Articles | Volume 37, issue 2
https://doi.org/10.5194/ejm-37-269-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-37-269-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Skogbyite, Zr(Mg2Mn3+4)SiO12, a new zirconium mineral in the braunite group from Långban, Bergslagen, Sweden
Erik Jonsson
CORRESPONDING AUTHOR
Department of Mineral Resources, Geological Survey of Sweden, 751 28 Uppsala, Sweden
Mineralogy, Petrology and Tectonics, Department of Earth Sciences, Uppsala University, 752 36 Uppsala, Sweden
Ulf Hålenius
Department of Geosciences, Swedish Museum of Natural History, 104 05 Stockholm, Sweden
Jaroslaw Majka
Mineralogy, Petrology and Tectonics, Department of Earth Sciences, Uppsala University, 752 36 Uppsala, Sweden
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, 30-059 Kraków, Poland
Ferdinando Bosi
Dipartimento di Scienze della Terra, Sapienza Università di Roma, 00185 Rome, Italy
CNR-IGAG c/o Dipartimento di Scienze della Terra, Sapienza Università di Roma, 00185 Rome, Italy
Related authors
Fernando Cámara, Dan Holtstam, Nils Jansson, Erik Jonsson, Andreas Karlsson, Jörgen Langhof, Jaroslaw Majka, and Anders Zetterqvist
Eur. J. Mineral., 33, 659–673, https://doi.org/10.5194/ejm-33-659-2021, https://doi.org/10.5194/ejm-33-659-2021, 2021
Short summary
Short summary
Zinkgruvanite, a barium manganese iron silicate with sulfate, is a new mineral found in drill core samples from the Zinkgruvan zinc, lead and silver mine in Sweden. It is associated with other minerals like baryte, barytocalcite, diopside and sulfide minerals. It occurs as flattened and elongated crystals up to 1 mm. It is almost black. Zinkgruvanite is closely related to the mineral yoshimuraite and based on its crystal structure, grouped with the ericssonite group of minerals.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 549–553, https://doi.org/10.5194/ejm-37-549-2025, https://doi.org/10.5194/ejm-37-549-2025, 2025
Ferdinando Bosi, Federico Pezzotta, Henrik Skobgy, Riccardo Luppi, Paolo Ballirano, Ulf Hålenius, Gioacchino Tempesta, Giovanna Agrosì, and Jiří Sejkora
Eur. J. Mineral., 37, 505–516, https://doi.org/10.5194/ejm-37-505-2025, https://doi.org/10.5194/ejm-37-505-2025, 2025
Short summary
Short summary
This study describes the elbaite neotype, found in crystals from a site on Elba island, Italy. Researchers analyzed these nearly colorless crystals and found that their formation was influenced by earlier changes in the surrounding rock. As different minerals formed first, they set the stage for elbaite to develop later in deeper spaces. This work helps us understand how changes in the local environment affect how and when certain minerals grow.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 337–342, https://doi.org/10.5194/ejm-37-337-2025, https://doi.org/10.5194/ejm-37-337-2025, 2025
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 249–255, https://doi.org/10.5194/ejm-37-249-2025, https://doi.org/10.5194/ejm-37-249-2025, 2025
Dirk Spengler, Monika Koch-Müller, Adam Włodek, Simon J. Cuthbert, and Jarosław Majka
Solid Earth, 16, 233–250, https://doi.org/10.5194/se-16-233-2025, https://doi.org/10.5194/se-16-233-2025, 2025
Short summary
Short summary
Western Norwegian “diamond facies” eclogite contains tiny mineral inclusions of quartz and amphibole lamellae that are not stable in the diamond field. Low trace amounts of water in the lamellae-bearing host minerals suggest that the inclusion microstructure was not formed by fluid infiltration but by dehydration during early exhumation of these rocks. Some samples with higher water content argue that a late fluid overprint was spatially restricted and erased evidence of extreme metamorphism.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 37, 75–78, https://doi.org/10.5194/ejm-37-75-2025, https://doi.org/10.5194/ejm-37-75-2025, 2025
Giovanni B. Andreozzi, Claudia Gori, Henrik Skogby, Ulf Hålenius, Alessandra Altieri, and Ferdinando Bosi
Eur. J. Mineral., 37, 1–12, https://doi.org/10.5194/ejm-37-1-2025, https://doi.org/10.5194/ejm-37-1-2025, 2025
Short summary
Short summary
The compositional variation in a multi-coloured, zoned tourmaline from the Cruzeiro pegmatite, Brazil, reflects melt chemical evolution during the entire pegmatite differentiation. In uncontaminated granitic pegmatite systems such as that of Cruzeiro, the compositional evolution of tourmaline progresses from schorl to fluor-elbaite, rather than directly from schorl to elbaite, to reflect co-enrichment in Li and F during fractional crystallization.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 1005–1010, https://doi.org/10.5194/ejm-36-1005-2024, https://doi.org/10.5194/ejm-36-1005-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 917–923, https://doi.org/10.5194/ejm-36-917-2024, https://doi.org/10.5194/ejm-36-917-2024, 2024
Beatrice Celata, Ferdinando Bosi, Kira A. Musiyachenko, Andrey V. Korsakov, and Giovanni B. Andreozzi
Eur. J. Mineral., 36, 797–811, https://doi.org/10.5194/ejm-36-797-2024, https://doi.org/10.5194/ejm-36-797-2024, 2024
Short summary
Short summary
The discovery of the K-dominant tourmaline maruyamaite with microdiamond inclusions suggested its ultrahigh-pressure formation. We analyzed the role of K in the tourmaline structure, with a special focus on its stability. High pressure is necessary to squeeze the large cation K+ in the stiff framework of tourmaline, although K is the underdog component if Na+ is present in the mineralizing fluid. K-tourmaline is stable at high pressure, overcoming the stereotype of a mere crustal component.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 599–604, https://doi.org/10.5194/ejm-36-599-2024, https://doi.org/10.5194/ejm-36-599-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 525–528, https://doi.org/10.5194/ejm-36-525-2024, https://doi.org/10.5194/ejm-36-525-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 361–367, https://doi.org/10.5194/ejm-36-361-2024, https://doi.org/10.5194/ejm-36-361-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 165–172, https://doi.org/10.5194/ejm-36-165-2024, https://doi.org/10.5194/ejm-36-165-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 1073–1078, https://doi.org/10.5194/ejm-35-1073-2023, https://doi.org/10.5194/ejm-35-1073-2023, 2023
Daniel Atencio, Andrezza A. Azzi, Kai Qu, Ritsuro Miyawaki, Ferdinando Bosi, and Koichi Momma
Eur. J. Mineral., 35, 1027–1030, https://doi.org/10.5194/ejm-35-1027-2023, https://doi.org/10.5194/ejm-35-1027-2023, 2023
Short summary
Short summary
This article introduces a new nomenclature system for the cerite group minerals. This system was necessary to allow the nomenclature of new species of minerals that are currently being described.
Ian E. Grey, Stephanie Boer, Colin M. MacRae, Nicholas C. Wilson, William G. Mumme, and Ferdinando Bosi
Eur. J. Mineral., 35, 909–919, https://doi.org/10.5194/ejm-35-909-2023, https://doi.org/10.5194/ejm-35-909-2023, 2023
Short summary
Short summary
The paper describes the formal establishment of the paulkerrite group of minerals and its nomenclature. It includes the application of a site-merging procedure, coupled with a site-total-charge analysis, to obtain unambiguous end-member formulae. Application of the procedure has resulted in the revision of the end-member formulae for several of the group members.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 891–895, https://doi.org/10.5194/ejm-35-891-2023, https://doi.org/10.5194/ejm-35-891-2023, 2023
Alessandra Altieri, Federico Pezzotta, Giovanni B. Andreozzi, Henrik Skogby, and Ferdinando Bosi
Eur. J. Mineral., 35, 755–771, https://doi.org/10.5194/ejm-35-755-2023, https://doi.org/10.5194/ejm-35-755-2023, 2023
Short summary
Short summary
Elba tourmaline crystals commonly display a sharp transition to dark colors at the analogous termination, but the mechanisms leading to the formation of such terminations are unclear. Here we propose a general genetic model in which, as a consequence of a pocket rupture event, chemical alteration of early formed Fe-/Mn-rich minerals in the enclosing pegmatite was responsible for the release of Fe and/or Mn in the geochemical system, allowing the formation of the late-stage dark terminations.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 659–664, https://doi.org/10.5194/ejm-35-659-2023, https://doi.org/10.5194/ejm-35-659-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 397–402, https://doi.org/10.5194/ejm-35-397-2023, https://doi.org/10.5194/ejm-35-397-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 285–293, https://doi.org/10.5194/ejm-35-285-2023, https://doi.org/10.5194/ejm-35-285-2023, 2023
Cristian Biagioni, Ferdinando Bosi, Daniela Mauro, Henrik Skogby, Andrea Dini, and Federica Zaccarini
Eur. J. Mineral., 35, 81–94, https://doi.org/10.5194/ejm-35-81-2023, https://doi.org/10.5194/ejm-35-81-2023, 2023
Short summary
Short summary
Dutrowite is the first tourmaline supergroup minerals having Ti as a species-defining chemical constituent. Its finding improves our knowledge on the crystal chemistry of this important mineral group and allows us to achieve a better picture of the mechanisms favouring the incorporation of Ti.
Ferdinando Bosi, Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 75–79, https://doi.org/10.5194/ejm-35-75-2023, https://doi.org/10.5194/ejm-35-75-2023, 2023
Fernando Cámara, Dan Holtstam, Nils Jansson, Erik Jonsson, Andreas Karlsson, Jörgen Langhof, Jaroslaw Majka, and Anders Zetterqvist
Eur. J. Mineral., 33, 659–673, https://doi.org/10.5194/ejm-33-659-2021, https://doi.org/10.5194/ejm-33-659-2021, 2021
Short summary
Short summary
Zinkgruvanite, a barium manganese iron silicate with sulfate, is a new mineral found in drill core samples from the Zinkgruvan zinc, lead and silver mine in Sweden. It is associated with other minerals like baryte, barytocalcite, diopside and sulfide minerals. It occurs as flattened and elongated crystals up to 1 mm. It is almost black. Zinkgruvanite is closely related to the mineral yoshimuraite and based on its crystal structure, grouped with the ericssonite group of minerals.
Cited articles
Allen, R. L, Lundström, I., Ripa, M., and Christofferson, H.: Facies analysis of a 1.9 Ga, continental margin, back-arc, felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulfide and Fe oxide deposits, Bergslagen region, Sweden, Econ. Geol., 91, 979–1008, https://https://doi.org/10.2113/gsecongeo.91.6.979, 1996.
Armstrong, J. T.: CITZAF: a package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles, Microbeam. Anal., 4, 177–200, 1995.
Christy, A. and Gatedal, K.: Extremely Pb-rich rock-forming silicates including a beryllian scapolite and associated minerals in a skarn from Långban, Värmland, Sweden, Mineral. Mag., 69, 995–1018, doi.org./10.1180/0026461056960304, 2005.
Chukanov, N. V.: Infrared spectra of mineral species. Extended library. Vol. 1, Springer Dordrecht Heidelberg New York London, 1–1726, https://doi.org/10.1007/978-94-007-7128-4, 2014.
Gagné, O. C. and Hawthorne, F. C.: Comprehensive derivation of bond- valence parameters for ion pairs involving oxygen, Acta Crystallogr. B, 71, 562–578, https://doi.org/10.1107/S2052520615016297, 2015.
Hålenius, U. and Bosi, F.: Gatedalite, Zr(Mn Mn SiO12, a new mineral species of the braunite group from Långban, Sweden, Mineral. Mag., 79, 625–634, https://doi.org/10.1180/minmag.2015.079.3.08, 2015.
Holtstam, D.: Hiärneite, a new, Zr-Sb oxide mineral isostructural with calzirtite, from Långban, Sweden, Eur. J. Mineral., 9, 843–848, https://doi.org/10.1127/ejm/9/4/0843, 1997.
Holtstam, D. and Mansfeld, J.: Origin of a carbonate-hosted Fe-Mn-(Ba-As-Pb-Sb-W) deposit of Långban-type in central Sweden, Mineral. Dep., 36, 641–657, https://doi.org/10.1007/s001260100183, 2001.
Holtstam, D., Langhof, J., Friis, H., Karlsson, A., and Erambert, M.: Igelströmite, Fe3+(Sb3+Pb2+)O4, and manganoschafarzikite, Mn2+Sb O4, two new members of the newly established minium group, from the Långban Mn–Fe deposit, Värmland, Sweden, Eur. J. Mineral., 36, 311–322, https://doi.org/10.5194/ejm-36-311-2024, 2024.
Jonsson, E.: Fissure-hosted mineral formation and metallogenesis in the Långban Fe-Mn-(Ba-As-Pb-Sb…) deposit, Sweden, Medd. Stockh. Univers. Inst. Geol. Geok., 318, 1–110, 2004.
Jonsson, E., Hålenius, U., Majka, J., and Bosi, F.: Skogbyite, IMA 2023-085, in: CNMNC Newsletter 77, Eur. J. Mineral., 36, https://doi.org/10.5194/ejm-36-165-2024, 2024.
Jonsson, E. and Broman, C.: Fluid inclusions in late-stage Pb-Mn-As-Sb mineral assemblages in the Långban deposit, Bergslagen, Sweden, Can. Mineral., 40, 47–65, https://doi.org/10.2113/gscanmin.40.1.47, 2002.
Jonsson, E. and Billström, K.: Lead isotope systematics in the Långban deposit and adjacent sulphide mineralisations in western Bergslagen, Sweden, GFF, 131, 215–227, https://doi.org/10.1080/11035890903189751, 2009.
Lafuente, B., Downs, R. T., Yang, H., and Stone, N.: The power of databases: the RRUFF project, in: Highlights in Mineralogical Crystallography, edited by: Armbruster, T. and Danisi, R. M., Berlin, Germany, Walter De Gruyter, 1–30, https://doi.org/10.1515/9783110417104-003, 2015.
Langhof, J. and Österberg, T.: Långban's mining history, in: Långban. The mine, its minerals, geology and explorers, edited by: Holtstam, D. and Langhof, J., Raster Förlag and the Swedish Museum of Natural History, Stockholm, 51–63, ISBN 91-87214-881, 1999.
Momma, K. and Izumi F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44, 1272–1276, https://doi.org/10.1107/S0021889811038970, 2011.
Moore, P. B.: Mineralogy & chemistry of Långban-type deposits in Bergslagen, Sweden, Mineral. Rec., 1, 154–172, 1970.
Moore, P. B. and Araki, T.: Braunite: its structure and relationship to bixbyite and some insights on the genealogy of fluorite derivative structures, Am. Mineral, 61, 1226–1240, 1976.
Nysten, P., Holtstam, D., and Jonsson, E.: The Långban minerals, in: Långban. The mine, its minerals, geology and explorers, edited by: Holtstam, D. and Langhof, J., Raster Förlag and the Swedish Museum of Natural History, Stockholm, 89–183, ISBN 91-87214-881, 1999.
Sheldrick, G. M.: Crystal structure refinement with SHELXL, Acta Crystallogr., C71, 3–8, https://doi.org/10.1107/S2053229614024218, 2015.
Stephens, M. B., Ripa, M., Lundström, I., Persson, L., Bergman, T., Ahl, M., Wahlgren, C.-H., Persson, P. O., and Wickström, L.: Synthesis of the bedrock geology in the Bergslagen region, Fennoscandian Shield, south-central Sweden, Geological Survey of Sweden, Ba58, 259 pp., ISBN 978-91-7158-883-8, 2009.
Wright, S. E., Foley, J. A., and Hughes, J. M.: Optimization of site occupancies in minerals using quadratic programming, Am. Mineral., 85, 524–531, https://doi.org/10.2138/am-2000-0414, 2000.
Short summary
Skogbyite, with the chemical formula Zr(Mg2+2Mn3+4)SiO12, is a new species in the braunite group of minerals. It was discovered in a complex mineral assemblage, essentially a very poor manganese ore, from the Långban Fe–Mn oxide deposit, Värmland County, Bergslagen ore province, Sweden. It is named after the Swedish mineralogist Henrik Skogby (b. 1956). It is a new mineral attesting to the localised mobility and reactivity of zirconium under very special geological conditions.
Skogbyite, with the chemical formula Zr(Mg2+2Mn3+4)SiO12, is a new species in the braunite group...