austell Granite and its relationship to
chemistry and physical properties, Proc. Ussher Soc., 9, 91–96, 1996.
Sejkora, J., Plášil, J., Ondruš, P., Veselovský, F.,
Císařová, I., and Hloušek, J.: Slavkovite,
Cu13(AsO4)6(AsO3OH)4⋅23H2O, a new
mineral species from Horní Slavkov and Jáchymov: description and
crystal-structure determination, Can. Mineral., 48, 1157–1170,
https://doi.org/10.3749/canmin.48.5.1157, 2010a.
Sejkora, J., Plášil, J., Veselovský, F., Císařová,
I., and Hloušek, J.: Ondrušite,
CaCu4(AsO4)2(AsO3OH)2⋅10H2O, a new
mineral species from Jáchymov ore district, Czech Republic: Description
and crystal-structure determination, Can. Mineral., 49, 885–897,
https://doi.org/10.3749/canmin.49.3.885, 2011.
Sejkora, J., Ondruš, P., and Novák, M.: Veselovskýite, triclinic
,
a Zn-dominant analogue of lindackerite, N. Jb. Miner. Abh., 187, 83–90,
https://doi.org/10.1127/0077-7757/2010/0165, 2010b.
Sheldrick, G. M.: SHELXT – integrated space-group and crystal-structure
determination, Acta Crystallogr. A, 71, 3–8,
https://doi.org/10.1107/S2053273314026370, 2015.
Sheppard, S. M. F.: The Cornubian batholith, SW England: D∕H and
18O∕16O studies of kaolinite and other alteration minerals, J.
Geol. Soc., 133, 573–591, https://doi.org/10.1144/gsjgs.133.6.0573, 1977.
Škácha, P., Plášil, J., and Horák, V.: Jáchymov – a
mineralogical pearl of Krušné Hory Mts., Academia, 682 pp., 2019.
Southwood, M., Števko, M., and Carr, P.: Tsumeb: Zincolivenite and the
adamite-olivenite series, Rock. Min., 6, in press, 2020.
Števko, M., Sejkora, J., and Bačík, P.: Mineralogy and origin
of supergene mineralization at the Farbište ore occurrence near Poniky,
central Slovakia, J. Geosci., 273–298, https://doi.org/10.3190/jgeosci.098,
2011.
Števko, M., Sejkora, J., and Súl'ovec, Š.: Contribution to the
chemical composition of libethenite from the type locality: Podlipa copper
deposit, L'ubietová (Slovak Republic), Bull. Mineral. Petrolog., 25,
252–259, 2017.
Tanaka, H. and Yamane, M.: Preparation and thermal analysis of synthetic
malachite CuCO3⋅Cu(OH)2, J. Therm. Anal., 38, 627–633,
https://doi.org/10.1007/BF01979390, 1992.
Toman, K.: Ordering in olivenite–adamite solid solutions, Acta Crystallogr.
B, 34, 715–721, https://doi.org/10.1107/S0567740878003933, 1978.
Velasco, F., Herrero, J. M., Suárez, S., Yusta, I., Alvaro, A., and
Tornos, F.: Supergene features and evolution of gossans capping massive
sulphide deposits in the Iberian Pyrite Belt, Ore Geol. Rev., 53, 181–203,
https://doi.org/10.1016/j.oregeorev.2013.01.008, 2013.
Viehweg, M.: Regionale Verteilung der Uranlagerstätten Sachsens und
Thüringens, Z. Geol. Wiss., 23, 547–552, 1995.
Vogl, J. F.: Über das Vorkommen einer dem Voltzin ähnlichen
Schwefelzink-Verbindung in Joachimsthal, Z. mont. Ver. Erzg., 1, 5, 1853.
Wagman, D. D., Evans, W. H., Parker, V. B., Halow, I., and Bailey, S. M.:
Selected values of chemical thermodynamic properties, Tables for the first
thirty-four elements in the standard order of arrangement, 270-3, NBS
Technical Note, 264 pp., 1991.
Williams, P. A.: Oxide Zone Geochemistry, Ellis Horwood Ltd., Chichester,
286 pp., 1990.