Articles | Volume 32, issue 1
https://doi.org/10.5194/ejm-32-27-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-32-27-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Determination of the H2O content in minerals, especially zeolites, from their refractive indices based on mean electronic polarizabilities of cations
Reinhard X. Fischer
CORRESPONDING AUTHOR
FB 5 Geowissenschaften, Universität Bremen, Klagenfurter Str. 2, 28359 Bremen, Germany
Manfred Burianek
FB 5 Geowissenschaften, Universität Bremen, Klagenfurter Str. 2, 28359 Bremen, Germany
Robert D. Shannon
Geological Sciences/CIRES, University of Colorado, Boulder, Colorado 80309, USA
Related authors
Stephan Lenz, Johannes Birkenstock, Lennart A. Fischer, Willi Schüller, Hartmut Schneider, and Reinhard X. Fischer
Eur. J. Mineral., 32, 673–673, https://doi.org/10.5194/ejm-32-673-2020, https://doi.org/10.5194/ejm-32-673-2020, 2020
Stephan Lenz, Johannes Birkenstock, Lennart A. Fischer, Hartmut Schneider, and Reinhard X. Fischer
Eur. J. Mineral., 32, 235–249, https://doi.org/10.5194/ejm-32-235-2020, https://doi.org/10.5194/ejm-32-235-2020, 2020
Short summary
Short summary
A mineral from Ettringer Bellerberg (Eifel, Germany) proved to be a polytype of the important ceramic-phase mullite termed mullite-2c, with – similar to sillimanite – doubling of the c lattice parameter due to strong (Si,Al) order in tetrahedral diclusters and – similar to mullite – presence of oxygen vacancies and tetrahedral triclusters due to Al / Si > 1 in diclusters. Crystals were characterised using single-crystal XRD, electron microprobe
analysis (EMPA) and spindle-stage optical methods.
Stephan Lenz, Johannes Birkenstock, Lennart A. Fischer, Willi Schüller, Hartmut Schneider, and Reinhard X. Fischer
Eur. J. Mineral., 32, 673–673, https://doi.org/10.5194/ejm-32-673-2020, https://doi.org/10.5194/ejm-32-673-2020, 2020
Stephan Lenz, Johannes Birkenstock, Lennart A. Fischer, Hartmut Schneider, and Reinhard X. Fischer
Eur. J. Mineral., 32, 235–249, https://doi.org/10.5194/ejm-32-235-2020, https://doi.org/10.5194/ejm-32-235-2020, 2020
Short summary
Short summary
A mineral from Ettringer Bellerberg (Eifel, Germany) proved to be a polytype of the important ceramic-phase mullite termed mullite-2c, with – similar to sillimanite – doubling of the c lattice parameter due to strong (Si,Al) order in tetrahedral diclusters and – similar to mullite – presence of oxygen vacancies and tetrahedral triclusters due to Al / Si > 1 in diclusters. Crystals were characterised using single-crystal XRD, electron microprobe
analysis (EMPA) and spindle-stage optical methods.
Related subject area
Physical properties of minerals
Compressibility and thermal expansion of magnesium phosphates
Shear properties of MgO inferred using neural networks
Studies on the local structure of the F ∕ OH site in topaz by magic angle spinning nuclear magnetic resonance and Raman spectroscopy
Equation of state and sound wave velocities of fayalite at high pressures and temperatures: implications for the seismic properties of the martian mantle
Intracrystalline melt migration in deformed olivine revealed by trace element compositions and polyphase solid inclusions
Sequential dehydration of the phosphate–sulfate association from Gura Dobrogei Cave, Dobrogea, Romania
Influence of water on the physical properties of olivine, wadsleyite, and ringwoodite
Anisotropic thermal transport properties of quartz: from −120 °C through the α–β phase transition
Catherine Leyx, Peter Schmid-Beurmann, Fabrice Brunet, Christian Chopin, and Christian Lathe
Eur. J. Mineral., 36, 417–431, https://doi.org/10.5194/ejm-36-417-2024, https://doi.org/10.5194/ejm-36-417-2024, 2024
Short summary
Short summary
This paper presents the results of an exploratory study on the pressure–volume–temperature behaviour of the main Mg-phosphates of geological interest, especially in high-pressure metamorphic rocks. The incentive for it was the growing body of experimental phase-equilibrium data acquired at high pressure in the MgO–(Al2O3)–P2O5–H2O systems, the thermodynamic evaluation of which has been begging for such volumetric data.
Ashim Rijal, Laura Cobden, Jeannot Trampert, Hauke Marquardt, and Jennifer M. Jackson
Eur. J. Mineral., 35, 45–58, https://doi.org/10.5194/ejm-35-45-2023, https://doi.org/10.5194/ejm-35-45-2023, 2023
Short summary
Short summary
Using neural networks with experimental data, we infer the relationship between pressure, temperature and shear properties of MgO. Fixing the form of the relationship, which is a common practice, provides the properties that are largely constrained by the form and not the data. Our approach provides realistic uncertainties in shear properties, which should improve uncertainty quantification in interpretations of observed shear wave speed to infer the structure and dynamics of the Earth’s mantle.
Anselm Loges, Gudrun Scholz, Nader de Sousa Amadeu, Jingjing Shao, Dina Schultze, Jeremy Fuller, Beate Paulus, Franziska Emmerling, Thomas Braun, and Timm John
Eur. J. Mineral., 34, 507–521, https://doi.org/10.5194/ejm-34-507-2022, https://doi.org/10.5194/ejm-34-507-2022, 2022
Short summary
Short summary
We investigated the effect that fluoride and protons have on each other as structural neighbors in the mineral topaz. This was done using spectroscopic methods, which measure the interaction of electromagnetic radiation with matter. The forces between atoms distort the spectroscopic signals, and this distortion can thus be used to understand the corresponding forces and their effect on the physical properties of the mineral.
Frédéric Béjina, Misha Bystricky, Nicolas Tercé, Matthew L. Whitaker, and Haiyan Chen
Eur. J. Mineral., 33, 519–535, https://doi.org/10.5194/ejm-33-519-2021, https://doi.org/10.5194/ejm-33-519-2021, 2021
Short summary
Short summary
We performed experimental measurements of elastic parameters of fayalite. The idea is to better define the effect of olivine Fe content on these parameters and test how sensitive these are when adjusting mineralogical models to seismic data. The trend of the olivine shear modulus with Fe content is well defined, but that of the bulk modulus remains less constrained, and more experiments on olivines with different Fe compositions are needed.
Valentin Basch, Martyn R. Drury, Oliver Plumper, Eric Hellebrand, Laura Crispini, Fabrice Barou, Marguerite Godard, and Elisabetta Rampone
Eur. J. Mineral., 33, 463–477, https://doi.org/10.5194/ejm-33-463-2021, https://doi.org/10.5194/ejm-33-463-2021, 2021
Short summary
Short summary
This paper investigates the possibility for melts to migrate within extensively deformed crystals and assesses the impact of this intracrystalline melt percolation on the chemical composition of the deformed crystal. We here document that the presence of melt within a crystal greatly enhances chemical diffusive re-equilibration between the percolating melt and the mineral and that such a process occurring at crystal scale can impact the large-scale composition of the oceanic lithosphere.
Delia-Georgeta Dumitraş and Ştefan Marincea
Eur. J. Mineral., 33, 329–340, https://doi.org/10.5194/ejm-33-329-2021, https://doi.org/10.5194/ejm-33-329-2021, 2021
Short summary
Short summary
The low-temperature transformations of phosphate and sulfate sequences in the fossil guano from a Romanian cave were investigated using a mineralogical and chemical approach, resulting in the finding of a quite exotic mineral association, including the rare minerals francoanellite and monetite. The dehydration process of primary guano minerals seems driven by exothermic reactions at local scale (e.g., oxidation of ammonia, organic matter, allogenic pyrite or other organic compounds).
Bao-Hua Zhang and Qun-Ke Xia
Eur. J. Mineral., 33, 39–75, https://doi.org/10.5194/ejm-33-39-2021, https://doi.org/10.5194/ejm-33-39-2021, 2021
Short summary
Short summary
Water plays an important role in the physical properties (i.e., diffusivity, electrical conductivity, thermal conductivity, sound velocity, and rheology) of olivine, wadsleyite, and ringwoodite. Remarkably, there are numerous discrepancies and debates between experimental and theoretical studies. Here we provide a comprehensive review of the recent advances in the influence of water on the physical properties of olivine, wadsleyite, and ringwoodite, together with their applications.
Simon Breuer and Frank R. Schilling
Eur. J. Mineral., 33, 23–38, https://doi.org/10.5194/ejm-33-23-2021, https://doi.org/10.5194/ejm-33-23-2021, 2021
Short summary
Short summary
The knowledge of physical properties of quartz as an abundant rock-forming mineral in the Earth’s crust allows for a better understanding of its dynamic processes. The thermal transport properties of single-crystal quartz are studied between –120 °C and 800 °C using a laser flash method. First, low-temperature data as well as the role of the low-to-high quartz phase transition (e.g. a transition-related non-ballistic radiative transfer) and size effects on thermal diffusivity are discussed.
Cited articles
Alberti, A.: Sodium-rich dachiardite from Alpe di Siusi, Italy, Contrib.
Mineral. Petrol., 49, 63–66, 1975.
Alberti, A. and Vezzalini, G.: The crystal structure of amicite, a zeolite,
Acta Crystallogr. B, 35, 2866–2869, 1979.
Alberti, A., Hentschel, G., and Vezzalini, G.: Amicite, a new natural
zeolite, Neues Jb. Miner. Monat., 481–488, 1979.
Alietti, A. and Passagli, E.: A new occurrence of ferrierite, Am. Mineral., 52,
1562–1563, 1967.
Anderson, O. L.: Optical properties of rock-forming minerals derived from
atomic properties, Fortschr. Mineral., 52, 611–629, 1975.
Baerlocher, C. and McCusker, L. B.: Database of zeolite structures, available at:
http://www.iza-structure.org/databases/, last access: August 2019.
Ballirano, P., Merlino, S., Bonaccorsi, E., and Maras, A.: The crystal
structure of liottite, a six-layer member of the cancrite group, Can.
Mineral., 34, 1021–1030, 1996.
Beger, R. M.: The crystal structure and chemical composition of pollucite,
Z. Kristallogr., 129, 280–302, 1969.
Boggs, R. C., Howard, D. G., Smith, J. V., and Klein G. L.: Tschernichite, a
new zeolite from Goble, Columbia County, Oregon, Am. Mineral., 78, 822–826,
1993.
Bonaccorsi, E. and Orlandi, P.: Marinellite, a new feldspathoid of the
cancrinite-sodalite group, Eur. J. Mineral., 15, 1019–1027, https://doi.org/10.1127/0935-1221/2003/0015-1019, 2003.
Bonardi, M., Roberts, A. C., Sabina, A. P., and Chao, G. Y.: Sodium rich
dachiardite from the Francon Quarry, Montreal Island, Quebec, Can. Mineral.,
19, 285–289, 1981.
Cabella, R., Lucchetti, G., Palenzona, A., Quartieri, S., and Vezzalini, G.:
First occurrence of a Ba-dominant brewsterite: structural features, Eur. J.
Mineral., 5, 353–360, https://doi.org/10.1127/ejm/5/2/0353, 1993.
Cámara, F., Bellatreccia, F., Della Ventura, G., and Mottana, A.:
Farneseite, a new mineral of the cancrinite – sodalite group with a 14-layer
stacking sequence: occurrence and crystal structure, Eur. J. Mineral., 17,
839–846, https://doi.org/10.1127/0935-1221/2005/0017-0839, 2005.
Černý, P.: The Tanco pegmatite at Bernic Lake, Manitoba. VIII.
Secondary minerals from the spodumene-rich zones, Can. Mineral., 11,
714–726, 1972.
Černý, P.: The present status of the analcime-pollucite series, Can.
Mineral., 12, 334–341, 1974.
Černý, P. and Povondra, P.: A polycationic, strontian heulandite;
comments on crystal chemistry and classification of heulandite and
clinoptilolite, Neues Jb. Miner. Monat., 1969, 349–361, 1969.
Černý, P. and Simpson, F. M.: The Tanco pegmatite at Bernic Lake,
Manitoba X. pollucite, Can. Mineral., 16, 325–333, 1978.
Chen, T. T. and Chao, G. Y.: Tetranatrolite from Mont St-Hilaire, Québec,
Can. Mineral., 18, 77–84, 1980.
Chukanov, N. V., Pekov, I. V., Sejkora, J., Plášil, J., Belakovskiy,
D. I., and Britvin S. N.: Ferrierite-NH4,
, a new zeolite from Northern Bohemia, Czech Republic, Can.
Mineral., 57, 81–90, https://doi.org/10.3749/canmin.1800057, 2019.
Coombs, D. S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli,
E., Grice, J. D., Liebau, F., Mandarino, J. A., Minato, H., Nickel, E. H.,
Passaglia, E., Peacor, D. R., Quartieri, S., Rinaldi, R., Ross, M.,
Sheppard, R. A., Tillmanns, E., and Vezzalini, G.: Recommended nomenclature
for zeolite minerals: Report of the subcommittee on zeolites of the
international mineralogical association, commission on new minerals and
mineral names, Eur. J. Mineral., 10, 1037–1081 https://doi.org/10.1127/ejm/10/5/1037,
1998.
Cortesogno, L., Lucchetti, G., and Penco, A. M.: Associoazioni a Zeoliti nel
“Gruppo di Voltri”: Caratteristiche Mineralogiche e Significato Genetico,
Soc. Italiana di Mineralogia e Petrologia – Rendiconti, 31, 673–710, 1975.
Deffeyes, K. S.: Erionite from cenozoic tuffaceous sediments, Central
Nevada, Am. Mineral., 44, 501–509, 1959.
Dunn, P. J., Peacor, D. R., Newberry, N., and Ramik, R. A.: Goosecreekite, a
new calcium aluminum silicate hydrate possibly related to brewsterite and
epistilbite, Can. Mineral., 18, 323–327, 1980.
Eberlein, G. D., Erd, R. C., Weber, F., and Beatty, L. B.: New occurrence of
yugawaralite from the Chena Hot Springs Area, Alaska, Am. Mineral., 56,
1699–1717, 1971.
Effenberger, H., Giester, G., Krause, W., and Bernhardt, H. J.:
Tschörtnerite, a copper-bearing zeolite from the Bellberg volcano,
Eifel, Germany, Am. Mineral., 83, 607–617, 1998.
Eggleton, R. A.: Gladstone-Dale constants for the major elements in
silicates: Coordination number, polarizability, and the Lorentz-Lorentz
relation, Can. Mineral., 29, 525–532, 1991.
Ercit, T. S. and van Velthuizen, J.: Gaultite, a new zeolite-like mineral
species from Mont Saint-Hilaire, Quebec, and its crystal structure, Can.
Mineral., 32, 855–863, 1994.
Fischer, R. X., Burianek, M., and Shannon, R. D.: POLARIO, a computer
program for calculating refractive indices from chemical compositions, Am.
Mineral., 103, 1345–1348, https://doi.org/10.2138/am-2018-6587, 2018.
Gagné, O., Hawthorne, F., Shannon, R. D., and Fischer, R. X.: Empirical
electronic polarizabilities: deviations from the additivity rule. I.
, blödite
and kieserite-related
minerals with sterically strained structures, Phys. Chem. Miner., 45,
303–310, https://doi.org/10.1007/s00269-017-0919-9, 2018.
Galli, E. and Gualtieri, A. F.: Direnzoite,
[NaK6MgCa2(Al13Si47O120)⋅36H2O], a
new zeolite from Massif Central (France): Description and crystal structure,
Am. Mineral., 93, 95–102, https://doi.org/10.2138/am.2008.2666, 2008.
Galli, E. and Loschi Ghittoni, A. G.: The crystal chemistry of phillipsites,
Am. Mineral., 57, 1125–1145, 1972.
Galli, E. and Passaglia, E.: Stellerite from Villanova Monteleone, Sardinia,
Lithos, 6, 83–90, 1973.
Galli, E., Passaglia, E., Pongiluppi, D., and Rinaldi, R.: Mazzite, a new
mineral, the natural counterpart of the synthetic Zeolite Ω,
Contrib. Mineral. Petr., 45, 99–105, 1974.
Galli, E., Quartieri, S., Vezzalini, G., and Alberti, A.: Gottardiite, a new
high-silica zeolite from Antarctica: the natural counterpart of synthetic
NU-87, Eur. J. Mineral., 8, 687–693, https://doi.org/10.1127/ejm/8/4/0687, 1996.
Grice, J. D., Gault, R. A., and Ansell, H. G.: Edingdonite: The first two
Canadian occurrences, Can. Mineral., 22, 253–258, 1984.
Grice, J. D, Kristiansen, R., Friis, H., Rowe, R., Poirier, G. G., Selbekk,
R. S., Cooper, M. A., and Larsen A. O.: Ferrochiavennite, a new beryllium
silicate zeolite from syenite pegmatites in the Larvik plutonic complex,
Oslo Region, Southern Norway, Can. Mineral., 51, 285–296, https://doi.org/10.3749/canmin.51.2.285, 2013.
Gude, A. J. and Sheppard, R. A.: Silica-rich chabazite from the Barstow
formation, San Bernardino County, Southern California, Am. Mineral., 51,
909–915, 1966.
Gude, A. J. and Sheppard, R. A.: Woolly erionite from the Reese river zeolite
deposit, Lander County, Nevada, and its relationship to other erionites,
Clay. Clay Miner., 29, 378–384, 1981.
Harada, K., Iwamoto, S., and Kihara, K.: Erionite, phillipsite and
gonnardite in the amygdales of altered basalt from Mazé, Niigata
Prefecture, Japan, Am. Mineral., 52, 1785–1794, 1967.
Hey, M. H. and Bannister F. A.: Studies on the zeolites. Part III. Natrolite
and metanatrolite, Mineral. Mag., 23, 243–289, 1932a.
Hey, M. H. and Bannister, F. A.: Studies on zeolites. Part II. Thomsonite
(including faroelite) and gonnardite, Mineral. Mag., 23, 51–125, 1932b.
Hey, M. H. and Bannister, F. A.: Studies on the zeolites. Part VI. Edingtonite,
Mineral. Mag., 23, 483–494, 1934.
Hey, M. H. and Bannister, F. A.: Studies on the zeolites. Part IX. Scolecite and
metascolecite, Mineral. Mag., 24, 227–253, 1936.
Howard, D. G., Tschernich, R. W., Smith, J. V., and Klein G. L.: Boggsite, a
new high-silica zeolite from Goble, Columbia County, Oregon, Am. Mineral.,
75, 1200–1204, 1990.
Hurlbut, C. S.: Bikitaite, LiAlSi2O6⋅H2O, a new
mineral from Southern Rhodesia, Am. Mineral., 42, 792–797, 1957.
Jambor, J. L. and Grew, E. S.: New mineral names. Si-dominant cancrinite, Am.
Mineral., 78, 235, 1993.
Kamb, W. B. and Oke, W. C.: Paulingite, a new zeolite, in association with
erionite and filiform pyrite, Am. Mineral., 45, 79–91, 1960.
Khomyakov, A. P., Pobedimskaya, E. A., Nadezhina, T. N., Terenteva, L. E.,
and Rastsvetaeva, R. K.: Structural mineralogy of high-Si cancrinite, Moscow
Univ. Geol. Bull., 46, 71–75, 1991a.
Khomyakov, A. P., Semenov, E. I., Pobedimskaya, E. A., Nadezhina, T. N.,
and
Rastsvetaeva, R. K.: Cancrisilite
Na7[Al5Si7O24]CO3⋅3H2O – a new
mineral of the cancrinite group, Zapiski Vsesoyuznogo Mineralogicheskogo
Obshchestva, 120, 80–84, 1991b.
Khomyakov, A. P., Cámara, F., and Sokolova, E.: Carbobystrite,
Na8[Al6Si6O24](CO3)⋅4H2O, a new
cancrinite-group mineral species from the Khibina Alkaline Massif, Kola
Peninsula, Russia: Description and crystal structure, Can. Mineral., 48,
291–300, https://doi.org/10.3749/canmin.48.2.291, 2010.
Kiseleva, I., Navrotsky, A., Belitsky, I. A., and Fursenko, B. A.:
Thermochemistry and phase equilibria in calcium zeolites, Am. Mineral., 81,
658–667, 1996a.
Kiseleva, I., Navrotsky, A., Belitsky, I. A., and Fursenko, B. A.:
Thermochemistry of natural potassium sodium calcium leonhardite and its
cation-exchanged forms, Am. Mineral., 81, 668–675, 1996b.
Larsen, A. O., Nordrum, F. S., Döbelin, N., Armbruster, T., Petersen, O.
V., and Erambert, M.: Haulandite-Ba, a new zeolite species from Norway, Eur.
J. Mineral., 17, 143–153, https://doi.org/10.1127/0935-1221/2005/0017-0143, 2005.
Leavens, P. B., Hurlbut, C. S., and Nelen, J. A.: Eucryptite and bikitaite
from King's Mountain, North Carolina, Am. Mineral., 53, 1202–1207, 1968.
Lengauer, C. L., Giester, G., and Tillmanns, E.: Mineralogical
characterization of paulingite from Vinarická Hora, Czech Republic,
Mineral. Mag., 61, 591–606, 1997.
Lengauer, C. L., Kolitsch, U., and Tillmanns, E.: Flörkeite,
K3Ca2Na[Al8Si8O32]⋅12H2O, a new
phillipsite-type zeolite from the Bellerberg, East Eifel volcanic area,
Germany, Eur. J. Mineral., 21, 901–913, https://doi.org/10.1127/0935-1221/2009/0021-1952, 2009.
Mandarino, J. A.: The Gladstone-Dale relationship. Part I: Derivation of new
constants, Can. Mineral., 14, 498–502, 1976.
Mandarino, J. A.: The Gladstone-Dale relationship. Part IV. The
compatibility concept and its application, Can. Mineral., 19, 441–450, 1981.
Medenbach, O., Maresch, W. V., Mirwald, P. W., and Schreyer, W.: Variation
of refractive index of synthetic Mg-cordierite with H2O content, Am.
Mineral., 65, 367–373, 1980.
Men'chikov, Y. P.: Perlialite
, a new
potassian zeolite from the Khibina massif, Zapiski Vsesoyuznogo Mineralogicheskogo
Obshchestva,
113, 607–612, 1984.
Men'shikov, Y. P., Denisov, A. P., Uspenskaya, Y. I., and Lipatova, E. A.:
Lovdarite, a new hydrous alkali-beryllium silicate, Doklady Akad. Nauk. SSSR,
213, 130–133, 1973.
Merkle, A. B. and Slaughter, M.: Determination and refinement of the structure
of heulandite, Am. Mineral., 53, 1120–1138, 1968.
Merlino, S. and Orlandi, P.: Franzinite, a new mineral phase from Pitigliano
(Italy), Neues Jb. Miner. Monat., 163–167, 1977a.
Merlino, S. and Orlandi, P.: Liottite, a new mineral in the cancrinite-davyne
group, Am. Mineral., 62, 321–326, 1977b.
Nawaz, R. and Malone, J. F.: Gobbinsite, a new zeolite mineral from Co. Antrim,
N. Ireland, Mineral. Mag., 46, 365–369, 1982.
Passaglia, E.: Roggianite, a new silicate mineral, Clay Miner., 8, 107–111,
1969.
Passaglia, E.: The crystal chemistry of chabazites, Am. Mineral., 55,
1278–1301, 1970.
Passaglia, E. and Pongiluppi, D.: Sodian stellerite from Capo Pula, Sardegna,
Lithos, 7, 69–73, 1974.
Passaglia, E. and Vezzalini, G.: Roggianite: revised chemical formula and
zeolitic properties, Mineral. Mag., 52, 201–206, 1988.
Passaglia, E., Pongiluppi, D., and Rinaldi, R.: Merlinoite, a new mineral of
the zeolite group, Neues Jb. Miner. Monat., 355–364, 1977.
Passaglia, E, Galli, E., and Rinaldi, R.: Levynes and erionites from
Sardinia, Italy, Contrib. Mineral. Petr., 43, 253–259, 1974.
Peacor, D. R., Dunn, P. J., Simmons, W. B., Tillmanns, E., and Fischer, R.
X.: Willhendersonite, a new zeolite isostructural with chabazite, Am.
Mineral., 69, 186–189, 1984.
Pekov, I. V., Olysych, L. V., Zubkova, N. V., Chukanov, N. V., Van, K., V.,
and Pushcharovsky, D. Y.: Depmeierite
: a new cancrinite-group mineral species from the
Lovozero alkaline pluton of the Kola Peninsula, Geol. Ore Deposits, 53,
604–613, 2011.
Petersen, O. V., Giester, G., Brandstätter, F., and Niedermayr, G.:
Nabesite, Na2BeSi4O10⋅4H2O, a new mineral
species from the Ilímaussaq alkaline complex, South Greenland, Can.
Mineral., 40, 173–181, https://doi.org/10.2113/gscanmin.40.1.173, 2002.
Pongiluppi, D.: A new occurrence of yugawaralite at Osilo, Sardinia, Can.
Mineral., 15, 113–114, 1977.
Raade, G., Åmli, R., Mladeck, M. H., Din, V. K., Larsen, A. O., and
Åsheim, A.: Chiavennite from syenite pegmatites in the Oslo region,
Norway, Am. Mineral., 68, 628–633, 1983.
Reay, A. and Coombs, D. S.: Ashtonite, a strontian mordenite, Mineral. Mag.,
38, 383–385, 1971.
Robinson, G. W. and Grice, J. D.: The barium analog of brewsterite from
Harrisville, New York, Can. Mineral., 31, 687–690, 1993.
Rouse, R. C., Peacor, D. R., Dunn, P. J., Campbell, T. J., Roberts, W. L.,
Wicks, F. J., and Newbury, D.: Pahasapaite, a beryllophosphate zeolite
related to synthetic zeolite rho, from the Tip Top pegmatite of South
Dakota, Neues Jb. Miner. Monat., 433–440, 1987.
Rouse, R. C., Dunn, P. J., Grice, J. D., Schlenker, J. L., and Higgins, J.
B.: Montesommaite, , a new zeolite related to merlinoite and the gismondine group,
Am. Mineral., 75, 1415–1420, 1990.
Rüdinger, B., Tillmanns, E., and Hentschel, G.: Bellbergite-a new
mineral with the zeolite structure type EAB, Mineral. Petrol., 48, 147–152,
1993.
Sahama, T. G. and Lehtinen, M.: Harmotome from Korsnäs, Finland, Mineral.
Mag., 36, 444–448, 1967.
Sarp, H., Deferne, J., Bizouard, H., and Liebich, B. W.: La parthéite,
CaAl2Si2O8⋅2H2O, un nouveau silicate naturel
d'aluminium et de calcium, Schweiz. Miner. Petrog., 59, 5–13, 1979.
Seki, Y. and Oki, Y.: Wairakite-analcime solid solutions from low-grade
metamorphic rocks of the Tanzawa mountains, central Japan, Mineral. J.,
6, 36–45, 1969.
Shannon, R. D. and Fischer, R. X.: Empirical electronic polarizabilities of ions
for the prediction and interpretation of refractive indices: oxides and
oxysalts, Am. Mineral., 101, 2288–2300, https://doi.org/10.2138/am-2016-5730, 2016.
Shannon, R. C., Lafuente, B., Shannon, R. D., Downs, R. T., and Fischer, R.
X.: Refractive indices of minerals and synthetic compounds, Am. Mineral.,
102, 1906–1914, https://doi.org/10.2138/am-2017-6144, 2017.
Sheppard, R. A. and Gude, A. J.: Chemical composition and physical properties
of the related zeolites offretite and erionite, Am. Mineral., 54, 875–886,
1969.
Staples, L. W. and Gard, J. A.: The fibrous zeolite erionite; its occurrence,
unit cell, and structure, Mineral. Mag., 32, 261–281, 1959.
Tiba, T. and Matsubara, S.: Levyne from Dözen (Oki Islands), Japan, Can.
Mineral., 15, 536–539, 1977.
Tomita, K., Koiso, M., Yamamoto, M., and Oba, N.: Laumontite in an andesite
from Kinzan, Satsuma-Cho, Kagoshima Prefecture, J. Japan. Assoc. Mineral.
Petr. Econ. Geol., 74, 443–449, 1979.
Vezzalini, G. and Oberti, R.: The crystal chemistry of gismondines: the
non-existence of K-rich gismondines, B. Minéral., 107, 805–812, 1984.
Walter, F.: Weinebeneite, CaBe3(PO4)2(OH)2⋅4H2O, a new mineral species: mineral data and crystal structure, Eur.
J. Mineral., 4, 1275–1283, https://doi.org/10.1127/ejm/4/6/1275, 1992.
Wise, W. S.: New occurrence of faujasite in southeastern California, Am.
Mineral., 67, 794–798, 1982.
Wise, W. S., Nokleberg, W. J., and Kokinos, M.: Clinoptilolite and
ferrierite from Agoura, California, Am. Mineral., 54, 887–895, 1969.
Yajima, S. and Nakamura, T.: New occurrence of ferrierite, Mineral. J., 6,
343–364, 1971.
Yang, Y. W., Evans, S. H., Downs, R. T., and Yang, H.: Lotharmeyerite,
Ca(Zn,Mn)2(AsO4)2-(H2O,OH)2, Acta Crystallogr.,
E68, i9–i10, https://doi.org/10.1107/S1600536811054286, 2012.
Short summary
It is shown here that the H2O content of hydrous minerals can be determined from their mean refractive indices with high accuracy. This is especially important when only small single crystals are available. Such small crystals are generally not suitable for thermal analyses or for other reliable methods of measuring the amount of H2O. The results are compared with the observed H2O content evaluating 157 zeolite-type compounds and 770 non-zeolitic hydrous compounds, showing good agreement.
It is shown here that the H2O content of hydrous minerals can be determined from their mean...