Articles | Volume 36, issue 5
https://doi.org/10.5194/ejm-36-797-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-36-797-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Crystal chemistry of K-tourmalines from the Kumdy-Kol microdiamond deposit, Kokchetav Massif, Kazakhstan
Beatrice Celata
CORRESPONDING AUTHOR
Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
Department of Energy Technologies and Renewable Sources, ENEA Casaccia Research Center, S. Maria di Galeria, 00123 Rome, Italy
Ferdinando Bosi
CORRESPONDING AUTHOR
Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
Kira A. Musiyachenko
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences (RAS), Novosibirsk, Russian Federation
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, V6T, Canada
Andrey V. Korsakov
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences (RAS), Novosibirsk, Russian Federation
Giovanni B. Andreozzi
Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
Related authors
No articles found.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 917–923, https://doi.org/10.5194/ejm-36-917-2024, https://doi.org/10.5194/ejm-36-917-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 599–604, https://doi.org/10.5194/ejm-36-599-2024, https://doi.org/10.5194/ejm-36-599-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 525–528, https://doi.org/10.5194/ejm-36-525-2024, https://doi.org/10.5194/ejm-36-525-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 361–367, https://doi.org/10.5194/ejm-36-361-2024, https://doi.org/10.5194/ejm-36-361-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 36, 165–172, https://doi.org/10.5194/ejm-36-165-2024, https://doi.org/10.5194/ejm-36-165-2024, 2024
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 1073–1078, https://doi.org/10.5194/ejm-35-1073-2023, https://doi.org/10.5194/ejm-35-1073-2023, 2023
Daniel Atencio, Andrezza A. Azzi, Kai Qu, Ritsuro Miyawaki, Ferdinando Bosi, and Koichi Momma
Eur. J. Mineral., 35, 1027–1030, https://doi.org/10.5194/ejm-35-1027-2023, https://doi.org/10.5194/ejm-35-1027-2023, 2023
Short summary
Short summary
This article introduces a new nomenclature system for the cerite group minerals. This system was necessary to allow the nomenclature of new species of minerals that are currently being described.
Ian E. Grey, Stephanie Boer, Colin M. MacRae, Nicholas C. Wilson, William G. Mumme, and Ferdinando Bosi
Eur. J. Mineral., 35, 909–919, https://doi.org/10.5194/ejm-35-909-2023, https://doi.org/10.5194/ejm-35-909-2023, 2023
Short summary
Short summary
The paper describes the formal establishment of the paulkerrite group of minerals and its nomenclature. It includes the application of a site-merging procedure, coupled with a site-total-charge analysis, to obtain unambiguous end-member formulae. Application of the procedure has resulted in the revision of the end-member formulae for several of the group members.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 891–895, https://doi.org/10.5194/ejm-35-891-2023, https://doi.org/10.5194/ejm-35-891-2023, 2023
Alessandra Altieri, Federico Pezzotta, Giovanni B. Andreozzi, Henrik Skogby, and Ferdinando Bosi
Eur. J. Mineral., 35, 755–771, https://doi.org/10.5194/ejm-35-755-2023, https://doi.org/10.5194/ejm-35-755-2023, 2023
Short summary
Short summary
Elba tourmaline crystals commonly display a sharp transition to dark colors at the analogous termination, but the mechanisms leading to the formation of such terminations are unclear. Here we propose a general genetic model in which, as a consequence of a pocket rupture event, chemical alteration of early formed Fe-/Mn-rich minerals in the enclosing pegmatite was responsible for the release of Fe and/or Mn in the geochemical system, allowing the formation of the late-stage dark terminations.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 659–664, https://doi.org/10.5194/ejm-35-659-2023, https://doi.org/10.5194/ejm-35-659-2023, 2023
Ross J. Angel, Mattia L. Mazzucchelli, Kira A. Musiyachenko, Fabrizio Nestola, and Matteo Alvaro
Eur. J. Mineral., 35, 461–478, https://doi.org/10.5194/ejm-35-461-2023, https://doi.org/10.5194/ejm-35-461-2023, 2023
Short summary
Short summary
We have developed the thermodynamic theory of the properties of inclusions consisting of more than one phase, including inclusions containing solids plus a fluid. We present a software utility that enables for the first time the entrapment conditions of multiphase inclusions to be determined from the measurement of their internal pressure when that is measured in a laboratory.
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 397–402, https://doi.org/10.5194/ejm-35-397-2023, https://doi.org/10.5194/ejm-35-397-2023, 2023
Ferdinando Bosi, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 285–293, https://doi.org/10.5194/ejm-35-285-2023, https://doi.org/10.5194/ejm-35-285-2023, 2023
Cristian Biagioni, Ferdinando Bosi, Daniela Mauro, Henrik Skogby, Andrea Dini, and Federica Zaccarini
Eur. J. Mineral., 35, 81–94, https://doi.org/10.5194/ejm-35-81-2023, https://doi.org/10.5194/ejm-35-81-2023, 2023
Short summary
Short summary
Dutrowite is the first tourmaline supergroup minerals having Ti as a species-defining chemical constituent. Its finding improves our knowledge on the crystal chemistry of this important mineral group and allows us to achieve a better picture of the mechanisms favouring the incorporation of Ti.
Ferdinando Bosi, Ritsuro Miyawaki, Frédéric Hatert, Marco Pasero, and Stuart J. Mills
Eur. J. Mineral., 35, 75–79, https://doi.org/10.5194/ejm-35-75-2023, https://doi.org/10.5194/ejm-35-75-2023, 2023
Related subject area
X-ray and mineral structure
Atomic-scale environment of niobium in ore minerals as revealed by XANES and EXAFS at the Nb K-edge
Structural and compositional data for childrenite from the Homolka granite, Czech Republic
Bobtraillite from Gejiu hyperagpaitic nepheline syenite, southwestern China: new occurrence and crystal structure
Iron oxide inclusions and exsolution textures of rainbow lattice sunstone
Contribution to the crystal chemistry of lead-antimony sulfosalts: systematic Pb-versus-Sb crossed substitution in the plagionite homologous series, Pb2N − 1(Pb1 − xSbx)2(Sb1 − xPbx)2Sb6S13+2N
Structural study of decrespignyite-(Y), a complex yttrium rare earth copper carbonate chloride, by three-dimensional electron and synchrotron powder diffraction
Mullite-2c – a natural polytype of mullite
Quentin Bollaert, Mathieu Chassé, Guillaume Morin, Benoît Baptiste, Alexandra Courtin, Laurence Galoisy, Gautier Landrot, Cécile Quantin, and Georges Calas
Eur. J. Mineral., 36, 55–72, https://doi.org/10.5194/ejm-36-55-2024, https://doi.org/10.5194/ejm-36-55-2024, 2024
Short summary
Short summary
X-ray absorption spectroscopy (XAS) was successfully used to investigate the atomic-scale environment of niobium (Nb) in ore minerals and Nb-doped compounds of technological importance. The demonstrated sensitivity of this technique to Nb minerals could help decipher Nb speciation in mining contexts such as hydrothermal and lateritic deposits and rationalize the origin of the enhanced physico-chemical properties of Nb-doped materials.
Jonas Toupal, Daniela Mauro, Cristian Biagioni, Federica Zaccarini, and Reto Gieré
Eur. J. Mineral., 36, 1–10, https://doi.org/10.5194/ejm-36-1-2024, https://doi.org/10.5194/ejm-36-1-2024, 2024
Short summary
Short summary
In this work, we refine the crystal structure of childrenite. Additionally, we provide compositional data to substantially extend the published solid-solution series between childrenite and eosphorite, the Fe and Mn endmembers, respectively. We analyze the valence state of iron to avoid erroneous classification of ernstite or potential discovery of "oxychildrenite", a mineral species not yet confirmed to be stable in nature.
Yanjuan Wang, Fabrizio Nestola, Zengqian Hou, Xiangping Gu, Guochen Dong, Zhusen Yang, Guang Fan, Zhibin Xiao, and Kai Qu
Eur. J. Mineral., 35, 65–74, https://doi.org/10.5194/ejm-35-65-2023, https://doi.org/10.5194/ejm-35-65-2023, 2023
Short summary
Short summary
Bobtraillite is an extremely rare cyclosilicate with a unique composition and complex structure. In this paper, we describe the second occurrence of the extremely rare complex zirconium silicate. The results suggest that the ideal formula of bobtraillite could be written as (Na, □)12(□, Na)12Sr12Zr14(Si3O9)10[Si2BO7(OH)2]6·12H2O.
Shiyun Jin, Ziyin Sun, and Aaron C. Palke
Eur. J. Mineral., 34, 183–200, https://doi.org/10.5194/ejm-34-183-2022, https://doi.org/10.5194/ejm-34-183-2022, 2022
Short summary
Short summary
The inclusions and exsolution lamellae in rainbow lattice sunstone (RLS) are studied using microscopic observations, chemical analyses and single-crystal X-ray diffraction. Complicated processes producing the aventurescence and adularescence effect in RLS are revealed through the spatial relationship among the inclusions and exsolution lamellae, as well as the unique ordering pattern in the feldspar structures.
Yves Moëlo and Cristian Biagioni
Eur. J. Mineral., 32, 623–635, https://doi.org/10.5194/ejm-32-623-2020, https://doi.org/10.5194/ejm-32-623-2020, 2020
Short summary
Short summary
The plagionite group is a family of complex sulfides (
lead-antimony sulfosalts) encountered in various Pb-Cu-Zn ore deposits. Analysis of these crystal structures confirms a systematic Pb-versus-Sb substitution in two adjacent cation positions. Such a substitution varies according not only to the Pb / Sb ratio of each member but also, apparently, to the kinetics of crystallization. Re-examination of a Pb-free synthetic derivative permitted its redefinition as a Na-Sb sulfosalt.
Jordi Rius, Fernando Colombo, Oriol Vallcorba, Xavier Torrelles, Mauro Gemmi, and Enrico Mugnaioli
Eur. J. Mineral., 32, 545–555, https://doi.org/10.5194/ejm-32-545-2020, https://doi.org/10.5194/ejm-32-545-2020, 2020
Short summary
Short summary
The crystal structure of the mineral decrespignyite-(Y) from the Paratoo copper mine (South Australia) has been obtained by applying δ recycling direct methods to 3D electron diffraction data followed by Rietveld refinements of synchrotron powder diffraction data. Its structure mainly shows a metal layer sequence of polyhedra interconnecting hexanuclear (octahedral) oxo-hydroxo yttrium clusters along a ternary axis or tilted clusters to hetero-tetranuclear ones hosting Cu, Y and rare earths.
Stephan Lenz, Johannes Birkenstock, Lennart A. Fischer, Hartmut Schneider, and Reinhard X. Fischer
Eur. J. Mineral., 32, 235–249, https://doi.org/10.5194/ejm-32-235-2020, https://doi.org/10.5194/ejm-32-235-2020, 2020
Short summary
Short summary
A mineral from Ettringer Bellerberg (Eifel, Germany) proved to be a polytype of the important ceramic-phase mullite termed mullite-2c, with – similar to sillimanite – doubling of the c lattice parameter due to strong (Si,Al) order in tetrahedral diclusters and – similar to mullite – presence of oxygen vacancies and tetrahedral triclusters due to Al / Si > 1 in diclusters. Crystals were characterised using single-crystal XRD, electron microprobe
analysis (EMPA) and spindle-stage optical methods.
Cited articles
Bačík, P. and Fridrichová, J.: Cation partitioning among crystallographic sites based on bond-length constraints in tourmaline-supergroup minerals, Am. Mineral., 106, 851–861, 2021.
Bačík, P., Uher, P., Sykora, M., and Lipka, J.: Low-Al tourmalines of the schorl – dravite – povondraite series in redeposited tourmalinites from the Western Carpathians, Slovakia, Canad. Mineral., 46, 1117–1129, 2008.
Balić-Žunić, T.: Use of three-dimensional parameters in the analysis of crystal structures under compression, in: Pressure-Induced Phase Transitions, edited by: Grzechnik, A., Transworld Research Network, Trivandrum, Kerela, India, 157–184, 2007.
Balić-Žunić, T. and Makovicky, E.: Determination of the Centroid or “the Best Centre” of a Coordination Polyhedron, Acta Crystallogr. B, 52, 78–81, 1996.
Barton Jr., R.: Refinement of the crystal structure of buergerite and the absolute orientation of tourmalines, Acta Crystallogr. B, 25, 1524–1533, 1969.
Berryman, E. J., Wunder, B., and Rhede, D.: Synthesis of K-dominant tourmaline, Am. Mineral. 99, 539–542, 2014.
Berryman, E. J., Wunder, B., Wirth, R., Rhede, D., Schettler, G., Franz, G., and Heinrich, W.: An experimental study on K and Na incorporation in dravitic tourmaline and insight into the origin of diamondiferous tourmaline from the Kokchetav Massif, Kazakhstan, Contrib. Mineral. Petrol., 169, 1–16, 2015.
Berryman, E. J., Wunder, B., Ertl, A., Koch-Müller, M., Rhede, D., Scheidi, K., Giester, G., and Heinrich, W.: Influence of the X-site composition on tourmaline's crystal structure: investigation of synthetic K-dravite, dravite, oxy-uvite, and magnesio-foitite using SREF and Raman spectroscopy, Phys. Chem. Miner., 43, 83–102, 2016.
Bishop, F. C., Smith, J. V., and Dawson, J. B.: Na, K, P and Ti in garnet, pyroxene and olivine from peridotite and eclogite xenoliths from African kimberlites, Lithos, 11, 155–173, 1978.
Bosi, F.: Tourmaline crystal chemistry, Am. Mineral., 103, 298–306, 2018.
Bosi, F. and Lucchesi, S.: Crystal chemical relationships in the tourmaline group: Structural constraints on chemical variability, Am. Mineral., 92, 1054–1063, 2007.
Bosi, F., Reznitskii, L., and Skogby, H.: Oxy-chromium-dravite, NaCr3(Cr4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup, Am. Mineral., 97, 2024–2030, 2012.
Bosi. F., Reznitskii, L., Hålenius, U., and Skogby, H.: Crystal chemistry of Al-V-Cr oxy-tourmalines from Sludyanka complex, Lake Baikal, Russia, Eur. J. Mineral., 29, 457–472, https://doi.org/10.1127/ejm/2017/0029-2617, 2017.
Bosi, F., Skogby, H., and Hovis, G. L.: Crystal chemistry of povondraite by single-crystal XRD, EMPA, Mössbauer spectroscopy and FTIR, Mineral. Mag., 87, 178–185, 2023.
Brown, I. D. and Altermatt, D.: Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database, Acta Crystallogr. B, 41, 244–247, 1985.
Celata, B. and Bosi, F.: Crystallographic Information File on K-tourmaline from Kazakhstan, Zenodo [data set], https://doi.org/10.5281/zenodo.13383156, 2024.
Claoue-Long, J. C., Sobolev, N. V., Shatsky, V. S., and Sobolev, A. V.: Zircon response to diamond-pressure metamorphism in the Kokchetav massif, USSR, Geology, 19, 710–713, 1991.
Dobretsov, N. L., Sobolev, N. V., Shatsky, V. S., Coleman, R. G., and Ernst, W. G.: Geotectonic evolution of diamondiferous paragneisses of the Kokchetav complex, Northern Kazakhstan - the geologic enigma of ultrahigh-pressure crustal rocks within Phanerozoic foldbelt, Isl. Arc., 4, 267–279, 1995.
Dutrow, B. L. and Henry, D. J.: Tourmaline; a geologic DVD, Elements, 7, 301–306, 2011.
Erlank, A. J. and Kushiro, I.: Potassium contents of synthetic pyroxenes at high temperatures and pressures, Carnegie Inst. Wash yearbook, 68, 439–442, 1970.
Ertl, A., Hughes, J. M., Pertlik, F., Foit Jr., F. F., Wright, S. E., Brandstätter, F., and Marler, B.: Polyhedron distortions in tourmaline, Canad. Mineral., 40, 153–163, 2002.
Ertl, A., Rossman, G.R., Hughes, J.M, Prowatke, S., and Ludwig, T.: Mn-bearing “oxy-rossmanite” with tetrahedrally coordinated Al and B from Austria: Structure, chemistry, and infrared and optical spectroscopic study, Am. Mineral., 90, 481–487, 2005.
Ertl, A., Marschall, H. R., Giester, G., Henry, D. J., Schertl, H. P., Ntaflos, T., Luvizzotto, G. L., Nasdala, L., and Tillmanns, E.: Metamorphic ultrahigh-pressure tourmaline: Structure, chemistry, and correlations to P−T conditions, Am. Mineral., 95, 1, 1–10, 2010.
Gouzu, C., Yagi, K., Xhuan Thanh, N., Itaya, T., and Compagnoni, R.: White mica K–Ar geochronology of HP–UHP units in the Lago di Cignana area, western Alps, Italy: Tectonic implications for exhumation, Lithos, 248–251, 109–118, 2016.
Grew, E. S., Krivovichev, S. V., Hazen, R. M., and Hystad, G.: Evolution of structural complexity in Boron minerals, Canad. Mineral., 54, 125–143, 2016.
Grice, J. D., Ercit, T. S., and Hawthorne, F. C.: Povondraite, a redefinition of the tourmaline ferridravite, Am. Mineral., 78, 433–436, 1993.
Hawthorne, F. C.: Structural mechanisms for light-element variations in tourmaline, Canad. Mineral., 34, 123–132, 1996.
Harlow, G. E. and Davies, R.: Status report on stability of K-rich phases at mantle conditions, Lithos, 77, 647–653, 2004.
Henry, D. J. and Dutrow, B. L.: Tourmaline in a low grade clastic metasedimentary rock: an example of the petrogenetic potential of tourmaline, Contrib. Mineral. Petrol., 112, 203–218, 1992.
Henry, D. J., Novák, M., Hawthorne, F. C., Ertl, A., Dutrow, B. L., Uher, P., and Pezzotta, F.: Nomenclature of the tourmaline-supergroup minerals, Am. Mineral., 96, 895–913, 2011.
Hermann, J. and Green, D. H.: Experimental constraints on high pressure melting in subducted crust, Earth Planet. Sc. Lett., 188, 149–186, 2001.
Hermann, J., Rubatto, D., Korsakov, A., and Shatsky, V. S.: Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav massif, Kazakhstan), Contrib. Mineral. Petrol., 141, 66–82, 2001.
Hermann, J., Spandler, C., Hack, A., and Korsakov, A. V.: Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones, Lithos, 92, 399–417, 2006a.
Hermann, J., Rubatto, D., Korsakov, A. V., and Shatsky, V. S.: The age of metamorphism of diamondiferous rocks determined with SHRIMP dating of zircon, Russ. Geol. Geophys., 47, 511–518, 2006b.
Hovis, G. L., Tribaudino, M., Altomare, C., and Bosi, F.: Thermal expansion of minerals in the tourmaline supergroup, Am. Mineral., 108, 1053–1063, 2023.
Kaminsky, F. V., Zakharchenko, O. D., Griffin, W. L., Channer, D. M. D., and Khachatryan-Blinova, G. K.: Diamond from the Guaniamo area, Venezuela, Canad. Mineral, 38, 1347–1370, 2000.
Katayama, I., Maruyama, S., Parkinson, C. D., Terada, K.. and Sano, Y.: Ion micro-probe U-Pb zircon geochronology of peak and retrograde stages of ultrahigh-pressure metamorphic rocks from the Kokchetav massif, northern Kazakhstan, Earth Planet. Sc. Lett., 188, 185–198, 2001.
Korsakov, A. V., Shatsky, V. S., Sobolev, N. V., and Zayachkovsky, A. A.: Garnet-biotite-clinozoisite gneisses: a new type of diamondiferous metamorphic rocks of the Kokchetav massif, Eur. J. Mineral., 14, 915–929, https://doi.org/10.1127/0935-1221/2002/0014-0915, 2002.
Korsakov, A. V., Travin, A. V., Yudin, D. S., and Marschall, H. R.: 40Ar/39Ar dating of tourmaline from metamorphic rocks of the Kokchetav massif, Kazakhstan, Dokl. Earth Sci., 424, 168–170, 2009.
Korsakov, A. V., Yudin, D. S., Musiyachenko, K. A., and Demin, S. P.: 40Ar 39Ar dating of maruyamaite (K-dominant tourmaline) from diamond-bearing metamorphic rocks from the Kokchetav massif, Geodyn. Tectonophys., 14, 0699, https://doi.org/10.5800/GT-2023-14-3-0699, 2023a (in Russia).
Korsakov, A. V., Mikhailenko, D. S., Zhang, L., and Xu, Y.: Inclusions of diamond crystals in the tourmaline of the schorl-uvite series: problems of genesis, J. Min. Inst, 264, 833–841, https://pmi.spmi.ru/pmi/article/view/16082/16081, 2023b.
Korsakov, A. V., Musiyachenko, K. A., Mikhailenko, D. S., and Demin, S. P.: Origin of potassium-bearing tourmalines of the Kumdy-Kol deposit (Kokchetav massif, Northern Kazakhstan): Mineral inclusions study, Lithosphere, 23, 500–514, 2023c.
Lavrova, L. D., Pechnikov, V. A., Pleshakov, M. A., Nadezhidina, E. D., and Shukolyukov, Y. A.: A new genetic type of diamond deposit, Scientific World Publishing House, Moscow, Russia, https://doi.org/10.1017/CBO9780511573088, 1999.
Likhacheva, A. Y., Rashchenko, S. V., Musiyachenko, K. A., Korsakov, A. V., Collings, I. E., and Hanfland, M.: Compressibility and structure behaviour of maruyamaite (K-tourmaline) from the Kokchetav massif at high pressure up to 20 GPa, Mineral. Petrol., 113, 613–623, 2019.
Lussier, A., Ball, N. A., Hawthorne, F. C., Henry, D. J., Shimizu, R., Ogasawara, Y., and Ota, T.: Maruyamaite, K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, a potassium-dominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan: Description and crystal structure, Am. Mineral., 101, 2, 355–361, 2016.
Marschall, H. R., Korsakov, A. V., Luvizotto, G. L., Nasdala, L., and Ludwig, T.: On the occurrence and boron isotopic composition of tourmaline in (ultra)high-pressure metamorphic rocks, J. Geol. Soc., 166, 811–823, 2009.
Mikhailenko, D., Golovin, A., Korsakov, A., Aulbach, S., Gerdes, A., and Ragozin, A.: Metasomatic Evolution of Coesite-Bearing Diamondiferous Eclogite from the Udachnaya Kimberlite, Minerals, 10, 383, https://doi.org/10.3390/min10040383, 2020.
Mikhailenko, D. S., Aulbach, S., Korsakov, A. V., Golovin, A. V., Malygina, E. V., Gerdes, A., Stepanov, A. S., and Xu, Y. G.: Origin of Graphite–Diamond-Bearing Eclogites from Udachnaya Kimberlite Pipe, J. Petrol., 62, 1–32, 2021.
Musiyachenko, K. A., Korsakov, A. V., Shimizu, R., Zelenovskiy, P. S., and Shur, V. Y.: New insights on Raman spectrum of K-bearing tourmaline, J. Raman Spectrosc., 51, 1415–1424, 2020.
Musiyachenko, K. A., Korsakov, A. V., and Letnikov, F. A.: A New Occurrence of Maruyamaite, Dokl. Earth Sci., 498, 403–408, 2021.
O'Bannon, E., Beavers, C. M., Kunz, M., and Williams, Q.: High-pressure study of dravite tourmaline: Insights into the accommodating nature of the tourmaline structure, Am. Mineral., 101, 1622–1633, 2018.
Ota, T., Kobayashi, K., Katsura, T., and Nakamura, E.: Boron cycling by subducted lithosphere; insights from diamondiferous tourmaline from the Kokchetav ultrahigh-pressure metamorfic belt, Geochim. Cosmochim. Ac., 72, 3531–3541, 2008.
Papike, J. J.: Pyroxene mineralogy of the Moonand meteorites, in: Pyroxenes, edited by: Prewitt, C. T., Mineralogical Society of America, Washington D.C., Rev. Mineral. Geochem., 7, 495–525, 1980.
Pesquera, A., Gil-Crespo, P. P., Torres-Ruiz, F., Torres-Ruiz, J., and Roda-Robles, E.: A multiple regression method for estimating Li in tourmaline from electron microprobe analyses, Mineral. Mag., 80, 1129–1133, 2016.
Pokhilenko, N. P., Sobolev, N. V., Reutsky, V. N., Hall, A. E., and Taylor, L. A.: Crystalline inclusions and C-isotope ratios in diamonds from the Snap Lake/King Lake kimberlite dyke system: evidence of ultradeep and enriched litospheric mantle, Lithos, 77, 57–67, 2004.
Pouchou, J. L. and Pichoir, F.: Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”, Electron Probe Quantification, Plenum Press, New York, edited by: Heinrich, K. F. J. and Newbury, D. E., Plenum, New York, 31–75, https://doi.org/10.1007/978-1-4899-2617-3_4, 1991.
Prinz, M., Mansoni, D. V., Hlava, P. F., and Keil, K.: Inclusions in diamonds: garnet lherzolite and eclogite assemblages, Phys. Chem. Earth, 9, 797–815, 1975.
Robinson, K., Gibbs, G. V., and Ribbe, P. H.: Quadratic elongation: a quantitative measure of distortion in coordination polyhedra, Science, 172, 567–570, 1971.
Safonov, O. G., Bindi, L., and Vinograd, V. L.: Potassium-bearing clinopyroxene: a review of experimental, crystal chemical and thermodynamic data with petrological applications, Mineral. Mag., 75, 2467–2484, 2011.
Seki, Y. and Kennedy, G. C.: The breakdown of potassium feldspar, KAlSi3O8 at high temperatures and high pressures, Am. Mineral., 49, 1688–1706, 1964.
Shatsky, V. S., Sobolev, N. V., and Vavilov, M. A.: Diamondbearing metamorphic rocks of the Kokchetav massif (northern Kazakhstan), in: Ultra-High Pressure Metamorphism, Cambridge University Press, 427–455, 1995.
Shatsky, V. S., Jagoutz, E., Sobolev, N. V., Kozmenko, O. A., Parkhomenko, V. S., and Troesch, M.: Geochemistry and age of ultrahigh pressure metamorphic rocks from the Kokchetav massif (Northern Kazakhstan), Contrib. Mineral. Petrol., 137, 185–205, 1999.
Shimizu, R. and Ogasawara, Y.: Discovery of “K-tourmaline” in Diamond-Bearing Tourmaline-K-Feldspar-Quartz Rock From the Kokchetav Massif, Kazakhstan, AGU Fall Meeting Abstracts, 2005.
Shimizu, R. and Ogasawara, Y.: Diversity of potassium-bearing tourmalines in diamondiferous Kokchetav UHP metamorphic rocks: A geochemical recorder from peak to retrograde metamorphic stages, J. Asian Earth Sci., 63, 39–55, 2013.
Schmidt, M. W.: Experimental Constraints on Recycling of Potassium from Subducted Oceanic Crust, Science, 272, 1927–1930, 1996.
Sheldrick, G. M.: Crystal structure refinement with SHELXL, Acta Crystallogr. C, 71, 3–8, 2015.
Sobolev, N. V.: Deep-seated inclusions in kimberlites and the problem of the composition of the upper mantle, Washington, D.C., American Geophysical Union, 279 pp., ISBN: 10 0875902022, 13 978-0875902029, 1977.
Sobolev, N. V. and Shatsky, V. S.: Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation, Nature, 343, 742–746, 1990.
Sobolev, N. V., Shatsky, V. S., Vavilov, M. A., and Goryainov, S. V.: Coesite inclusion in zircon of diamondiferous gneisses of the Kokchetav massif: the first finding of coesite in metamorphic rocks on the territory of the USSR, Dokl. Akad. Nauk SSSR, 321, 184–188, 1991.
Sobolev, N. V., Yefimovam E. S., Channer, D. M. DeR., Anderson, P. F. N., and Barron, K. M.: Unusual upper mantle beneath Guaniamo, Guyana Shield, Venezuela: evidence from diamond inclusions, Geology, 26, 971–974, 1998.
Stachel, T., Brey, G. P., and Harris, J. W.: Kankan diamonds (Guinea) I: from the litosphere down to the transition zone, Contrib. Mineral. Petrol., 140, 1–15, 2000.
Stepanov, A. S., Rubatto, D., Hermann, J., and Korsakov, A. V.: Contrasting P-T paths within the Barchi-Kol UHP terrain (Kokchetav Complex): Implications for subduction and exhumation of continental crust, Am. Mineral., 101, 788–807, 2016.
Theunissen, K., Dobretsov, N. L., Shatsky, V. S., Smirnova, L., and Korsakov, A.: The diamond-bearing Kokchetav UHP massif in Northern Kazakhstan: exhumation structure, Terra Nova, 12, 181–187, 2000a.
Theunissen, K., Dobretsov, N. L., Korsakov, A., Travin, A., Shatsky, V. S., Smirnova, L., and Boven, A.: Two contrasting petrotectonic domains in the Kokchetav megamelange (north Kazakhstan): difference in exhumation mechanisms of ultrahigh-pressure crustal rocks, or a result of subsequent deformation?, Isl. Arc, 9, 284–303, 2000b.
Thomsen, T. B. and Schmidt, M. W.: Melting of carbonated pelites at 2.5–5.0 GPa, silicate–carbonatite liquid immiscibility, and potassium–carbon metasomatism of the mantle, Earth Planet. Sc. Lett., 267, 17–31, 2008.
Urakawa, S., Kondo, T., Igawa, N., Shimomura, O., and Ohno, H.: Synchrotron radiation study on the High-Pressure and High-Temperature phase relations of KAlSi3O8, Phys. Chem. Mineral., 21, 387–391, 1994.
van Hinsberg, V. J., Henry, D. J., and Marschall, H. R.: Tourmaline: an ideal indicator of its host environment, Can. Mineral., 49, 1–16, 2011.
Walenta, K. and Dunn, P. J.: Ferridravite, a new mineral of the tourmaline group from Bolivia, Am. Mineral., 64, 945–948, 1979.
Wang, W. and Takahashi, E.: Subsolidus and melting experiments of a K-rich basaltic composition to 27 GPa: Implication for the behavior of potassium in the mantle, Am. Mineral., 84, 357–361, 1999.
Yagi, A., Suzuki, T., and Akaogi, M.: High pressure transition in the system KAlSi3O8-NaAlSi3O8, Phys. Chem. Mineral., 21, 12–17, 1994.
Žáček, V. and Hyršl, P.: Chemistry and origin of povondraite-bearing rocks from Alto Chapare, Cochabamba, Bolivia, J. Czech Geol. Soc., 43, 59–68, 1998.
Žáček, V., Fryda, J., Petrov, A., and Hyršl, J.: Tourmalines of the povondraite – (oxy)dravite series from the cap rock of meta-evaporite in Alto Chapare, Cochabamba, Bolivia, J. Czech Geol. Soc., 45, 3–12, 2000.
Zonenshain, L. P., Kuzmin, M. I., Natapov, L. M., and Page, B. M.: Geology of the USSR: A Plate-Tectonic Synthesis, Am. Geophys. Union., 21, 242 pp., https://doi.org/10.1029/GD021, ISBN: 10 0875905218, 13 978-0875905211, 1990.
Short summary
The discovery of the K-dominant tourmaline maruyamaite with microdiamond inclusions suggested its ultrahigh-pressure formation. We analyzed the role of K in the tourmaline structure, with a special focus on its stability. High pressure is necessary to squeeze the large cation K+ in the stiff framework of tourmaline, although K is the underdog component if Na+ is present in the mineralizing fluid. K-tourmaline is stable at high pressure, overcoming the stereotype of a mere crustal component.
The discovery of the K-dominant tourmaline maruyamaite with microdiamond inclusions suggested...