Articles | Volume 32, issue 1
https://doi.org/10.5194/ejm-32-171-2020
https://doi.org/10.5194/ejm-32-171-2020
Research article
 | 
11 Feb 2020
Research article |  | 11 Feb 2020

Breyite inclusions in diamond: experimental evidence for possible dual origin

Alan B. Woodland, Andrei V. Girnis, Vadim K. Bulatov, Gerhard P. Brey, and Heidi E. Höfer

Related subject area

Experimental petrology
CO2 diffusion in dry and hydrous leucititic melt
Lennart Koch and Burkhard C. Schmidt
Eur. J. Mineral., 35, 117–132, https://doi.org/10.5194/ejm-35-117-2023,https://doi.org/10.5194/ejm-35-117-2023, 2023
Short summary
Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9 GPa – a proxy for melting of carbonated mantle lithologies
Melanie J. Sieber, Max Wilke, Oona Appelt, Marcus Oelze, and Monika Koch-Müller
Eur. J. Mineral., 34, 411–424, https://doi.org/10.5194/ejm-34-411-2022,https://doi.org/10.5194/ejm-34-411-2022, 2022
Short summary
High-pressure homogenization of olivine-hosted CO2-rich melt inclusions in a piston cylinder: insight into the volatile content of primary mantle melts
Roxane Buso, Didier Laporte, Federica Schiavi, Nicolas Cluzel, and Claire Fonquernie
Eur. J. Mineral., 34, 325–349, https://doi.org/10.5194/ejm-34-325-2022,https://doi.org/10.5194/ejm-34-325-2022, 2022
Short summary
Carbon-saturated COH fluids in the upper mantle: a review of high-pressure and high-temperature ex situ experiments
Carla Tiraboschi, Francesca Miozzi, and Simone Tumiati
Eur. J. Mineral., 34, 59–75, https://doi.org/10.5194/ejm-34-59-2022,https://doi.org/10.5194/ejm-34-59-2022, 2022
Short summary
The influence of oxygen fugacity and chlorine on amphibole–liquid trace element partitioning at upper-mantle conditions
Enrico Cannaò, Massimo Tiepolo, Giulio Borghini, Antonio Langone, and Patrizia Fumagalli
Eur. J. Mineral., 34, 35–57, https://doi.org/10.5194/ejm-34-35-2022,https://doi.org/10.5194/ejm-34-35-2022, 2022
Short summary

Cited articles

Akaogi, M., Yano, M., Tejima, Y., Iijima, M., and Kojitani, H.: High-pressure transitions of diopside and wollastonite: phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5CaTiSiO5 system, Phys. Earth Planet. In., 143–144, 145–156, 2004. 
Anzolini, C., Angel, R. J., Merlini, M., Derzsi, M., Tokár, K., Milani, S., Krebs, M. Y., Brenker, F. E., Nestola, F., and Harris, J. W.: Depth of formation of CaSiO3-walstromite included in super-deep diamonds, Lithos, 265, 138–147, 2016. 
Anzolini, C., Prencipe, M., Alvaro, M., Romano, C., Vona, A., Lorenzon, S., Smith, E. M., Brenker, F. E., and Nestola, F.: Depth of formation of super-deep diamonds: Raman barometry of CaSiO3-walstromite inclusions, Am. Mineral., 103, 69–74, 2018. 
Berman, R. G.: Mixing properties of Ca–Mg–Fe–Mn garnets, Am. Mineral., 75, 328–344, 1990. 
Brenker, F., Nestola, F., Brenker, L., Peruzzo, L., Secco, L., and Harris, J. W.: Breyite, IMA 2018-062, CNMNC Newsletter No. 45, October 2018, Mineral. Mag., 82, 1225–1232, 2018. 
Download
Short summary
We experimentally explored direct entrapment of breyite (CaSiO3) by diamond at upper-mantle conditions in a model subducted sediment rather than formation by retrogression of CaSiO3 perovskite, implying a deeper origin. Anhydrous low-T melting of CaCO3+SiO2 precludes breyite formation. Under hydrous conditions, reduction of melt results in graphite with breyite. Thus, breyite inclusions in natural diamond may form from aragonite + coesite or carbonate melt at 6–8 GPa via reduction with water.