Articles | Volume 37, issue 6
https://doi.org/10.5194/ejm-37-871-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-37-871-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
IMA-CNMNC guidelines for assessing the natural geological origin of minerals
Ferdinando Bosi
CORRESPONDING AUTHOR
Department of Earth Sciences, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy
Frédéric Hatert
Laboratory of Mineralogy, University of Liège, Bâtiment B-18, 4000 Liège, Belgium
Nicolas Meisser
Department of Geology, Naturéum, University of Lausanne, Anthropole, Chamberonne, 1015 Lausanne, Switzerland
Marco Pasero
Department of Earth Sciences, University of Pisa, Via S. Maria 53, 56126 Pisa, Italy
Stuart Mills
Gallery of Natural Art, P.O. Box 830460, Richardson, TX 75083, USA
Related authors
Cristian Biagioni, Elena Bonaccorsi, Marco Pasero, Ulf Hålenius, and Ferdinando Bosi
Eur. J. Mineral., 37, 761–772, https://doi.org/10.5194/ejm-37-761-2025, https://doi.org/10.5194/ejm-37-761-2025, 2025
Short summary
Short summary
Suenoite is a new Pnma amphibole discovered in the Mn ore deposit of Scortico–Ravazzone, Apuan Alps, Tuscany, Italy. Its discovery adds further complexity to the amphibole supergroup, and it represents the first Pnma amphibole with BMn2+.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 695–698, https://doi.org/10.5194/ejm-37-695-2025, https://doi.org/10.5194/ejm-37-695-2025, 2025
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 549–553, https://doi.org/10.5194/ejm-37-549-2025, https://doi.org/10.5194/ejm-37-549-2025, 2025
Ferdinando Bosi, Federico Pezzotta, Henrik Skobgy, Riccardo Luppi, Paolo Ballirano, Ulf Hålenius, Gioacchino Tempesta, Giovanna Agrosì, and Jiří Sejkora
Eur. J. Mineral., 37, 505–516, https://doi.org/10.5194/ejm-37-505-2025, https://doi.org/10.5194/ejm-37-505-2025, 2025
Short summary
Short summary
This study describes the elbaite neotype, found in crystals from a site on Elba island, Italy. Researchers analyzed these nearly colorless crystals and found that their formation was influenced by earlier changes in the surrounding rock. As different minerals formed first, they set the stage for elbaite to develop later in deeper spaces. This work helps us understand how changes in the local environment affect how and when certain minerals grow.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 337–342, https://doi.org/10.5194/ejm-37-337-2025, https://doi.org/10.5194/ejm-37-337-2025, 2025
Erik Jonsson, Ulf Hålenius, Jaroslaw Majka, and Ferdinando Bosi
Eur. J. Mineral., 37, 269–277, https://doi.org/10.5194/ejm-37-269-2025, https://doi.org/10.5194/ejm-37-269-2025, 2025
Short summary
Short summary
Skogbyite, with the chemical formula Zr(Mg2+2Mn3+4)SiO12, is a new species in the braunite group of minerals. It was discovered in a complex mineral assemblage, essentially a very poor manganese ore, from the Långban Fe–Mn oxide deposit, Värmland County, Bergslagen ore province, Sweden. It is named after the Swedish mineralogist Henrik Skogby (b. 1956). It is a new mineral attesting to the localised mobility and reactivity of zirconium under very special geological conditions.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 249–255, https://doi.org/10.5194/ejm-37-249-2025, https://doi.org/10.5194/ejm-37-249-2025, 2025
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 75–78, https://doi.org/10.5194/ejm-37-75-2025, https://doi.org/10.5194/ejm-37-75-2025, 2025
Giovanni B. Andreozzi, Claudia Gori, Henrik Skogby, Ulf Hålenius, Alessandra Altieri, and Ferdinando Bosi
Eur. J. Mineral., 37, 1–12, https://doi.org/10.5194/ejm-37-1-2025, https://doi.org/10.5194/ejm-37-1-2025, 2025
Short summary
Short summary
The compositional variation in a multi-coloured, zoned tourmaline from the Cruzeiro pegmatite, Brazil, reflects melt chemical evolution during the entire pegmatite differentiation. In uncontaminated granitic pegmatite systems such as that of Cruzeiro, the compositional evolution of tourmaline progresses from schorl to fluor-elbaite, rather than directly from schorl to elbaite, to reflect co-enrichment in Li and F during fractional crystallization.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 1005–1010, https://doi.org/10.5194/ejm-36-1005-2024, https://doi.org/10.5194/ejm-36-1005-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 917–923, https://doi.org/10.5194/ejm-36-917-2024, https://doi.org/10.5194/ejm-36-917-2024, 2024
Beatrice Celata, Ferdinando Bosi, Kira A. Musiyachenko, Andrey V. Korsakov, and Giovanni B. Andreozzi
Eur. J. Mineral., 36, 797–811, https://doi.org/10.5194/ejm-36-797-2024, https://doi.org/10.5194/ejm-36-797-2024, 2024
Short summary
Short summary
The discovery of the K-dominant tourmaline maruyamaite with microdiamond inclusions suggested its ultrahigh-pressure formation. We analyzed the role of K in the tourmaline structure, with a special focus on its stability. High pressure is necessary to squeeze the large cation K+ in the stiff framework of tourmaline, although K is the underdog component if Na+ is present in the mineralizing fluid. K-tourmaline is stable at high pressure, overcoming the stereotype of a mere crustal component.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 599–604, https://doi.org/10.5194/ejm-36-599-2024, https://doi.org/10.5194/ejm-36-599-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 525–528, https://doi.org/10.5194/ejm-36-525-2024, https://doi.org/10.5194/ejm-36-525-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 361–367, https://doi.org/10.5194/ejm-36-361-2024, https://doi.org/10.5194/ejm-36-361-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 165–172, https://doi.org/10.5194/ejm-36-165-2024, https://doi.org/10.5194/ejm-36-165-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 1073–1078, https://doi.org/10.5194/ejm-35-1073-2023, https://doi.org/10.5194/ejm-35-1073-2023, 2023
Daniel Atencio, Andrezza A. Azzi, Kai Qu, Ritsuro Miyawaki, Ferdinando Bosi, and Koichi Momma
Eur. J. Mineral., 35, 1027–1030, https://doi.org/10.5194/ejm-35-1027-2023, https://doi.org/10.5194/ejm-35-1027-2023, 2023
Short summary
Short summary
This article introduces a new nomenclature system for the cerite group minerals. This system was necessary to allow the nomenclature of new species of minerals that are currently being described.
Ian E. Grey, Stephanie Boer, Colin M. MacRae, Nicholas C. Wilson, William G. Mumme, and Ferdinando Bosi
Eur. J. Mineral., 35, 909–919, https://doi.org/10.5194/ejm-35-909-2023, https://doi.org/10.5194/ejm-35-909-2023, 2023
Short summary
Short summary
The paper describes the formal establishment of the paulkerrite group of minerals and its nomenclature. It includes the application of a site-merging procedure, coupled with a site-total-charge analysis, to obtain unambiguous end-member formulae. Application of the procedure has resulted in the revision of the end-member formulae for several of the group members.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 891–895, https://doi.org/10.5194/ejm-35-891-2023, https://doi.org/10.5194/ejm-35-891-2023, 2023
Alessandra Altieri, Federico Pezzotta, Giovanni B. Andreozzi, Henrik Skogby, and Ferdinando Bosi
Eur. J. Mineral., 35, 755–771, https://doi.org/10.5194/ejm-35-755-2023, https://doi.org/10.5194/ejm-35-755-2023, 2023
Short summary
Short summary
Elba tourmaline crystals commonly display a sharp transition to dark colors at the analogous termination, but the mechanisms leading to the formation of such terminations are unclear. Here we propose a general genetic model in which, as a consequence of a pocket rupture event, chemical alteration of early formed Fe-/Mn-rich minerals in the enclosing pegmatite was responsible for the release of Fe and/or Mn in the geochemical system, allowing the formation of the late-stage dark terminations.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 659–664, https://doi.org/10.5194/ejm-35-659-2023, https://doi.org/10.5194/ejm-35-659-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 397–402, https://doi.org/10.5194/ejm-35-397-2023, https://doi.org/10.5194/ejm-35-397-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 285–293, https://doi.org/10.5194/ejm-35-285-2023, https://doi.org/10.5194/ejm-35-285-2023, 2023
Cristian Biagioni, Ferdinando Bosi, Daniela Mauro, Henrik Skogby, Andrea Dini, and Federica Zaccarini
Eur. J. Mineral., 35, 81–94, https://doi.org/10.5194/ejm-35-81-2023, https://doi.org/10.5194/ejm-35-81-2023, 2023
Short summary
Short summary
Dutrowite is the first tourmaline supergroup minerals having Ti as a species-defining chemical constituent. Its finding improves our knowledge on the crystal chemistry of this important mineral group and allows us to achieve a better picture of the mechanisms favouring the incorporation of Ti.
Ferdinando Bosi, Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 75–79, https://doi.org/10.5194/ejm-35-75-2023, https://doi.org/10.5194/ejm-35-75-2023, 2023
Cristian Biagioni, Elena Bonaccorsi, Marco Pasero, Ulf Hålenius, and Ferdinando Bosi
Eur. J. Mineral., 37, 761–772, https://doi.org/10.5194/ejm-37-761-2025, https://doi.org/10.5194/ejm-37-761-2025, 2025
Short summary
Short summary
Suenoite is a new Pnma amphibole discovered in the Mn ore deposit of Scortico–Ravazzone, Apuan Alps, Tuscany, Italy. Its discovery adds further complexity to the amphibole supergroup, and it represents the first Pnma amphibole with BMn2+.
Florent Bomal, Frédéric Hatert, Simon Philippo, Maël Guennou, Martin Depret, Hao Wang, Pierre Lefèvre, and Muriel Erambert
Eur. J. Mineral., 37, 709–731, https://doi.org/10.5194/ejm-37-709-2025, https://doi.org/10.5194/ejm-37-709-2025, 2025
Short summary
Short summary
Seventeen tourmalines from Brazil were investigated by structural and chemical techniques. Most samples are Na-dominant and belong to the alkali group. They correspond to fluor-elbaites or elbaites, except one sample, which corresponds to a rossmanite. Structural data indicate that the B site is fully occupied by boron, that the T site is occupied by Si, and that the Z site is mainly occupied by Al. The X site contains vacancies, Na, K, and Ca, and the Y site is mainly occupied by Li, Al, and Fe2+.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 695–698, https://doi.org/10.5194/ejm-37-695-2025, https://doi.org/10.5194/ejm-37-695-2025, 2025
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 549–553, https://doi.org/10.5194/ejm-37-549-2025, https://doi.org/10.5194/ejm-37-549-2025, 2025
Ferdinando Bosi, Federico Pezzotta, Henrik Skobgy, Riccardo Luppi, Paolo Ballirano, Ulf Hålenius, Gioacchino Tempesta, Giovanna Agrosì, and Jiří Sejkora
Eur. J. Mineral., 37, 505–516, https://doi.org/10.5194/ejm-37-505-2025, https://doi.org/10.5194/ejm-37-505-2025, 2025
Short summary
Short summary
This study describes the elbaite neotype, found in crystals from a site on Elba island, Italy. Researchers analyzed these nearly colorless crystals and found that their formation was influenced by earlier changes in the surrounding rock. As different minerals formed first, they set the stage for elbaite to develop later in deeper spaces. This work helps us understand how changes in the local environment affect how and when certain minerals grow.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 337–342, https://doi.org/10.5194/ejm-37-337-2025, https://doi.org/10.5194/ejm-37-337-2025, 2025
Cristian Biagioni, Jiří Sejkora, Yves Moëlo, Georges Favreau, Vincent Bourgoin, Jean-Claude Boulliard, Elena Bonaccorsi, Daniela Mauro, Silvia Musetti, Marco Pasero, Natale Perchiazzi, and Jana Ulmanová
Eur. J. Mineral., 37, 319–335, https://doi.org/10.5194/ejm-37-319-2025, https://doi.org/10.5194/ejm-37-319-2025, 2025
Short summary
Short summary
Ginelfite is a new Ag–Fe–Tl–Pb sulfosalt described from the hydrothermal deposit of Jas Roux (France). It belongs to the so-called boxwork sulfosalts, a group of species showing the highest structural complexity among this group of chalcogenides. This very complex structure is probably stabilized by the occurrence of minor chemical constituents (Tl, Fe) occupying specific structural positions.
Erik Jonsson, Ulf Hålenius, Jaroslaw Majka, and Ferdinando Bosi
Eur. J. Mineral., 37, 269–277, https://doi.org/10.5194/ejm-37-269-2025, https://doi.org/10.5194/ejm-37-269-2025, 2025
Short summary
Short summary
Skogbyite, with the chemical formula Zr(Mg2+2Mn3+4)SiO12, is a new species in the braunite group of minerals. It was discovered in a complex mineral assemblage, essentially a very poor manganese ore, from the Långban Fe–Mn oxide deposit, Värmland County, Bergslagen ore province, Sweden. It is named after the Swedish mineralogist Henrik Skogby (b. 1956). It is a new mineral attesting to the localised mobility and reactivity of zirconium under very special geological conditions.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 249–255, https://doi.org/10.5194/ejm-37-249-2025, https://doi.org/10.5194/ejm-37-249-2025, 2025
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 75–78, https://doi.org/10.5194/ejm-37-75-2025, https://doi.org/10.5194/ejm-37-75-2025, 2025
Giovanni B. Andreozzi, Claudia Gori, Henrik Skogby, Ulf Hålenius, Alessandra Altieri, and Ferdinando Bosi
Eur. J. Mineral., 37, 1–12, https://doi.org/10.5194/ejm-37-1-2025, https://doi.org/10.5194/ejm-37-1-2025, 2025
Short summary
Short summary
The compositional variation in a multi-coloured, zoned tourmaline from the Cruzeiro pegmatite, Brazil, reflects melt chemical evolution during the entire pegmatite differentiation. In uncontaminated granitic pegmatite systems such as that of Cruzeiro, the compositional evolution of tourmaline progresses from schorl to fluor-elbaite, rather than directly from schorl to elbaite, to reflect co-enrichment in Li and F during fractional crystallization.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 1005–1010, https://doi.org/10.5194/ejm-36-1005-2024, https://doi.org/10.5194/ejm-36-1005-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 917–923, https://doi.org/10.5194/ejm-36-917-2024, https://doi.org/10.5194/ejm-36-917-2024, 2024
Beatrice Celata, Ferdinando Bosi, Kira A. Musiyachenko, Andrey V. Korsakov, and Giovanni B. Andreozzi
Eur. J. Mineral., 36, 797–811, https://doi.org/10.5194/ejm-36-797-2024, https://doi.org/10.5194/ejm-36-797-2024, 2024
Short summary
Short summary
The discovery of the K-dominant tourmaline maruyamaite with microdiamond inclusions suggested its ultrahigh-pressure formation. We analyzed the role of K in the tourmaline structure, with a special focus on its stability. High pressure is necessary to squeeze the large cation K+ in the stiff framework of tourmaline, although K is the underdog component if Na+ is present in the mineralizing fluid. K-tourmaline is stable at high pressure, overcoming the stereotype of a mere crustal component.
Martin Depret, Frédéric Hatert, Michel Blondieau, Stéphane Puccio, Muriel M. L. Erambert, Fabrice Dal Bo, and Florent Bomal
Eur. J. Mineral., 36, 687–708, https://doi.org/10.5194/ejm-36-687-2024, https://doi.org/10.5194/ejm-36-687-2024, 2024
Short summary
Short summary
Ardennite is a rare Mn-rich aluminosilicate that was originally described in Salmchâteau, Belgium. In the last few years, new samples of ardennites have been found at several localities close to Salmchâteau. These samples were analysed by electron microprobe, single-crystal X-ray diffraction, and infrared spectroscopy. The results given in this paper allow us to identify the main substitution mechanisms that occur in Belgian ardennites and to discuss the nomenclature of the ardennite group.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 599–604, https://doi.org/10.5194/ejm-36-599-2024, https://doi.org/10.5194/ejm-36-599-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 525–528, https://doi.org/10.5194/ejm-36-525-2024, https://doi.org/10.5194/ejm-36-525-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 361–367, https://doi.org/10.5194/ejm-36-361-2024, https://doi.org/10.5194/ejm-36-361-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 165–172, https://doi.org/10.5194/ejm-36-165-2024, https://doi.org/10.5194/ejm-36-165-2024, 2024
Thomas Malcherek, Boriana Mihailova, Jochen Schlüter, Philippe Roth, and Nicolas Meisser
Eur. J. Mineral., 36, 153–164, https://doi.org/10.5194/ejm-36-153-2024, https://doi.org/10.5194/ejm-36-153-2024, 2024
Short summary
Short summary
The new mineral heimite was originally discovered on the mine dumps of the Grosses Chalttal deposit, Mürtschenalp district, Glarus, Switzerland. Its relatively simple chemistry is formed by water and ions of lead, copper, arsenic, hydrogen and oxygen. The mineral's crystal structure is related to the well-known duftite, which is also observed to grow on crystals of heimite. While heimite has so far only been found in the central Alps, it is expected to occur in other copper deposits worldwide.
Fabrice Dal Bo, Henrik Friis, Marlina A. Elburg, Frédéric Hatert, and Tom Andersen
Eur. J. Mineral., 36, 73–85, https://doi.org/10.5194/ejm-36-73-2024, https://doi.org/10.5194/ejm-36-73-2024, 2024
Short summary
Short summary
We report the description and the characterization of a new mineral species, found in a rock sample from the geological formation called the Pilanesberg Complex, South Africa. This is a silicate mineral that contains a significant amount of sodium, calcium, iron, titanium and fluorine. Its atomic structure shows that it is related to other wöhlerite-group minerals. This work provides new insights into the crystallization conditions that ruled the formation of the Pilanesberg complex.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 1073–1078, https://doi.org/10.5194/ejm-35-1073-2023, https://doi.org/10.5194/ejm-35-1073-2023, 2023
Daniel Atencio, Andrezza A. Azzi, Kai Qu, Ritsuro Miyawaki, Ferdinando Bosi, and Koichi Momma
Eur. J. Mineral., 35, 1027–1030, https://doi.org/10.5194/ejm-35-1027-2023, https://doi.org/10.5194/ejm-35-1027-2023, 2023
Short summary
Short summary
This article introduces a new nomenclature system for the cerite group minerals. This system was necessary to allow the nomenclature of new species of minerals that are currently being described.
Ian E. Grey, Stephanie Boer, Colin M. MacRae, Nicholas C. Wilson, William G. Mumme, and Ferdinando Bosi
Eur. J. Mineral., 35, 909–919, https://doi.org/10.5194/ejm-35-909-2023, https://doi.org/10.5194/ejm-35-909-2023, 2023
Short summary
Short summary
The paper describes the formal establishment of the paulkerrite group of minerals and its nomenclature. It includes the application of a site-merging procedure, coupled with a site-total-charge analysis, to obtain unambiguous end-member formulae. Application of the procedure has resulted in the revision of the end-member formulae for several of the group members.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 891–895, https://doi.org/10.5194/ejm-35-891-2023, https://doi.org/10.5194/ejm-35-891-2023, 2023
Alessandra Altieri, Federico Pezzotta, Giovanni B. Andreozzi, Henrik Skogby, and Ferdinando Bosi
Eur. J. Mineral., 35, 755–771, https://doi.org/10.5194/ejm-35-755-2023, https://doi.org/10.5194/ejm-35-755-2023, 2023
Short summary
Short summary
Elba tourmaline crystals commonly display a sharp transition to dark colors at the analogous termination, but the mechanisms leading to the formation of such terminations are unclear. Here we propose a general genetic model in which, as a consequence of a pocket rupture event, chemical alteration of early formed Fe-/Mn-rich minerals in the enclosing pegmatite was responsible for the release of Fe and/or Mn in the geochemical system, allowing the formation of the late-stage dark terminations.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 659–664, https://doi.org/10.5194/ejm-35-659-2023, https://doi.org/10.5194/ejm-35-659-2023, 2023
Lyudmila M. Lyalina, Ekaterina A. Selivanova, and Frédéric Hatert
Eur. J. Mineral., 35, 427–437, https://doi.org/10.5194/ejm-35-427-2023, https://doi.org/10.5194/ejm-35-427-2023, 2023
Short summary
Short summary
There are unresolved problems related to the nomenclature and identification of mineral species belonging to the triphylite group of minerals. They can be solved by discarding the traditional views on succession of mineral species during oxidation. In other words, it is necessary to separate the concepts of the origin of the mineral and the boundaries of the species.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 397–402, https://doi.org/10.5194/ejm-35-397-2023, https://doi.org/10.5194/ejm-35-397-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 285–293, https://doi.org/10.5194/ejm-35-285-2023, https://doi.org/10.5194/ejm-35-285-2023, 2023
Cristian Biagioni, Ferdinando Bosi, Daniela Mauro, Henrik Skogby, Andrea Dini, and Federica Zaccarini
Eur. J. Mineral., 35, 81–94, https://doi.org/10.5194/ejm-35-81-2023, https://doi.org/10.5194/ejm-35-81-2023, 2023
Short summary
Short summary
Dutrowite is the first tourmaline supergroup minerals having Ti as a species-defining chemical constituent. Its finding improves our knowledge on the crystal chemistry of this important mineral group and allows us to achieve a better picture of the mechanisms favouring the incorporation of Ti.
Ferdinando Bosi, Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 75–79, https://doi.org/10.5194/ejm-35-75-2023, https://doi.org/10.5194/ejm-35-75-2023, 2023
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 591–601, https://doi.org/10.5194/ejm-34-591-2022, https://doi.org/10.5194/ejm-34-591-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 463–468, https://doi.org/10.5194/ejm-34-463-2022, https://doi.org/10.5194/ejm-34-463-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 385–391, https://doi.org/10.5194/ejm-34-385-2022, https://doi.org/10.5194/ejm-34-385-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 359–364, https://doi.org/10.5194/ejm-34-359-2022, https://doi.org/10.5194/ejm-34-359-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 253–257, https://doi.org/10.5194/ejm-34-253-2022, https://doi.org/10.5194/ejm-34-253-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 143–148, https://doi.org/10.5194/ejm-34-143-2022, https://doi.org/10.5194/ejm-34-143-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 34, 1–6, https://doi.org/10.5194/ejm-34-1-2022, https://doi.org/10.5194/ejm-34-1-2022, 2022
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 639–646, https://doi.org/10.5194/ejm-33-639-2021, https://doi.org/10.5194/ejm-33-639-2021, 2021
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 479–484, https://doi.org/10.5194/ejm-33-479-2021, https://doi.org/10.5194/ejm-33-479-2021, 2021
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 299–304, https://doi.org/10.5194/ejm-33-299-2021, https://doi.org/10.5194/ejm-33-299-2021, 2021
Yannick Bruni, Frédéric Hatert, Philippe George, Hélène Cambier, and David Strivay
Eur. J. Mineral., 33, 221–232, https://doi.org/10.5194/ejm-33-221-2021, https://doi.org/10.5194/ejm-33-221-2021, 2021
Short summary
Short summary
The reliquary crown, hosted in the diocesan museum of Namur (Belgium), was produced during the beginning of the 13th century. This beautiful piece of goldsmithery is decorated with approximately 400 pearls and coloured stones which were investigated by Raman and pXRF techniques. Emeralds, pink spinels, sapphires, almandine garnets, turquoises, and pearls were identified. The gemstones, contemporary with the crown, probably arrived in Europe by the silk trade road.
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 203–208, https://doi.org/10.5194/ejm-33-203-2021, https://doi.org/10.5194/ejm-33-203-2021, 2021
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 33, 139–143, https://doi.org/10.5194/ejm-33-139-2021, https://doi.org/10.5194/ejm-33-139-2021, 2021
Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 32, 645–651, https://doi.org/10.5194/ejm-32-645-2020, https://doi.org/10.5194/ejm-32-645-2020, 2020
Cited articles
Allington-Jones, L.: Cleaning minerals: Practical and ethical considerations, The Geological Curator, 10, 473–479, 2017.
Bindi, L., Eiler, J., Guan, Y., Hollister, L. S., MacPherson, G. J., Steinhardt, P. J., and Yao, N.: Evidence for the extraterrestrial origin of a natural quasicrystal, P. Natl. Acad. Sci. USA, 109, 1396–1401, https://doi.org/10.1073/pnas.1111115109, 2012.
Bindi, L., Kolb, W., Nelson Eby, G., Asimow, P. D., Wallace, T. C., and Steinhardt, P. J.: Accidental synthesis of a previously unknown quasicrystal in the first atomic bomb test, P. Natl. Acad. Sci. USA, 118, e2101350118, https://doi.org/10.1073/pnas.2101350118, 2021.
Brugger, J., Cuchet, S., Van Der Burgt, A., Crumbach, M., Etschmann, B., Xing, Y., Ram, R., Michaut, P., Nebel, O., Raveggi, M., Maas, R., Pearce, M., and Howard, D.: Titanite and allanite as a record of multistage co-mobility of Ti–REE–Nb–As during metamorphism in the Central Alps, Am. Mineral., 110, 603–621, https://doi.org/10.2138/am-2024-9378, 2025.
Duthaler, R. and Weiss, S.: Mineral cleaning for collectors, 3rd edn., edited by: Duthaler, R., Bettingen, Switzerland, 190 pp., 2023.
Ellern, H.: Military and Civilian Pyrotechnics, Chemical Publishing Company, New York, 480 pp., ISBN 978-0-8206-0364-3, 1968.
Fletcher, J. C. and Phillips, W. M.: High temperature resistant cermet and ceramic compositions, United States Patent 4,131,459, 26 December 1978, 8 pp., 1978.
Galluser, A., Rhumorbarbe, D., and Werner, D. (eds.): Examination of Firearms and Ammunition Components in Criminal Investigation, EPFL Press, Lausanne, 624 pp., ISBN 978-2-88915-420-3, 2022.
Hazen, R. M., Grew, E. S., Origlieri, M. J., and Downs, R. T.: On the mineralogy of the “Anthropocene Epoch”, Am. Mineral., 102, 595–611, https://doi.org/10.2138/am-2017-5903, 2017.
Ivanova, M. A., Lorenz, C. A., Borisovskiy, S. E., Burmistrov, A. A., Korost, D. V., Korochantsev, A. V., Logunova, M. N., Shornikov, S. I., and Petaev, M. I.: Composition and origin of holotype Al–Cu–Zn minerals in relation to quasicrystals in the Khatyrka meteorite, Meteorit. Planet. Sci., 52, 869–883, https://doi.org/10.1111/maps.12839, 2017.
Kampf, A. R. and Mills, S. J.: Lead hydrogen citrate monohydrate, Pb(C6H6O7)⚫H2O, formation during specimen cleaning: a cautionary mineralogical tale. Min. Mag., 74, 683–690, https://doi.org/10.1180/minmag.2010.074.4.683, 2010.
Li, G.W., Xue, Y., and Xiong, M.: Tewite: a K–Te–W new mineral species with a modified tungsten-bronze type structure, from the Panzhihua–Xichang region, southwest China, Eur. J. Mineral., 31, 145–152, https://doi.org/10.1127/ejm/2019/0031-2813, 2019.
Meyer, R., Köhler, J., and Homburg, A.: Explosives, 7th edn., Wiley-VCH, Weinheim, 442 pp., ISBN 978-3-527-33776-7, 2016.
Mills, S. J., Kartashov, P. M., Ma, C., Rossman, G. R., Novgorodova, M. I., Kampf, A. R., and Raudsepp, M.: Yttriaite-(Y): the natural occurrence of Y2O3 from the Bol'shaya Pol'ya River, Subpolar Urals, Russia, Am. Mineral., 96, 1166–1170, https://doi.org/10.2138/am.2011.3746, 2011.
Miyawaki, R., Hatert, F., Pasero, M., and Mills, S. J.: IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) – Newsletter 57, Eur. J. Mineral., 32, 495–499, https://doi.org/10.5194/ejm-32-495-2020, 2020.
Orlandi, P. and Panunzi, A.: A new mineral… almost: 1,5-dinitronaphthalene from the Boarezzo mine, Varese, Italy, Mineral. Rec., 29, 483–484, 1998.
Panich, A. M., Shames, A. I., Mogilyansky, D., Goren, S. D., and Dolmatov, V. Yu.: Detonation nanodiamonds fabricated from tetryl: synthesis, NMR, EPR and XRD study, Diamond Relat. Mater., 108, 107888, https://doi.org/10.1016/j.diamond.2020.107918, 2020.
Parafiniuk, J. and Hatert, F.: New IMA CNMNC guidelines on combustion products from burning coal dumps, Eur. J. Mineral., 32, 215–217, https://doi.org/10.5194/ejm-32-215-2020, 2020.
Peacor, D. R., Simmons Jr., W. B., Essene, E. J., and Heinrich, E. Wm.: New data on and discreditation of “texasite,” “albrittonite,” “cuproartinite,” “cuprohydromagnesite,” and “yttromicrolite,” with corrected data on nickelbischofite, rowlandite, and yttrocrasite, Am. Mineral., 67, 156–169, 1982.
Seman, J., Giraldo, C. H. C., and Johnson, C. E.: Reactive not Proactive: Explosive Identification Taggant. History and Introduction of the Nuclear Barcode Taggant Model, Propellants Explosives Pyrotechnics, 44, 1–12, https://doi.org/10.1002/prep.201800322, 2019.
Sperner, B., Jonckheere, R., and Pfänder, J. A.: Testing the influence of high-voltage mineral liberation on grain size, shape and yield, and on fission track and 40Ar/39Ar dating, Chem. Geol., 371, 83–95, https://doi.org/10.1016/j.chemgeo.2014.02.003, 2014.
Xue, Y., Li, G., and Xie, Y.: Wumuite (KAl0.33W2.67O9) – a new mineral with an HTB-type structure from the Panzhihua–Xichang region in China, Eur. J. Mineral., 32, 483–494, https://doi.org/10.5194/ejm-32-483-2020, 2020.
Xue, Y., Sun, N., He, H., Chen, A., and Yang, Y.: Liguowuite, WO3, a new member of the A-site vacant perovskite type minerals from the Panzhihua–Xichang region, China, Eur. J. Mineral., 34, 95–108, https://doi.org/10.5194/ejm-34-95-2022, 2022.
Short summary
This study explains how scientists determine whether a newly found solid phase is truly a natural mineral. We refine existing guidelines by introducing updated recommendations that improve the credibility of proposals for minerals with uncertain origins. Using three examples, we show how geological and textural evidence can confirm or challenge natural authenticity. Our new checklist helps reduce misinterpretation and ensures more reliable mineral recognition.
This study explains how scientists determine whether a newly found solid phase is truly a...