Articles | Volume 37, issue 2
https://doi.org/10.5194/ejm-37-191-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-37-191-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sulfide mineralogy of igneous basic rocks (ophites) from the external zone of the Betic Cordillera
Instituto Andaluz de Ciencias de la Tierra (IACT-CSIC), Avda. de las Palmeras 4, 18100 Armilla, Granada, Spain
Idael F. Blanco-Quintero
Departamento de Ciencias de la Tierra y del Medio Ambiente, Ciencias 3, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, 03690 Alicante, Spain
Lola Yesares
Departamento de Mineralogía y Petrología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, C/ José Antonio Novais,12, Ciudad Universitaria, 28040 Madrid, Spain
Claudio Marchesi
Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18002 Granada, Spain
Amira R. Ferreira
Instituto Andaluz de Ciencias de la Tierra (IACT-CSIC), Avda. de las Palmeras 4, 18100 Armilla, Granada, Spain
Igor González-Pérez
Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18002 Granada, Spain
Erwin Schettino
Institute of Geochemistry and Petrology, ETH Zürich, Clausiusstrasse 25, 8092 Zurich, Switzerland
Francisco Abel Jiménez Cantizano
Agencia de Medio Ambiente y Agua, Junta de Andalucía, C/Johan G. Gutenberg, 41092 Seville, Spain
Fernando Gervilla
Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18002 Granada, Spain
Related authors
Igor González-Pérez, José María González-Jiménez, Lola Yesares, Antonio Acosta-Vigil, Jordi Llopís, and Fernando Gervilla
Eur. J. Mineral., 36, 925–941, https://doi.org/10.5194/ejm-36-925-2024, https://doi.org/10.5194/ejm-36-925-2024, 2024
Short summary
Short summary
This study examines solid nano-inclusions in magnetite from the La Víbora magnesian skarn, Spain, revealing insights into mineral formation. We found two types of inclusions: representing fossilized skarn reactions and precipitated from supersaturated fluids. Nano-inclusions provide valuable clues about the Fe mineralization event, highlighting the significance of nano-inclusions in understanding geological processes and resource exploration.
Igor González-Pérez, José María González-Jiménez, Lola Yesares, Antonio Acosta-Vigil, Jordi Llopís, and Fernando Gervilla
Eur. J. Mineral., 36, 925–941, https://doi.org/10.5194/ejm-36-925-2024, https://doi.org/10.5194/ejm-36-925-2024, 2024
Short summary
Short summary
This study examines solid nano-inclusions in magnetite from the La Víbora magnesian skarn, Spain, revealing insights into mineral formation. We found two types of inclusions: representing fossilized skarn reactions and precipitated from supersaturated fluids. Nano-inclusions provide valuable clues about the Fe mineralization event, highlighting the significance of nano-inclusions in understanding geological processes and resource exploration.
Károly Hidas, Carlos J. Garrido, Guillermo Booth-Rea, Claudio Marchesi, Jean-Louis Bodinier, Jean-Marie Dautria, Amina Louni-Hacini, and Abla Azzouni-Sekkal
Solid Earth, 10, 1099–1121, https://doi.org/10.5194/se-10-1099-2019, https://doi.org/10.5194/se-10-1099-2019, 2019
Short summary
Short summary
Subduction-transform edge propagator (STEP) faults are the locus of continual lithospheric tearing at the edges of subducted slabs, resulting in sharp changes in the lithospheric thickness and triggering lateral and/or near-vertical mantle flow. Here, we study upper mantle rocks recovered from a STEP fault context by < 4 Ma alkali volcanism. We reconstruct how the microstructure developed during deformation and coupled melt–rock interaction, which are promoted by lithospheric tearing at depth.
Related subject area
Igneous petrology
Magmatic to solid-state evolution of a shallow emplaced agpaitic tinguaite (the Suc de Sara dyke, Velay volcanic province, France): implications for peralkaline melt segregation and extraction in ascending magmas
Granite magmatism and mantle filiation
Inclusions in magmatic zircon from Slavonian mountains (eastern Croatia): anatase, kumdykolite and kokchetavite and implications for the magmatic evolution
Confocal μ-XANES as a tool to analyze Fe oxidation state in heterogeneous samples: the case of melt inclusions in olivine from the Hekla volcano
Constraining the volatile evolution of mafic melts at Mt. Somma–Vesuvius, Italy, based on the composition of reheated melt inclusions and their olivine hosts
Contrasting appinites, vaugnerites and related granitoids from the NW Iberian Massif: insight into mantle and crustal sources
Reactive interaction between migmatite-related melt and mafic rocks: clues from the Variscan lower crust of Palmi (southwestern Calabria, Italy)
ICDP Oman Drilling Project: varitextured gabbros from the dike–gabbro transition within drill core GT3A
A snapshot of the transition from monogenetic volcanoes to composite volcanoes: case study on the Wulanhada Volcanic Field (northern China)
40Ar/39Ar dating of a hydrothermal pegmatitic buddingtonite–muscovite assemblage from Volyn, Ukraine
Geochronology of granites of the western Korosten AMCG complex (Ukrainian Shield): implications for the emplacement history and origin of miarolitic pegmatites
A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems
Quantification of major and trace elements in fluid inclusions and gas bubbles by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with no internal standard: a new method
New evidence for upper Permian crustal growth below Eifel, Germany, from mafic granulite xenoliths
Contaminating melt flow in magmatic peridotites from the lower continental crust (Rocca d'Argimonia sequence, Ivrea–Verbano Zone)
Thomas Pereira, Laurent Arbaret, Juan Andújar, Mickaël Laumonier, Monica Spagnoli, Charles Gumiaux, Gautier Laurent, Aneta Slodczyk, and Ida Di Carlo
Eur. J. Mineral., 36, 491–524, https://doi.org/10.5194/ejm-36-491-2024, https://doi.org/10.5194/ejm-36-491-2024, 2024
Short summary
Short summary
This work presents the results on deformation-enhanced melt segregation and extraction in a phonolitic magma emplaced at shallow depth in the Velay volcanic province (France). We provide evidence of the segregation and subsequent extraction of the residual melt during magma ascent and final emplacement. We highlight that melt segregation started by compaction as a loose packing of microlites emerged and continued with melt filling of a shear band network.
Michel Pichavant, Arnaud Villaros, Julie A.-S. Michaud, and Bruno Scaillet
Eur. J. Mineral., 36, 225–246, https://doi.org/10.5194/ejm-36-225-2024, https://doi.org/10.5194/ejm-36-225-2024, 2024
Short summary
Short summary
Models for the generation of silicic magmas are divided into two groups: intra-crustal melting and basaltic origin. Peraluminous felsic leucogranites are considered as the only granite examples showing no mantle input. This interpretation is re-evaluated, and we show that leucogranites, as most other crustal granite types, can have a mantle filiation. This stresses the critical importance of the mantle for granite generation and opens the way for unification of silicic magma generation models.
Petra Schneider and Dražen Balen
Eur. J. Mineral., 36, 209–223, https://doi.org/10.5194/ejm-36-209-2024, https://doi.org/10.5194/ejm-36-209-2024, 2024
Short summary
Short summary
The acid igneous rocks of eastern Croatia related to the Late Cretaceous closure of the Neotethys Ocean contain zircon as a main accessory mineral. Among others, zircon has inclusions of anatase, hematite and melt (nanogranitoids) with kokchetavite and kumdykolite. The first finding here of kokchetavite and kumdykolite in a magmatic nanogranitoid proves that these are not exclusively ultra-high pressure phases. The detected inclusions indicate rapid uplift and cooling of the oxidised magma.
Roman Botcharnikov, Max Wilke, Jan Garrevoet, Maxim Portnyagin, Kevin Klimm, Stephan Buhre, Stepan Krasheninnikov, Renat Almeev, Severine Moune, and Gerald Falkenberg
Eur. J. Mineral., 36, 195–208, https://doi.org/10.5194/ejm-36-195-2024, https://doi.org/10.5194/ejm-36-195-2024, 2024
Short summary
Short summary
The new spectroscopic method, based on the syncrotron radiation, allows for determination of Fe oxidation state in tiny objects or in heterogeneous samples. This technique is expected to be an important tool in geosciences unraveling redox conditions in rocks and magmas as well as in material sciences providing constraints on material properties.
Rosario Esposito, Daniele Redi, Leonid V. Danyushevsky, Andrey Gurenko, Benedetto De Vivo, Craig E. Manning, Robert J. Bodnar, Matthew Steele-MacInnis, and Maria-Luce Frezzotti
Eur. J. Mineral., 35, 921–948, https://doi.org/10.5194/ejm-35-921-2023, https://doi.org/10.5194/ejm-35-921-2023, 2023
Short summary
Short summary
Despite many articles published about eruptions at Mt. Somma–Vesuvius (SV), the volatile contents of magmas associated with mafic (quasi-primitive) melts were not directly analyzed for many eruptions based on melt inclusions (MIs). We suggest that several high-Fo olivines formed at depths greater than those of the carbonate platform based on MI chemical composition. We also estimated that 347 to 686 t d-1 of magmatic CO2 exsolved from SV magmas during the last 3 centuries of volcanic activity.
Gumer Galán, Gloria Gallastegui, Andrés Cuesta, Guillermo Corretgé, Ofelia Suárez, and Luis González-Menéndez
Eur. J. Mineral., 35, 845–871, https://doi.org/10.5194/ejm-35-845-2023, https://doi.org/10.5194/ejm-35-845-2023, 2023
Short summary
Short summary
Two examples of granites in the Variscan Iberian Massif were studied because they are associated with mafic rocks (appinites and vaugnerites), which raise the question of the role of mantle magma in the formation of granitic rocks. We conclude that appinites and vaugnerites derived from melting of different mantle sources, both previously modified by interaction with crustal materials. Subsequent differentiation of appinites and vaugnerites was influenced by contamination with coeval granites.
Maria Rosaria Renna
Eur. J. Mineral., 35, 1–24, https://doi.org/10.5194/ejm-35-1-2023, https://doi.org/10.5194/ejm-35-1-2023, 2023
Short summary
Short summary
Distribution of major and trace elements during anatexis at the source area was investigated in a portion of Variscan mid–lower crust exposed at Palmi (Calabria, Italy). Reactive migration of migmatitic melt imparted a mineralogical and chemical signature in mafic rocks associated with migmatites and promoted the crystallization of amphibole by a coupled dissolution–precipitation process. Amphibole and accessory allanite control the distribution of incompatible elements from the anatectic zone.
Artur Engelhardt, Jürgen Koepke, Chao Zhang, Dieter Garbe-Schönberg, and Ana Patrícia Jesus
Eur. J. Mineral., 34, 603–626, https://doi.org/10.5194/ejm-34-603-2022, https://doi.org/10.5194/ejm-34-603-2022, 2022
Short summary
Short summary
We present a detailed petrographic, microanalytical and bulk-chemical investigation of 36 mafic rocks from drill hole GT3A from the dike–gabbro transition zone. These varitextured gabbros are regarded as the frozen fillings of axial melt lenses. The oxide gabbros could be regarded as frozen melts, whereas the majority of the rocks, comprising olivine-bearing gabbros and gabbros, show a distinct cumulate character. Also, we present a formation scenario for the varitextured gabbros.
Diao Luo, Marc K. Reichow, Tong Hou, M. Santosh, Zhaochong Zhang, Meng Wang, Jingyi Qin, Daoming Yang, Ronghao Pan, Xudong Wang, François Holtz, and Roman Botcharnikov
Eur. J. Mineral., 34, 469–491, https://doi.org/10.5194/ejm-34-469-2022, https://doi.org/10.5194/ejm-34-469-2022, 2022
Short summary
Short summary
Volcanoes on Earth are divided into monogenetic and composite volcanoes based on edifice shape. Currently the evolution from monogenetic to composite volcanoes is poorly understood. There are two distinct magma chambers, with a deeper region at the Moho and a shallow mid-crustal zone in the Wulanhada Volcanic Field. The crustal magma chamber represents a snapshot of transition from monogenetic to composite volcanoes, which experience more complex magma processes than magma stored in the Moho.
Gerhard Franz, Masafumi Sudo, and Vladimir Khomenko
Eur. J. Mineral., 34, 7–18, https://doi.org/10.5194/ejm-34-7-2022, https://doi.org/10.5194/ejm-34-7-2022, 2022
Short summary
Short summary
The age of formation of buddingtonite, ammonium-bearing feldspar, can be dated with the Ar–Ar method; however, it may often give only minimum ages due to strong resetting. In the studied example it gives a Precambrian minimum age of fossils, associated with this occurrence, and the age of the accompanying mineral muscovite indicates an age near 1.5 Ga. We encourage more dating attempts of buddingtonite, which will give valuable information of diagenetic or hydrothermal events.
Leonid Shumlyanskyy, Gerhard Franz, Sarah Glynn, Oleksandr Mytrokhyn, Dmytro Voznyak, and Olena Bilan
Eur. J. Mineral., 33, 703–716, https://doi.org/10.5194/ejm-33-703-2021, https://doi.org/10.5194/ejm-33-703-2021, 2021
Short summary
Short summary
In the paper we discuss the origin of large chamber pegmatite bodies which contain giant gem-quality crystals of black quartz (morion), beryl, and topaz. We conclude that these pegmatites develop under the influence of later intrusions of mafic rocks that cause reheating of the partly crystallized granite massifs and that they supply a large amount of fluids that facilitate the
inflationof pegmatite chambers and crystallization of giant crystals of various minerals.
Xudong Wang, Tong Hou, Meng Wang, Chao Zhang, Zhaochong Zhang, Ronghao Pan, Felix Marxer, and Hongluo Zhang
Eur. J. Mineral., 33, 621–637, https://doi.org/10.5194/ejm-33-621-2021, https://doi.org/10.5194/ejm-33-621-2021, 2021
Short summary
Short summary
In this paper we calibrate a new empirical clinopyroxene-only thermobarometer based on new models. The new models show satisfying performance in both calibration and the test dataset compared with previous thermobarometers. Our new thermobarometer has been tested on natural clinopyroxenes in the Icelandic eruptions. The results show good agreement with experiments. Hence, it can be widely used to elucidate magma storage conditions.
Anastassia Y. Borisova, Stefano Salvi, German Velasquez, Guillaume Estrade, Aurelia Colin, and Sophie Gouy
Eur. J. Mineral., 33, 305–314, https://doi.org/10.5194/ejm-33-305-2021, https://doi.org/10.5194/ejm-33-305-2021, 2021
Short summary
Short summary
We developed a new method for quantifying elemental concentrations in natural and synthetic fluid inclusions and gas bubbles using a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method with no internal standard. The method may be applied to estimate trace (metal and metalloid) elemental concentrations in hydrous carbonic (C–O–H) fluid inclusions and bubbles with uncertainty below 25 %.
Cliff S. J. Shaw
Eur. J. Mineral., 33, 233–247, https://doi.org/10.5194/ejm-33-233-2021, https://doi.org/10.5194/ejm-33-233-2021, 2021
Short summary
Short summary
Volcanic activity in the West Eifel region of Germany over the past million years has brought many samples of the Earth's mantle and crust to the surface. The samples from this study are pieces of the deep crust that formed between 264 and 253 million years ago at a depth of ~ 30 km. Samples like these reveal how the Earth's crust has grown and been modified over time.
Marta Antonicelli, Riccardo Tribuzio, Tong Liu, and Fu-Yuan Wu
Eur. J. Mineral., 32, 587–612, https://doi.org/10.5194/ejm-32-587-2020, https://doi.org/10.5194/ejm-32-587-2020, 2020
Short summary
Short summary
We present a petrological–geochemical investigation of peridotites of magmatic origin from the Ivrea–Verbano Zone (Italian Alps), a large-scale section of lower continental crust. The main purpose is to provide new insights into the processes governing the evolution of primitive mantle magmas. We propose that studied peridotites were formed by reaction of a melt-poor olivine-rich crystal mush, or a pre-existing peridotite, with upward-migrating melts possessing a substantial crustal component.
Cited articles
Alt, J. C. and Shanks, W. C.: Sulfur in serpentinized oceanic peridotites: serpentinization processes and microbial sulfate reduction, J. Geophys. Res., 103, 9917–9929, https://doi.org/10.1016/j.gca.2021.04.017, 1998.
Alt, J. C., Shanks, W. C., Bach, W., Paulick, H., Garrido, C. J., and Baudoin, G.: Hydrothermal alteration and microbial sulfate reduction in peridotite and gabbro exposed by detachment faulting at the Mid-Atlantic Ridge, 15°20′ N (ODP Leg 209): a sulfur and oxygen isotope study, Geochem. Geophy. Geosys., 8, Q08002, https://doi.org/10.1029/2007GC001617, 2007.
Ballhaus, C., Tredoux, M., and Spaeth, A.: Phase relations in the Fe-Ni-Cu-PGE-S system at magmatic temperature and application to massive sulfide ores of the Sudbury Igneous Complex, J. Petrol., 42, 1911–1926, https://doi.org/10.1093/petrology/42.10.1911, 2001.
Benning, L. G., Wilkin, R. T., and Barnes, H. L.: Reaction pathways in the Fe–S system below 100 °C, Chem. Geol., 167, 25–51, https://doi.org/10.1016/S0009-2541(99)00198-9, 2000.
Blanco-Quintero, I. F., Martín-Algarra, A., Santamaría-Pérez, E., González-Jiménez, J. M., Navas, A. S., Benavente, D., Cañaveras, J. C., and Garcia-Casco, A.: Barrovian metamorphism in nominally lowermost Alpujarride Complex units: tectonic implications for the development of the orogenic wedge in the Western Mediterranean, Int. Geol. Rev., 66, 439–462, https://doi.org/10.1080/00206814.2023.2233102, 2024.
Blanks, D. E., Holwell, D. A., Fiorentini, M. L., Moroni, M., Giuliani, A., Tassara, S., González-Jiménez, J. M., and Boyce, A. J., Ferrari, E.: Fluxing of mantle carbon as a physical agent for metallogenic fertilization of the crust, Nat. Commun., 11, 1–11, https://doi.org/10.1038/s41467-020-18157-6, 2020.
Bonechi, B., Perinelli, C., Petrelli, M., Gaeta, M., Fabbrizio, A., and Strnad, L.: High pressure trace element partitioning between clinopyroxene and alkali basaltic melts, Geochim. Cosmochim. Ac., 305, 282–305, https://doi.org/10.1016/j.gca.2021.04.023, 2021.
Butler, I. B., Böttcher, M. E., Rickard, D., and Oldroyd, A.: Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathway: implications for the interpretation of sedimentary and hydrothermal pyrite isotope records, Earth Planet. Sc. Lett., 228, 495–509, https://doi.org/10.1016/j.epsl.2004.10.005, 2004.
Cabri, L. J.: New data on phase relations in the Cu-Fe-S system, Econ. Geol., 64, 443–454, https://doi.org/10.2113/gsecongeo.68.4.443, 1973.
Cooper, M. M. and Rickard, D.: Mechanism of chalcopyrite formation from iron monsulfides in aqueous solutions (< 100 °C, pH 2–4.5), Chem. Geol., 78, 325–342, https://doi.org/10.1016/0009-2541(89)90067-3, 1989.
Craig, J. R.: Pyrite-pentlandite assemblages and other low temperature relations in the Fe-Ni-S system, Am. J. Sci., 273, 496–510, 1973.
Craig, J. R. and Kullerud, G.: Phase relations in the Cu–Fe–Ni–S system and their application to magmatic ore deposits, Econ. Geol. Monogr., 4, 344–358, https://doi.org/10.5382/Mono.04.25, 1969.
Cox, K. G., Bell, J. D., and Pankhurst, R. J. (Eds.): The interpretation of the igneous rocks, Allen & Unwin, London, 450 pp., 1979.
Deditius, A. P., Utsunomiya, S., Reich, M., Kesler, S. E., Ewing, R. C., Hough, R. M., and Walshe, J. L.: Trace metal nanoparticles in pyrite, Ore Geol. Rev., 42, 32–46, https://doi.org/10.1016/j.oregeorev.2011.03.003, 2011.
Desmurs, L., Müntener, O., and Manatschal, G.: Onset of magmatic accretion within a magma-poor rifted margin: a case study from the Platta ocean-continent transition, eastern Switzerland, Contrib. Mineral. Petrol., 144, 365–382, https://doi.org/10.1007/s00410-002-0403-4, 2002.
De Villiers, J. P. R., Liles, D. C., and Becker, M.: The crystal structure of a naturally occurring 5C pyrrhotite from Sudbury, its chemistry, and vacancy distribution, Am. Mineral., 94, 1405–1410, https://doi.org/10.2138/am.2009.3081, 2009.
Díaz de Neira Sánchez, J. A., Enrile-Albir, A., Hernaiz-Huertas, P. P., and López-Olmedo, F.: Hoja Alcalá la Real (no. 990), Mapa Geológico de España 1:50 000, Segunda serie, I.G.M.E., Madrid, ISBN: 84-7840-112-1, 1988.
Ding, Y., Veblen, D. R., and Prewitt, C. T.: High-resolution transmission electron microscopy (HRTEM) study of the 4a and 6a superstructure of bornite Cu5FeS4, Am. Mineral., 90, 1256–1262, https://doi.org/10.2138/am.2005.1517, 2005a.
Ding, Y., Veblen, D. R., and Prewitt, C. T.: Possible Fe Cu ordering schemes in the 2a superstructure of bornite (Cu5FeS4), Am. Mineral., 90, 1265–1269, https://doi.org/10.2138/am.2005.1518, 2005b.
Djon, M. L. N. and Barnes, S. J.: Changes in sulfides and platinum-group minerals with the degree of alteration in the Roby, Twilight, and High-Grade Zones of the Lac des Iles Complex, Ontario, Canada, Mineral Depos., 47, 875–896, https://doi.org/10.1007/s00126-012-0401-z, 2012.
Durand, C. J., Barnes, S. J., and Corkery, J. T.: Geology, petrography, geochemistry, and genesis of sulfide-rich pods in the Lac des Iles palladium deposits, western Ontario, Canada, Mineral Depos., 51, 509–532, https://doi.org/10.1007/s00126-015-0622-z, 2016.
Etschmann, B. E., Liu, W., Testemale, D., Müller, H., Rae, N. A., and Proux, O.: An in situ XAS study of copper(I) transport as hydrosulfide complexes in hydrothermal solutions (25–592 °C, 180–600 bar): Speciation and solubility in vapor and liquid phases, Geochim. Cosmochim. Acta, 74, 4723–4739, https://doi.org/10.1016/j.gca.2010.05.013, 2010.
Farmer, G. L.: Continental Basaltic Rocks, in: Treatise on Geochemistry, Vol. 3, The Crust, edited by: Holland, H. D., Turekian, K. K., Elsevier, 85–121, https://doi.org/10.1016/B0-08-043751-6/03019-X, 2003.
Fleet, M. E. and Pan, Y.: Fractional crystallization of anhydrous sulfide liquid in the system Fe–Ni–Cu–S, with application to magmatic sulfide deposits, Geochim. Cosmochim. Ac., 58, 3369–3377, https://doi.org/10.1016/0016-7037(94)90092-2, 1994.
Ferrario, A. and Garuti, G.: Platinum-group mineral inclusions in chromitites of the Finero mafic-ultramafic complex (Ivrea-Zone, Italy), Mineral. Petrol., 41, 125–143, https://doi.org/10.1007/BF01168491, 1990.
Findlay, A. J., Estes, E. R., Gartman, A., Yücel, M., Kamyshny, A., and Luther III, G. W.: Iron and sulfide nanoparticle formation and transport in nascent hydrothermal vent plumes, Nat. Commun., 10, 1597, https://doi.org/10.1038/s41467-019-09580-5, 2019.
García de Domingo, A., González-Lasta, J., Hernaiz-Huertas, P. P., Zazo-Cardeña, C., and Goy-Goy, J. L.: Hoja Chiclana de la Frontera (no. 1069). Mapa Geológico de España E 1:50 000, Segunda serie, I.G.M.E., Madrid, M-10374-1991, 1983.
Gartman, A., Findlay, A. J., and Luther III, G. W.: Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions, Chem. Geol., 366, 32–41, https://doi.org/10.1016/j.chemgeo.2013.12.013, 2014.
González-Jiménez, J. M., Deditius, A., Gervilla, F., Reich, M., Suvorova, A., Roberts, M. P., Roqué, J., and Proenza, J. A.: Nanoscale partitioning of Ru, Ir, and Pt in base-metal sulfides from the Caridad chromite deposit, Cuba, Am. Mineral., 103, 1208–1220, https://doi.org/10.2138/am-2018-6424, 2018.
González-Jiménez, J. M., Proenza, J. A., Pastor-Oliete, M., Saunders, E., Aiglsperger, T., Pujol-Solà, N., Melgarejo, J. C., Gervilla, F., and García-Casco: Precious metals in magmatic Fe-Ni-Cu sulfides from the Potosí chromitite deposit, eastern Cuba, Ore Geol. Rev., 118, 103339, https://doi.org/10.1016/j.oregeorev.2020.103339, 2020.
González-Jiménez, J. M., González-Pérez, I., Plissart, G., Ferreira, A. R., Schettino, E., Yesares, L., Schilling, M. E., Corgne, A., and Gervilla, F.: Micron-to-nanoscale investigation of Cu-Fe-Ni sulfide inclusions within laurite (Ru, Os)S2 from chromitites, Mineral Depos., 60, 581–604, https://doi.org/10.1007/s00126-024-01285-0, 2024.
Gualtieri, A. and Venturelli, P.: In situ study of the goethite-hematite transformation by real time synchrotron powder diffraction, Am. Mineral., 84, 895–904, https://doi.org/10.2138/am-1999-5-625, 1999.
Guerrera, F., Martín-Martín, M., and Tramontana, M.: Evolutionary geological models of the central-western peri-Mediterranean chains: a review, Int. Geol. Rev., 128, 29–43, https://doi.org/10.1080/00206814.2019.1706056, 2021.
Helmy, H. M., Botcharnikov, R., Ballhaus, C., Deutsch-Semiltskaya, A., Wirth, R., Schreiber, A., Buhre, S., and Häger, T.: Evolution of magmatic sulfide liquids: how and when base metal sulfides crystallize?, Contrib. Miner. Petrol., 176, 107, https://doi.org/10.1007/s00410-021-01868-4, 2021.
Hernáiz Huertas, P. P., García de Domingo, A., González Lasta, J., Zazo Cardeña, C., and Goy Goy, J. L.: Hoja Alcalá de los Gazules (no. 1070). Mapa Geológico de España 1:50 000, Segunda serie, I.G.M.E., Madrid, M-10375-1991, 1984.
Holwell, D. A., Adeyemi, Z., Ward, L. A., Smith, D. J., Graham, S. D., McDonald, I., and Smith, J. W.: Low temperature alteration of magmatic Ni–Cu–PGE sulfides as a source for hydrothermal Ni and PGE ores: A quantitative approach using automated mineralogy, Ore Geol. Rev., 91, 718–740, https://doi.org/10.1016/j.oregeorev.2017.08.025, 2017.
Holness, M. B., Richardson C., and Helz, R. T.: Disequilibrium dihedral angles in dolerite sills: a new proxy for cooling rate, Geology, 40, 795–798, https://doi.org/10.1130/G33119.1, 2012.
Ihlenfeld, C. and Keays, R. R.: Crustal contamination and PGE mineralization in the Platreef, Bushveld Complex, South Africa: evidence for multiple contamination events and transport of magmatic sulphides, Mineral. Depos., 46, 813–832, https://doi.org/10.1007/s00126-011-0340-0, 2011.
Jochum, K. P., Weis, U., Schwager, B., Stoll, B., Wilson, S. A., Haug, G. H., Andreae, M. O., and Enzweiler, J.: Reference Values Following ISO Guidelines for Frequently Requested Rock Reference Materials, Geostand. Geoanal. Res., 40, 333–350, https://doi.org/10.1111/j.1751-908X.2015.00392.x, 2016.
Kanitpanyacharoen, W. and Boudreau, A. E.: Sulfide-associated mineral assemblages in the Bushveld Complex, South Africa: Platinum-group element enrichment by vapor refining by chloride-carbonate fluids, Mineral Depos., 48, 193–210, https://doi.org/10.1007/s00126-012-0427-2, 2012.
Kelly, D. P. and Vaughan, J. D.: Pyrrhotine-pentlandite ore textures: a mechanistic approach, Mineral. Mag., 47, 453–463, https://doi.org/10.1180/minmag.1983.047.345.06,1983.
Kihara, K.: An x-ray study of the temperature dependence of the quartz structure, Eur. J. Mineral., 2, 63–77, https://doi.org/10.1127/ejm/2/1/0063, 1990.
Kitakaze, A., Machida, T., and Komatsu, R.: Phase relations in the Fe-Ni-S system from 875 to 650 °C, Can. Mineral., 54, 1175–1186, https://doi.org/10.3749/canmin.1500087, 2016.
Klein, E. M.: Geochemistry of the Igneous Oceanic Crust, in: Treatise on Geochemistry, Vol. 3. The Crust, edited by: Holland, H. D. and Turekian, K. K., Elsevier, 433–463, https://doi.org/10.1016/B0-08-043751-6/03030-9, 2003.
Klemm, D. D.: Synthesen und Analysen in den Dreiecks diagrammen FeAsS–CoAsS–NiAsS und FeS2–CoS2–NiS2, Neues Jahrb. Mineral. Abh., 103, 205–255, 1965.
Knight, K. S., Marshall, W. G., and Zochowski, S. W.: The low temperature and high-pressure thermoelastic and structural properties of chalcopyrite, CuFeS2, Can. Mineral., 49, 1015–1034, https://doi.org/10.3749/canmin.49.4.1015, 2011.
Korneeva, A. A., Nekrylov, N., Kamenetsky, V. S., Portnyagin, M. V., Savelyev, D. P., Krasheninnikov, S. P., Abersteiner, A., Kamenetsky, M. B., Zelenski, M. E., Shcherbakov, V. D., and Botcharnikov, R. E.: Composition, crystallization conditions and genesis of sulfide-saturated parental melts of olivine-phyric rocks from Kamchatsky Mys (Kamchatka, Russia), Lithos, 370/371, 105657, https://doi.org/10.1016/j.lithos.2020.105657, 2020.
Kovalenko, V. I., Naumov, V. B., Girnis, A. V., Dorofeeva, V. A., and Yarmolyuk, V. V.: Average compositions of magmas and mantle sources of mid-ocean ridges and intraplate oceanic and continental settings estimated from the data on melt inclusions and quenched glasses of basalts, Petrology, 15, 335–368, https://doi.org/10.1134/S0869591107040029, 2007.
Kullerud, G. and Yoder, H. S.: Pyrite stability relations in the Fe-S system, Econom. Geol., 54, 533–572, https://doi.org/10.2113/gsecongeo.54.4.533, 1959.
Kullerud, G. and Yund, R. A.: The Ni-S system and related minerals, J. Petrol., 3, 126–175, https://doi.org/10.1093/petrology/3.1.126, 1962.
Kusebauch, C., Oelze, M., and Gleeson, S. A.: Partitioning of arsenic between hydrothermal fluid and pyrite during experimental siderite replacement, Chem. Geol., 500, 136–147, https://doi.org/10.1016/j.chemgeo.2018.09.027, 2018.
Li, C. and Ripley, E. M.: Sulfur Contents at Sulfide-Liquid or Anhydrite Saturation in Silicate Melts: Empirical Equations and Example Applications, Econ. Geol., 104, 405–412, https://doi.org/10.2113/gsecongeo.104.3.405, 2009.
Li, C., Barnes, S. J., Makovicky, E., Rose-Hansen, J., and Makovicky, M.: Partitioning of nickel, copper, iridium, rhodium platinum and palladium between monosulfide solid solution and sulfide liquid: effects of composition and temperature, Geochim. Cosmochim. Ac., 60, 1231–1238, https://doi.org/10.1016/0016-7037(96)00009-9, 1996.
Liu, K., Zhang, L., Guo, X., and Ni, H.: Effects of sulfide composition and melt H2O on sulfur content at sulfide saturation in basaltic melts, Chem. Geol., 559, 119913, https://doi.org/10.1016/j.chemgeo.2020.119913, 2021.
Mansur, E. T., Barnes, S. J., and Duran, C.: Textural and compositional evidence for the formation of pentlandite via peritectic reaction: implications for the distribution of highly siderophile elements, Geology, 47, 351–354, https://doi.org/10.1130/G45779.1, 2019.
Mansur, E. T., Barnes, S. J., and Filho, C. F. F.: The effects of post-cumulus alteration on the distribution of chalcophile elements in magmatic sulphide deposits and implications for the formation of low-S-high-PGE zones: The Luanga deposit, Carajás Mineral Province, Can. Mineral., 59, 1453–1484, https://doi.org/10.3749/canmin.2100018, 2021.
Mansur, E. T., Slagstad, T., Dare, S. A. S., and Sandstad, J. S.: Geology and sulphide geochemistry of the Ni-Cu-Co mineralisation of the Espedalen Complex, Norway: Constraints for the distribution of magmatic sulphides within a variably deformed anorthosite suite, Ore Geol. Rev., 161, 105666, https://doi.org/10.1016/j.oregeorev.2023.105666 , 2023.
Martín-Algarra, A.: Evolución geológica alpina del contacto entre las Zonas Internas y las Zonas Externas de la Cordillera Bética [Ph.D.], Universidad de Granada, Spain, 1171 pp., http://hdl.handle.net/10481/75699 (last access: 17 March 2025), 1987.
Marzoli, A., Renne, P. R., Piccirillo, E. M., Ernesto, M., Bellieni, G., and DeMin, A.: Extensive 200 million years old continental flood basalts from the Central Atlantic Magmatic Province, Science, 248, 616–618, https://doi.org/10.1126/science.284.5414.616, 1999.
McDonough, W. F. and Sun, S. S.: The composition of the Earth, Chem. Geol., 120, 223–253, https://doi.org/10.1016/0009-2541(94)00140-4, 1995.
McDonald, I. and Holwell, D. A.: Did lower zone magma conduits store PGE-rich sulfides that were later supplied to the Platreef?, S. Afr. J. Geol., 110, 611–616, 2007.
McDonald, I., Holwell, D. A., and Wesley, B.: Assessing the Potential Involvement of an Early Magma Staging Chamber in the Generation of the Platreef Ni-Cu-PGE Deposit in the Northern Limb of the Bushveld Complex: A Pilot Study of the Lower Zone Complex at Zwartfontein, Appl. Earth Sci., 118, 5–20, https://doi.org/10.1179/174327509X434902, 2009.
Morata, D.: Petrología y geoquímica de las ofitas de las zonas externas de las Cordilleras Béticas [Ph.D.], Instituto Andaluz de Geología Mediterránea, Spain, 342 pp., http://hdl.handle.net/10481/54267 (last access: 17 March 2025), 1993.
Morata, D. and Puga, E.: Los piroxenos de las doleritas triasicas de las Zonas Externas de las Cordilleras Beticas como indicadores petrogeneticos, Bol. Soc. Esp. Min., 15, 175–187, 1991.
Morata, D. and Puga, E.: Aluminium silicate xenocrystals in the “ophites” of the Subbetic Zone (Southern Spain), Schw. Mineral. Petr. Mitt., 72, 379–387, 1992.
Morata, D., Puga, E., and Aguirre, L.: Very low-grade metamorphism of Triassic dolerites from the Archidona region, Subbetic Cordillera, Spain, JGCP, 294, Davis, California (USA), abstract, 1992.
Morata, D., Puga, E., Demant, A., and Aguirre, L.: Geochemistry and tectonic setting of the “ophites” from the external zones of the Betic Cordilleras (southern Spain), Estud. Geol., 53, 107–120, 1997.
Morata, D., Aguirre, L., and Puga, E.: Na-metamorphic pyroxenes in low-grade metabasites from the External Zones of the Betic Cordilleras (Southern Spain): influence of rock-chemical composition on their formation, Rev. Soc. Geol. Chile, 21, 3–17, 1994.
Morimoto, N., Nakazawa, H., Nishiguchi, K., and Tokonami, M.: Pyrrhotites: Stoichiometric compounds with composition Fen−1Sn (n≥8), Science, 168, 964–966, https://doi.org/10.1126/science.168.3934.964, 1970.
Morimoto, N., Fabries, J., Ferguson, A. K., Ginzburg, I. V., Ross, M., Seifert, F. A., Zussman, J., Aoki, K., and Gottardi, G.: Nomenclature of pyroxenes, Am. Mineral., 73, 1123–1133, 1988.
Mountain, B. W. and Seward, T. M.: Hydrosulfide/sulfide complexes of copper(I): Experimental confirmation of the stoichiometry and stability of Cu(HS)2 at temperatures, Geochim. Cosmochim. Ac., 67, 3005–3014, https://doi.org/10.1016/S0016-7037(03)00303-X, 2003.
Mungall, J., Andrews, D. R., Cabri, L. J., Sylvester, P., and Rubrett, M.: Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide under controlled oxygen and sulfur fugacities, Geochim. Cosmochim. Ac., 69, 4349–4360, https://doi.org/10.1016/j.gca.2004.11.025, 2005.
Mungall, J., Brenan, J. M., Godel, B., Barnes, S. J., and Gaillard, F.: Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles, Nat. Geosci., 8, 216–219, https://doi.org/10.1038/ngeo2373, 2015.
Murowchick, J. B.: Marcasite inversion and the petrographic determination of pyrite ancestry, Econ. Geol., 87, 1141–1152, https://doi.org/10.2113/gsecongeo.87.4.1141, 1992.
Nagai, T., Kagai, H., and Yamanaka, T.: Variation of hydrogen bonded O…O distances in goethite at high pressure, Am. Mineral., 88, 1423–1427, https://doi.org/10.2138/am-2003-1005, 2003.
Naldrett, A. J.: Magmatic sulfide deposits: Geology, Geochemistry and Exploration, https://doi.org/10.1007/978-3-662-08444-1, 2004.
Naldrett, A. J. and Kullerud, G.: A study of the Strathcona mine and its bearing on the origin of nickel-copper ores of the Sudbury district, Ontario, J. Petrol., 8, 453–531, https://doi.org/10.1093/petrology/8.3.453, 1967.
Naldrett, A. J., Craig, J. R., and Kullerud, G.: The central portion of the Fe–Ni–S system and its bearing on pentlandite exsolution in iron nickel sulfide ores, Econ. Geol., 62, 826–847, https://doi.org/10.2113/gsecongeo.62.6.826, 1967.
Naldrett, A. J., Lehmann, J., and Augé, T.: Spinel non-stoichiometry and reactions between chromite and closely associated sulphides, with examples from ophiolite complexes, in: Magmatic Sulphides – The Zimbabwe volume, edited by: M. D. Predergast, J. Jones, The Institution of Mining and Metallurgy, London, 221–227, https://doi.org/10.3749/canmin.49.6.1571, 1989.
Naldrett, A. J., Kinnaird, J., Wilson, A., Yudovskaya, M., McQuade, S., Chunnett, G., and Stanley, C.: Chromite composition and PGE content of Buhsveld chromitites: Part 1 – the lower and middle groups, Trans.-Inst. Min. Metall., Sect. C, 118, 131–161, 2009.
Neyedley, K., Hanley, J. J., Falck, H., Bodnar, R. J., Fedele, L., Fayek, M., and Sharpe, R.: Sulfide melt inclusions associated with magmatic Ni-Cu-platinum-group element (PGE) mineralization in the Caribou Lake Gabbro, Blatchford Lake intrusive suite, Northwest Territories, Canada, Ore Geol. Rev., 107, 513–531, https://doi.org/10.1016/j.oregeorev.2019.02.009, 2019.
Norman, M., Garcia, M. O., and Pietruszka, A. J.: Trace-element distribution coefficients for pyroxenes, plagioclase, and olivine in evolved tholeiites from the 1955 eruption of Kilauea Volcano, Hawaii, and petrogenesis of differentiated rift-zone lavas, Am. Mineral., 90, 888–899, https://doi.org/10.2138/am.2005.1780, 2005.
Nowack, E., Schwarzenbach, D., Gonschorek, W., and Hahn, T.: Deformationsdichten in CoS2 und NiS2 mit pyritstruktur, Z. Kristallogr., 186, 213–215, 1989.
Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J.: Iolite: Freeware for the visualisation and processing of mass spectrometry data, J. Anal. Atom. Spectrom., 26, 2508–2518, https://doi.org/10.1039/C1JA10172B2011.
Peregoedova, A. V. and Ohnenstetter, M.: Collectors of Pt, Pd and Rh in a S-poor Fe–Ni–Cu–sulfide system at 760 °C: experimental data and application to ore deposits, Can. Mineral., 40, 527–561, https://doi.org/10.2113/gscanmin.40.2.527, 2002.
Pérez-López, A., Cambeses, A., Pérez-Valera, F., and Götz, A. E.: Rhaetian tectono-magmatic evolution of the Central Atlantic Magmatic Province volcanism in the Betic Cordillera, South Iberia, Lithos, 396–397, 106230, https://doi.org/10.1016/j.lithos.2021.106230, 2021.
Pérez-López, A. and Pérez-Valera, F.: Palaeogeography, facies and nomenclature of the Triassic units in the different domains of the Betic Cordillera (S Spain), Palaeogeogr. Palaeocl., 254, 606–626, https://doi.org/10.1016/j.palaeo.2007.07.012, 2007.
Pérez-Valera, F. and Pérez-López, A.: Stratigraphy and sedimentology of Muschelkalk carbonates of the Southern Iberian Continental Palaeomargin (Siles and Cehegín Formations, Southern Spain), Facies, 54, 61–87, https://doi.org/10.1007/s10347-007-0125-1, 2008.
Pérez-Valera, F., Sánchez-Gómez, M., Pérez-López, A., and Pérez-Valera, L. A.: An evaporite-bearing accretionary complex in the northern front of the Betic-Rif orogeny, Tectonics, 36, 1006–1036, https://doi.org/10.1002/2016TC004414, 2017.
Piña, R. (Eds.): The Ni-Cu-(PGE) Aguablanca Ore Deposit (SW Spain), Springer Briefs in World Mineral Deposits, 78 pp., https://doi.org/10.1007/978-3-319-93154-8, 2019.
Piña, R., Gervilla, F., Barnes, S. J., Ortega, L., and Lunar, R.: Platinum group elements–bearing pyrite from the Aguablanca Ni–Cu sulphide deposit (SW Spain): a LA–ICP–MS study, Eur. J. Mineral., 25, 241–252, https://doi.org/10.1127/0935-1221/2013/0025-2290, 2013.
Pokrovski, G. S., Blanchard, M., Saunier, G., and Poitrasson, F.: Mechanisms and rates of pyrite formation from hydrothermal fluid revealed by iron isotopes, Geochim. Cosmochim. Ac., 304, 281–304, https://doi.org/10.1016/j.gca.2021.03.006 ,2021.
Portugal-Ferreira, M., Morata, D., Puga, E., Demant, A., and Aguirre, L.: Evolución geoquímica y temporal del magmatismo básico mesozoico en las Zonas Externas de las Cordilleras Béticas, Estud. Geol., 51, 109–118, https://doi.org/10.3989/egeol, 1995.
Powell, A. V., Vaqueiro, P., Knight, K. S., Chapon, L. C., and Sanchez, R. D.: Structure and magnetism in synthetic pyrrhotite Fe7S8: A powder neutron-diffraction study, Phys. Rev. B, 70, 014415-12, https://doi.org/10.1103/PhysRevB.70.014415, 2004.
Puga, E., Morten, L., Bondi, M., Bargossi, J., and Ruiz-Cruz, M. D., Díaz de Federico, A.: Metamorphosed “ophites” from the Archidona region, Subbetic Zone (Spain), Estudios Geol., 39, 307–317, 1983.
Puga, E., Van de Fliert, J. R., Torres Roldan, R. L., and Sanz de Galdeano, C.: Attempts of whole-rock K Ar dating of Mesozoic volcanic and hypabissal igneous rocks from the Central Subbetic (Southern Spain): A case of differential Argon loss related to very low-grade metamorphism, Estud. Geol., 44, 47–59, https://doi.org/10.3989/egeol.88441-2523, 1988.
Puga, E., Díaz de Federico, A., Fanning, C. M., Nieto, J. M., Rodríguez Martínez-Conde, A. J., Díaz-Puga, M. A., Lozano, J. A., Bianchini, G., Natali, C., and Beccaluva, L.: The Betic Ophiolites and the Mesozoic Evolution of the Western Tethys, Geosciences, 7, 31, https://doi.org/10.3390/geosciences7020031, 2017.
Qian, G., Xia, F., Brugger, J., Skinner, W. M., Bei, J., Chen, G., and Pring, A.: Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms, Am. Mineral., 96, 1878–1893, https://doi.org/10.2138/am.2011.3691, 2011.
Rajamani, V. and Prewitt, C. T.: Crystal chemistry of natural pentlandites, Can. Mineral., 12, 178–187, 1973.
Ray, D., Mevel, C., and Banerjee, R.: Hydrothermal alteration studies of gabbros from Northern Central Indian Ridge and their geodynamic implications, J. Earth Syst. Sci., 118, 659–676, https://doi.org/10.1007/s12040-009-0055-0, 2009.
Rickard, D. and Cowper, M.: Kinetics and mechanism of chalcopyrite formation from Fe(II) disulphide in aqueous solution (< 200 °C), Geochim. Cosmochim. Ac., 58, 3795–3802, https://doi.org/10.1016/0016-7037(94)90364-6, 1994.
Rickard, D. and Luther, G. W. III: Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions Between 25 and 125 °C: The rate equation, Geochim. Cosmochim. Ac., 61, 115–134, https://doi.org/10.1016/S0016-7037(96)00322-5, 1997.
Rickard, D. and Luther III, G. W.: Chemistry of iron sulfides, Chem. Rev., 107, 514–522, 2007.
Rieder, M., Crelling, J. C., Sustai, O., Drabek, M., Weiss, Z., and Klementova, M.: Arsenic in iron disulfides in a brown coal from the North Bohemian Basin, Czech Republic, International J. Coal Geol., 71, 115–121, https://doi.org/10.1016/j.coal.2006.07.003, 2007.
Ripley, E. M. and Li, C.: Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni–Cu–(PGE) ore genesis?, Econ. Geol., 108, 45–58, https://doi.org/10.2113/econgeo.108.1.45, 2013.
Rodríguez-Cañero, R., Jabaloy-Sánchez, A., Navas-Parejo, P., and Martín-Algarra, A.: Linking Palaeozoic palaeogeography of the Betic cordillera to the Variscan Iberian Massif: new insight through the first conodonts of the Nevado-Filábride complex, Int. J. Earth Sci., 107, 1791–1806, https://doi.org/10.1007/s00531-017-1572-8, 2018.
Rosembaum, G., Listor, G., and Duboz, C.: Reconstruction of the tectonic evolution of the Western Mediterranean since the Oligocene, J. Virt. Explor.,. 8, 107–130, https://doi.org/10.3809/jvirtex.2002.00053, 2002.
Sanz de Galdeano, C., El Kadiri, K., Simancas, F., Rachid, H., López-Garrido, A. C., El Mrihi, A., and Chalouan, A.: Paleogeographical reconstruction of the Malaguide-Ghomaride Complex (Internal Betic-Rifian Zone) based on Carboniferous granitoid pebble provenance, Geol. Carpath., 57, 327–336, 2006.
Schmid-Beurmann, P. and Lottermoser, W.: 57Fe-Moessbauer spectra, electronic and crystal structure of members of the CuS2-FeS2 solid solution series, Phys. Chem. Mineral., 19, 571–577, https://doi.org/10.1007/BF00203056, 1993.
Seat, Z., Beresford, S. W., Grguric, B. A., Gee, M. A. M., and Grassineau, N. V.: Reevaluation of the role of external sulfur addition in the genesis of Ni-Cu-PGE deposits: Evidence from the Nebo-Babel Ni-Cu-PGE deposit, West Musgrave, Western Australia, Econ. Geol., 104, 521–538, https://doi.org/10.2113/gsecongeo.104.4.521, 2009.
Smith, J., Graziane, R., Petts, D. C., and Regis, D.: Crystallographic controlled exsolution and metal partitioning in magmatic sulfide deposits, Chemistry, 83, 125954, https://doi.org/10.1016/j.chemer.2023.125954, 2023.
Sugaki, A. and Kitakaze, A.: High form of pentlandite and its thermal stability, Am. Mineral., 83, 133–140, https://doi.org/10.2138/am-1998-1-213, 1998.
Sun, S. S. and McDonough, W. F.: Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in: Magmatism in the Ocean Basins, Geological Society of London Special Publications, edited by: Saunders, A. D. and Norry, M. J., 313–345, https://doi.org/10.1144/GSL.SP.1989.042.01.19, 1989.
Sun, Z., Xion, X., Wang, J., Liu, X., Ruan, L., Zhang, L., and Takakashi, E.: Sulfur abundance and heterogeneity in the MORB mantle estimated by copper partitioning and sulfur solubility modelling, Earth Planet. Sc. Lett., 538, 116169, https://doi.org/10.1016/j.epsl.2020.116169, 2020.
Tenailleau, C., Pring, A., Etschmann, B., Brugger, J., and Studer, A.: Transformation of pentlandite to violarite under mild hydrothermal conditions, Am. Mineral., 91, 706–709, https://doi.org/10.2138/am.2006.2131, 2006.
Tsujimura, T. and Kitakaze, A.: New Phase Relations in the Cu–Fe–S System at 800 °C; constraint of fractional crystallization of a sulfide liquid, Neues Jahr Mineral. Monatsh., 10, 433–444, https://doi.org/10.1127/0028-3649/2004/2004-0433, 2004.
Tsukimura, K., Nakazawa, H., Endo, T., and Fukunaga, O.: Cation distribution in Pentlandites (Fe,Ni)9S8: dependence of pressure and temperature and kinetics of the cation exchange reaction, Phys. Chem. Miner., 19, 203–212, https://doi.org/10.1007/BF00202309, 1992.
Vera, J. A. (Eds.): Geología de España, Sociedad Geológica de España e Instituto Geológico y Minero de España, Madrid, ISBN 84-7840-546-1, 2004.
Waal, S. A.: Experimental simulation of the supergene reaction: pyrrhotite → marcasite + Fe3+ + electrons, Trans. Geol. Soc. S. Afr., 87, 273–279, 1984.
Wang, H. and Salveson, I.: A review on the mineral chemistry of the nonstoichiometric iron sulphide, Fe1−xS ( ): polymorphs, phase relations and transitions, electronic and magnetic structures, Phase Trans., 78, 547–567, https://doi.org/10.1080/01411590500185542, 2005.
Wang, H., Pring, A., Ngothai, Y., and O'Neill, B.: The kinetics of the α→β transition in synthetic nickel monosulfide, Am. Mineral., 91, 171–181, https://doi.org/10.2138/am.2006.1962, 2006.
Wang, S. M., Wu, C. Z., Muntar, M. N., Lei, R. X., and Brzozowski, M. J.: Mobilization of ore-forming metals during post-magmatic hydrothermal overprinting of the Huangshandong Ni–Cu sulfide deposit, Eastern Tianshan, NW China, Ore Geol. Rev., 137, 104315, https://doi.org/10.1016/j.oregeorev.2021.104315, 2021.
Winchester, J. A. and Floyd, P. A.: Geochemical discrimination of different magma series and their differentiation products using immobile elements, Chem. Geol. J., 20, 325–343, https://doi.org/10.1016/0009-2541(77)90057-2, 1977.
Xia, F., Brugger, J., Chen, G. R., Ngothai, Y., O'Neill, B., Putnis, A., and Pring, A.: Mechanism and kinetics of pseudomorphic mineral replacement reactions: A case study of the replacement of pentlandite by violarite, Geochim. Cosmochim. Ac., 73, 1945–1969, https://doi.org/10.1016/j.gca.2009.01.007, 2009a.
Yao, X., Xia, F., Deditius, A. P., Brugger, J., Etschmann, B. E., and Pearce, M. A.: The Mechanism and Kinetics of the Transformation from Marcasite to Pyrite: In Situ and Ex Situ Experiments and Geological Implications, Contrib. Mineral. Petrol., 175, 27, https://doi.org/10.1007/s00410-020-1665-4, 2020.
Yao, X., Xia, F., Brugger, J., Kartal, M., and Adegoke, I. A.: Rapid Marcasite to Pyrite Transformation in Acidic Low-Temperature Hydrothermal Fluids and Saturation Index Control on FeS2 Precipitation Dynamics and Phase Selection, ACS Earth Space Chem., 5, 2453–2465, https://doi.org/10.1021/acsearthspacechem.1c00137, 2021.
Yücel, M., Gartman, A., Chan, C., and Luther III, G. W.: Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean, Nat. Geosci., 4, 367–371, https://doi.org/10.1038/ngeo1148, 2011.
Yund, R. A. and Kullerud, G.: Thermal stability of assemblages in the Cu-Fe-S system, J. Petrol., 7, 454–488, https://doi.org/10.1093/petrology/7.3.454, 1966.
Zhang, Y., Li, W., Cai, Y., Qu, Y., Pan, Y., Zhang, W., and Zhao, K.: Experimental investigation of the reactions between pyrite and aqueous Cu(I) chloride solution at 100–250 °C, Geochim. Cosmochim. Ac., 298, 1–20, https://doi.org/10.1016/j.gca.2021.01.018, 2021.
Short summary
More than 2000 outcrops of igneous mafic rocks with ages spanning the Triassic to Cretaceous are widespread in the internal and external zones of the Betic Cordillera. This magmatism originated by continental rifting is of great interest as a potential resource for Ni, Cu and Co. However, to date, the sulfide mineralogy of these metals is still unknown.
More than 2000 outcrops of igneous mafic rocks with ages spanning the Triassic to Cretaceous are...