Articles | Volume 36, issue 3
https://doi.org/10.5194/ejm-36-491-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-36-491-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Magmatic to solid-state evolution of a shallow emplaced agpaitic tinguaite (the Suc de Sara dyke, Velay volcanic province, France): implications for peralkaline melt segregation and extraction in ascending magmas
Thomas Pereira
CORRESPONDING AUTHOR
Institut des Sciences de la Terre d'Orléans, UMR 7327 (CNRS-Université Orléans-BRGM), Orléans, France
Laurent Arbaret
CORRESPONDING AUTHOR
Institut des Sciences de la Terre d'Orléans, UMR 7327 (CNRS-Université Orléans-BRGM), Orléans, France
Juan Andújar
Institut des Sciences de la Terre d'Orléans, UMR 7327 (CNRS-Université Orléans-BRGM), Orléans, France
Mickaël Laumonier
Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, 63000 Clermont-Ferrand, France
Monica Spagnoli
Institut des Sciences de la Terre d'Orléans, UMR 7327 (CNRS-Université Orléans-BRGM), Orléans, France
Charles Gumiaux
Institut des Sciences de la Terre d'Orléans, UMR 7327 (CNRS-Université Orléans-BRGM), Orléans, France
Gautier Laurent
Institut des Sciences de la Terre d'Orléans, UMR 7327 (CNRS-Université Orléans-BRGM), Orléans, France
Aneta Slodczyk
Institut des Sciences de la Terre d'Orléans, UMR 7327 (CNRS-Université Orléans-BRGM), Orléans, France
Ida Di Carlo
Institut des Sciences de la Terre d'Orléans, UMR 7327 (CNRS-Université Orléans-BRGM), Orléans, France
Related authors
No articles found.
Lachlan Grose, Laurent Ailleres, Gautier Laurent, Guillaume Caumon, Mark Jessell, and Robin Armit
Geosci. Model Dev., 14, 6197–6213, https://doi.org/10.5194/gmd-14-6197-2021, https://doi.org/10.5194/gmd-14-6197-2021, 2021
Short summary
Short summary
Fault discontinuities in rock packages represent the plane where two blocks of rock have moved. They are challenging to incorporate into geological models because the geometry of the faulted rock units are defined by not only the location of the discontinuity but also the kinematics of the fault. In this paper, we outline a structural geology framework for incorporating faults into geological models by directly incorporating kinematics into the mathematical framework of the model.
Lachlan Grose, Laurent Ailleres, Gautier Laurent, and Mark Jessell
Geosci. Model Dev., 14, 3915–3937, https://doi.org/10.5194/gmd-14-3915-2021, https://doi.org/10.5194/gmd-14-3915-2021, 2021
Short summary
Short summary
LoopStructural is an open-source 3D geological modelling library with a model design allowing for multiple different algorithms to be used for comparison for the same geology. Geological structures are modelled using structural geology concepts and techniques, allowing for complex structures such as overprinted folds and faults to be modelled. In the paper, we demonstrate automatically generating a 3-D model from map2loop-processed geological survey data of the Flinders Ranges, South Australia.
Laurent Jolivet, Laurent Arbaret, Laetitia Le Pourhiet, Florent Cheval-Garabédian, Vincent Roche, Aurélien Rabillard, and Loïc Labrousse
Solid Earth, 12, 1357–1388, https://doi.org/10.5194/se-12-1357-2021, https://doi.org/10.5194/se-12-1357-2021, 2021
Short summary
Short summary
Although viscosity of the crust largely exceeds that of magmas, we show, based on the Aegean and Tyrrhenian Miocene syn-kinematic plutons, how the intrusion of granites in extensional contexts is controlled by crustal deformation, from magmatic stage to cold mylonites. We show that a simple numerical setup with partial melting in the lower crust in an extensional context leads to the formation of metamorphic core complexes and low-angle detachments reproducing the observed evolution of plutons.
Related subject area
Igneous petrology
Granite magmatism and mantle filiation
Inclusions in magmatic zircon from Slavonian mountains (eastern Croatia): anatase, kumdykolite and kokchetavite and implications for the magmatic evolution
Confocal μ-XANES as a tool to analyze Fe oxidation state in heterogeneous samples: the case of melt inclusions in olivine from the Hekla volcano
Constraining the volatile evolution of mafic melts at Mt. Somma–Vesuvius, Italy, based on the composition of reheated melt inclusions and their olivine hosts
Contrasting appinites, vaugnerites and related granitoids from the NW Iberian Massif: insight into mantle and crustal sources
Reactive interaction between migmatite-related melt and mafic rocks: clues from the Variscan lower crust of Palmi (southwestern Calabria, Italy)
ICDP Oman Drilling Project: varitextured gabbros from the dike–gabbro transition within drill core GT3A
A snapshot of the transition from monogenetic volcanoes to composite volcanoes: case study on the Wulanhada Volcanic Field (northern China)
40Ar/39Ar dating of a hydrothermal pegmatitic buddingtonite–muscovite assemblage from Volyn, Ukraine
Geochronology of granites of the western Korosten AMCG complex (Ukrainian Shield): implications for the emplacement history and origin of miarolitic pegmatites
A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems
Quantification of major and trace elements in fluid inclusions and gas bubbles by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with no internal standard: a new method
New evidence for upper Permian crustal growth below Eifel, Germany, from mafic granulite xenoliths
Contaminating melt flow in magmatic peridotites from the lower continental crust (Rocca d'Argimonia sequence, Ivrea–Verbano Zone)
Michel Pichavant, Arnaud Villaros, Julie A.-S. Michaud, and Bruno Scaillet
Eur. J. Mineral., 36, 225–246, https://doi.org/10.5194/ejm-36-225-2024, https://doi.org/10.5194/ejm-36-225-2024, 2024
Short summary
Short summary
Models for the generation of silicic magmas are divided into two groups: intra-crustal melting and basaltic origin. Peraluminous felsic leucogranites are considered as the only granite examples showing no mantle input. This interpretation is re-evaluated, and we show that leucogranites, as most other crustal granite types, can have a mantle filiation. This stresses the critical importance of the mantle for granite generation and opens the way for unification of silicic magma generation models.
Petra Schneider and Dražen Balen
Eur. J. Mineral., 36, 209–223, https://doi.org/10.5194/ejm-36-209-2024, https://doi.org/10.5194/ejm-36-209-2024, 2024
Short summary
Short summary
The acid igneous rocks of eastern Croatia related to the Late Cretaceous closure of the Neotethys Ocean contain zircon as a main accessory mineral. Among others, zircon has inclusions of anatase, hematite and melt (nanogranitoids) with kokchetavite and kumdykolite. The first finding here of kokchetavite and kumdykolite in a magmatic nanogranitoid proves that these are not exclusively ultra-high pressure phases. The detected inclusions indicate rapid uplift and cooling of the oxidised magma.
Roman Botcharnikov, Max Wilke, Jan Garrevoet, Maxim Portnyagin, Kevin Klimm, Stephan Buhre, Stepan Krasheninnikov, Renat Almeev, Severine Moune, and Gerald Falkenberg
Eur. J. Mineral., 36, 195–208, https://doi.org/10.5194/ejm-36-195-2024, https://doi.org/10.5194/ejm-36-195-2024, 2024
Short summary
Short summary
The new spectroscopic method, based on the syncrotron radiation, allows for determination of Fe oxidation state in tiny objects or in heterogeneous samples. This technique is expected to be an important tool in geosciences unraveling redox conditions in rocks and magmas as well as in material sciences providing constraints on material properties.
Rosario Esposito, Daniele Redi, Leonid V. Danyushevsky, Andrey Gurenko, Benedetto De Vivo, Craig E. Manning, Robert J. Bodnar, Matthew Steele-MacInnis, and Maria-Luce Frezzotti
Eur. J. Mineral., 35, 921–948, https://doi.org/10.5194/ejm-35-921-2023, https://doi.org/10.5194/ejm-35-921-2023, 2023
Short summary
Short summary
Despite many articles published about eruptions at Mt. Somma–Vesuvius (SV), the volatile contents of magmas associated with mafic (quasi-primitive) melts were not directly analyzed for many eruptions based on melt inclusions (MIs). We suggest that several high-Fo olivines formed at depths greater than those of the carbonate platform based on MI chemical composition. We also estimated that 347 to 686 t d-1 of magmatic CO2 exsolved from SV magmas during the last 3 centuries of volcanic activity.
Gumer Galán, Gloria Gallastegui, Andrés Cuesta, Guillermo Corretgé, Ofelia Suárez, and Luis González-Menéndez
Eur. J. Mineral., 35, 845–871, https://doi.org/10.5194/ejm-35-845-2023, https://doi.org/10.5194/ejm-35-845-2023, 2023
Short summary
Short summary
Two examples of granites in the Variscan Iberian Massif were studied because they are associated with mafic rocks (appinites and vaugnerites), which raise the question of the role of mantle magma in the formation of granitic rocks. We conclude that appinites and vaugnerites derived from melting of different mantle sources, both previously modified by interaction with crustal materials. Subsequent differentiation of appinites and vaugnerites was influenced by contamination with coeval granites.
Maria Rosaria Renna
Eur. J. Mineral., 35, 1–24, https://doi.org/10.5194/ejm-35-1-2023, https://doi.org/10.5194/ejm-35-1-2023, 2023
Short summary
Short summary
Distribution of major and trace elements during anatexis at the source area was investigated in a portion of Variscan mid–lower crust exposed at Palmi (Calabria, Italy). Reactive migration of migmatitic melt imparted a mineralogical and chemical signature in mafic rocks associated with migmatites and promoted the crystallization of amphibole by a coupled dissolution–precipitation process. Amphibole and accessory allanite control the distribution of incompatible elements from the anatectic zone.
Artur Engelhardt, Jürgen Koepke, Chao Zhang, Dieter Garbe-Schönberg, and Ana Patrícia Jesus
Eur. J. Mineral., 34, 603–626, https://doi.org/10.5194/ejm-34-603-2022, https://doi.org/10.5194/ejm-34-603-2022, 2022
Short summary
Short summary
We present a detailed petrographic, microanalytical and bulk-chemical investigation of 36 mafic rocks from drill hole GT3A from the dike–gabbro transition zone. These varitextured gabbros are regarded as the frozen fillings of axial melt lenses. The oxide gabbros could be regarded as frozen melts, whereas the majority of the rocks, comprising olivine-bearing gabbros and gabbros, show a distinct cumulate character. Also, we present a formation scenario for the varitextured gabbros.
Diao Luo, Marc K. Reichow, Tong Hou, M. Santosh, Zhaochong Zhang, Meng Wang, Jingyi Qin, Daoming Yang, Ronghao Pan, Xudong Wang, François Holtz, and Roman Botcharnikov
Eur. J. Mineral., 34, 469–491, https://doi.org/10.5194/ejm-34-469-2022, https://doi.org/10.5194/ejm-34-469-2022, 2022
Short summary
Short summary
Volcanoes on Earth are divided into monogenetic and composite volcanoes based on edifice shape. Currently the evolution from monogenetic to composite volcanoes is poorly understood. There are two distinct magma chambers, with a deeper region at the Moho and a shallow mid-crustal zone in the Wulanhada Volcanic Field. The crustal magma chamber represents a snapshot of transition from monogenetic to composite volcanoes, which experience more complex magma processes than magma stored in the Moho.
Gerhard Franz, Masafumi Sudo, and Vladimir Khomenko
Eur. J. Mineral., 34, 7–18, https://doi.org/10.5194/ejm-34-7-2022, https://doi.org/10.5194/ejm-34-7-2022, 2022
Short summary
Short summary
The age of formation of buddingtonite, ammonium-bearing feldspar, can be dated with the Ar–Ar method; however, it may often give only minimum ages due to strong resetting. In the studied example it gives a Precambrian minimum age of fossils, associated with this occurrence, and the age of the accompanying mineral muscovite indicates an age near 1.5 Ga. We encourage more dating attempts of buddingtonite, which will give valuable information of diagenetic or hydrothermal events.
Leonid Shumlyanskyy, Gerhard Franz, Sarah Glynn, Oleksandr Mytrokhyn, Dmytro Voznyak, and Olena Bilan
Eur. J. Mineral., 33, 703–716, https://doi.org/10.5194/ejm-33-703-2021, https://doi.org/10.5194/ejm-33-703-2021, 2021
Short summary
Short summary
In the paper we discuss the origin of large chamber pegmatite bodies which contain giant gem-quality crystals of black quartz (morion), beryl, and topaz. We conclude that these pegmatites develop under the influence of later intrusions of mafic rocks that cause reheating of the partly crystallized granite massifs and that they supply a large amount of fluids that facilitate the
inflationof pegmatite chambers and crystallization of giant crystals of various minerals.
Xudong Wang, Tong Hou, Meng Wang, Chao Zhang, Zhaochong Zhang, Ronghao Pan, Felix Marxer, and Hongluo Zhang
Eur. J. Mineral., 33, 621–637, https://doi.org/10.5194/ejm-33-621-2021, https://doi.org/10.5194/ejm-33-621-2021, 2021
Short summary
Short summary
In this paper we calibrate a new empirical clinopyroxene-only thermobarometer based on new models. The new models show satisfying performance in both calibration and the test dataset compared with previous thermobarometers. Our new thermobarometer has been tested on natural clinopyroxenes in the Icelandic eruptions. The results show good agreement with experiments. Hence, it can be widely used to elucidate magma storage conditions.
Anastassia Y. Borisova, Stefano Salvi, German Velasquez, Guillaume Estrade, Aurelia Colin, and Sophie Gouy
Eur. J. Mineral., 33, 305–314, https://doi.org/10.5194/ejm-33-305-2021, https://doi.org/10.5194/ejm-33-305-2021, 2021
Short summary
Short summary
We developed a new method for quantifying elemental concentrations in natural and synthetic fluid inclusions and gas bubbles using a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method with no internal standard. The method may be applied to estimate trace (metal and metalloid) elemental concentrations in hydrous carbonic (C–O–H) fluid inclusions and bubbles with uncertainty below 25 %.
Cliff S. J. Shaw
Eur. J. Mineral., 33, 233–247, https://doi.org/10.5194/ejm-33-233-2021, https://doi.org/10.5194/ejm-33-233-2021, 2021
Short summary
Short summary
Volcanic activity in the West Eifel region of Germany over the past million years has brought many samples of the Earth's mantle and crust to the surface. The samples from this study are pieces of the deep crust that formed between 264 and 253 million years ago at a depth of ~ 30 km. Samples like these reveal how the Earth's crust has grown and been modified over time.
Marta Antonicelli, Riccardo Tribuzio, Tong Liu, and Fu-Yuan Wu
Eur. J. Mineral., 32, 587–612, https://doi.org/10.5194/ejm-32-587-2020, https://doi.org/10.5194/ejm-32-587-2020, 2020
Short summary
Short summary
We present a petrological–geochemical investigation of peridotites of magmatic origin from the Ivrea–Verbano Zone (Italian Alps), a large-scale section of lower continental crust. The main purpose is to provide new insights into the processes governing the evolution of primitive mantle magmas. We propose that studied peridotites were formed by reaction of a melt-poor olivine-rich crystal mush, or a pre-existing peridotite, with upward-migrating melts possessing a substantial crustal component.
Cited articles
Ablay, G. J., Carroll, M. R., Palmer, M. R., Marti, J., and Sparks, R. S. J.: Basanite-phonolite lineage of the Teide-Pico Viejo Volcanic Complex, Tenerife, Canary Islands, J. Petrol., 39, 905–936, 1998.
Allan, A. S., Morgan, D. J., Wilson, C. J., and Millet, M. A.: From mush to eruption in centuries: assembly of the super-sized Oruanui magma body, Contrib. Mineral. Petr., 166, 143–164, 2013.
Arbaret, L., Diot, H., and Launeau, P.: Le suc phonolitique du Petit Gerbier (Velay, Massif Central); fabriques magnétiques et magmatique, C.R. Acad. Sci. Paris, 316, 1603–1610, 1993.
Arbaret, L., Burg, J. P., Zeilinger, G., Chaudhry, N., Hussain, S., and Dawood, H.: Pre-collisional anastomosing shear zones in the Kohistan arc, NW Pakistan, Geol. Soc. Lond. Spec. Publ., 170, 295–311, 2000.
Bachmann, O. and Bergantz, G. W.: On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes, J. Petrol., 45, 1565–1582, 2004.
Bachmann, O. and Bergantz, G. W.: The magma reservoirs that feed supereruptions, Elements, 4, 17–21, 2008.
Bambier, A., Berger, E., Mergoil, J., Valadas, B., Veyret, Y., and Weisbrod, A.: Carte géologique de la France à 1/50000 (840), 1985.
Barbey, P., Villaros, A., Marignac, C., and Montel, J. M.: Multiphase melting, magma emplacement and PT-time path in late-collisional context: the Velay example (Massif Central, France), B. Soc. Géol. Fr., 186, 93–116, 2015.
Batard, F.: Les feldspaths dans les roches volcaniques différenciées du Massif Central Français, Thèse 3e cycle, Univ. Clermont-Ferrand, 176 pp., GEODEBRGMFR0741834, 1974.
Batard, F., Mergoil-Daniel, J., and Mergoil, J.: Calcite et rôle possible du CO2 dans la genèse des roches hyperalcalines et agpaïtiques du Velay oriental (Haute-Loire, Massif central français), B. Minéral., 100, 343–347, 1977.
Bergantz, G. W., Schleicher, J. M., and Burgisser, A.: On the kinematics and dynamics of crystal-rich systems, J. Geophys. Res.-Sol. Ea., 122, 6131–6159, 2017.
Berger, E. T. and Vannier, M.: Petrology of Megacrysts, Mafic and Ultramafic Xenoliths from the Pipe of Eglazines, Causses, France, In Developments in Petrology, Elsevier 11A, 155–168, https://doi.org/10.1016/B978-0-444-42273-6.50019-5, 1984.
Blès, J. L., Bonijoly, D., Castaing, C., and Gros, Y.: Successive post-Variscan stress fields in the French Massif Central and its borders (Western European plate): comparison with geodynamic data, Tectonophysics, 169, 79–111, 1989.
Boivin, P., Besson, J. C., Briot, D., Camus, G., Goër, A. de, Gourgaud, A., Labazuy, P., de Larouzière, F. D., Livet, M., Mergoil, J., Miallier, D., Morel, J. M., Vernet, G., and Vincent, P.: Volcanologie de la Chaîne des Puys, Carte et fascicule, 4th Edn., Parc Naturel des Volcans d'Auvergne, 179 pp., 2004.
Bouchez, J. L., Delas, C., Gleizes, G., Nédélec, A., and Cuney, M.: Submagmatic microfractures in granites, Geology, 20, 35–38, 1992.
Bout, P.: Histoire géologique et morphogenèse du système Velay SE-Boutières-Coiron, Rev. Geogr. Phys. Geol., 2, 225–251, 1966.
Burgisser, A. and Bergantz, G. W.: A rapid mechanism to remobilize and homogenize highly crystalline magma bodies, Nature, 471, 212–215, 2011.
Buso, R., Laporte, D., Schiavi, F., Cluzel, N., and Fonquernie, C.: High-pressure homogenization of olivine-hosted CO2-rich melt inclusions in a piston cylinder: insight into the volatile content of primary mantle melts, Eur. J. Mineral., 34, 325–349, https://doi.org/10.5194/ejm-34-325-2022, 2022.
Cashman, K. V., Sparks, R. S. J., and Blundy, J. D.: Vertically extensive and unstable magmatic systems: a unified view of igneous processes, Science, 355, 6331, https://doi.org/10.1126/science.aag3055, 2017.
Chakrabarty, A., Mitchell, R. H., Ren, M., Saha, P. K., Pal, S., Pruseth, K. L., and Sen, A. K.: Magmatic, hydrothermal and subsolidus evolution of the agpaitic nepheline syenites of the Sushina Hill Complex, India: implications for the metamorphism of peralkaline syenites, Mineral. Mag., 80, 1161–1193, 2016.
Couzinié, S., Moyen, J. F., Villaros, A., Paquette, J. L., Scarrow, J. H., and Marignac, C.: Temporal relationships between Mg-K mafic magmatism and catastrophic melting of the Variscan crust in the southern part of the Velay Complex (Massif Central, France), J. Geosci., 59, 69–86, 2014.
Dal Bo, F., Friis, H., and Mills, S. J.: Nomenclature of wöhlerite-group minerals, Mineral. Mag., 86, 661–676, 2022.
Dautria, J. M., Liotard, J. M., and Briot, D.: Particularités de la contamination crustale des phonolites : exemple du Velay oriental (Massif Central), C.R. Géosci., 336, 971–981, https://doi.org/10.1016/j.crte.2004.03.006, 2004.
Defive, E., Courrioux, G., Ledru, P., Poiraud, A., and Prognon, C.: Carte géologique de la France (1/50000), feuille Le Monastier-sur-Gazeille no. 816, BRGM, Orléans, hal-01131052, version 1, 2011.
Delph, J. R., Ward, K. M., Zandt, G., Ducea, M. N., and Beck, S. L.: Imaging a magma plumbing system from MASH zone to magma reservoir, Earth Planet. Sc. Lett., 457, 313–324, 2017.
Dorado, O., Andújar, J., Martí, J., and Geyer, A.: Pre-eruptive conditions at satellite vent eruptions at Teide-Pico Viejo complex (Tenerife, Canary Islands), Lithos, 396–397, 106193, https://doi.org/10.1016/j.lithos.2021.106193, 2021.
Droop, G. T. R.: A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria, Mineral. Mag., 51, 431–435, 1987.
Dufek, J. and Bachmann, O.: Quantum magmatism: Magmatic compositional gaps generated by melt-crystal dynamics, Geology, 38, 687–690, 2010.
Dupraz, J., and Didier, J.: Le complexe anatectique du Velay (Massif central): structure d'ensemble et évolution géologique, 74–87, Géologie de la France, no. 4, BRGM, 7204465, 1988.
Faure, M.: Late orogenic carboniferous extensions in the Variscan French Massif Central, Tectonics, 14, 132–153, 1995.
Geshi, N.: Melt segregation by localized shear deformation and fracturing during crystallization of magma in shallow intrusions of the Otoge volcanic complex, central Japan, J. Volcanol. Geoth. Res., 106, 285–300, 2001.
Girod, M., Bouiller, R., Roche, A., Weber, F., Larque, P., Giot, D., Guerin, C., Bladier, Y., Laurent, P., and Bambier, A.: Geological map, 1 : 50000; no. 791, XXVII-35, 31 pp., H.T. 1, Bibl. 2 pp., 4 Ill., 1 CART. Univ. Claude Bernard, Paris, France, 1979.
Greenwood, N. N. and Earnshaw, A.: Chemistry of the Elements, Elsevier, 1600 pp., ISBN 0080501095, 2012.
Hart, P. E. and Duda, R. O.: Use of the Hough transformation to detect lines and curves in pictures, Communications of the ACMk, 15, 11–15, 1972.
Hodges, S.: Petrogenesis of the phonolitic rocks of the Velay Oriental, France, Thèse PhD, Oxford Univ, Vol. 1, 1–207, 1991.
Holness, M. B.: Melt segregation from silicic crystal mushes: a critical appraisal of possible mechanisms and their microstructural record, Contrib. Mineral. Petr., 173, 48, https://doi.org/10.1007/s00410-018-1465-2, 2018.
Holtzman, B. K. and Kohlstedt, D. L.: Stress-driven melt segregation and strain partitioning in partially molten rocks: Effects of stress and strain, J. Petrol., 48, 2379–2406, 2007.
Hough, P. V. C.: Machine analysis of bubble chamber pictures, Proc. of the International Conference on High Energy Accelerators and Instrumentation, September 1959, Geneva, Switzerland, 554–556, 1959.
Hoyos, S., Florez, D., Pec, M., and Huber, C.: Crystal Shape Control on the Repacking and Jamming of Crystal-Rich Mushes, Geophys. Res. Lett., 49, e2022GL100040, https://doi.org/10.1029/2022GL100040, 2022.
Jeffery, A. J. and Gertisser, R.: Peralkaline felsic magmatism of the Atlantic islands, Front. Earth Sci., 6, 145, https://doi.org/10.3389/feart.2018.00145, 2018.
Jung, J.: Géologie, Géomorphologie et Structure Profonde du Massif Central Français, Plein Air Service, Éditions Scientifiques, 358–363, 1971.
Katz, R. F., Spiegelman, M., and Holtzman, B.: The dynamics of melt and shear localization in partially molten aggregates, Nature, 442, 676–679, 2006.
Kennedy, B. M., Holohan, E. P., Stix, J., Gravley, D. M., Davidson, J. R., Cole, J. W., and Burchardt S.: Volcanic and igneous plumbing systems of caldera volcanoes, in: Volcanic and Igneous Plumbing Systems, Elsevier, 259–284, https://doi.org/10.1016/B978-0-12-809749-6.00010-8, 2018.
Koenders, M. A. and Petford, N.: Shear-induced pressure changes and seepage phenomena in a deforming porous layer-III, Geophys. J. Int., 171, 943–953, 2007.
Lacroix, A.: Sur l'existence de la låvénite dans les phonolites néphéliniques de la Haute-Loire, B.éral., 14, 15–16, 1891.
Laporte, D., Lambart, S., Schiano, P., and Ottolini, L.: Experimental derivation of nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites, Earth Planet. Sc. Lett., 404, 319–331, 2014.
Laumonier, M., Arbaret, L., Burgisser, A., and Champallier, R.: Porosity redistribution enhanced by strain localization in crystal-rich magmas, Geology, 39, 715–718, 2011.
Le Bas, M. J., Le Maitre, R. W., Streickeisen, A., and Zanettin, B.: A classification of igneous rocks and glossary terms, IUGS and Blackwell Sientific Pub., https://doi.org/10.1093/petrology/27.3.745, 1986.
Legendre, C., Maury, R. C., Caroff, M., Guillou, H., Cotton, J., Chauvel, C., Bollinger, C., Hémond, C., Guille, G., Blais, S., Rossi, P., and Savanier, D.: Origin of exceptionally abundant phonolites on Ua Pou island (Marquesas, French Polynesia): partial melting of basanites followed by crustal contamination, J. Petrol., 46, 1925–1962, 2005.
Lejeune, A. M. and Richet, P.: Rheology of crystal-bearing silicate melts: An experimental study at high viscosities, J. Geophys. Res.-Sol. Ea., 100, 4215–4229, 1995.
Macdonald, R., White, J. C., and Belkin, H. E.: Peralkaline silicic extrusive rocks: magma genesis, evolution, plumbing systems and eruption, C.R. Géosci., 353. 7–59, 2021.
Malcles, O., Vernant, P., Chéry, J., Camps, P., Cazes, G., Ritz, J.-F., and Fink, D.: Determining the Plio-Quaternary uplift of the southern French Massif Central; a new insight for intraplate orogen dynamics, Solid Earth, 11, 241–258, https://doi.org/10.5194/se-11-241-2020, 2020.
Marks, M. A. and Markl, G.: A global review on agpaitic rocks, Earth-Sci. Rev., 173, 229–258, 2017.
Marks, M. A., Hettmann, K., Schilling, J., Frost, B. R., and Markl, G.: The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages, J. Petrol., 52, 439–455, 2011.
Maury, R. C. and Varet, J.: Le volcanisme tertiaire et quaternaire de France, 26th Int. Geol. Congr., Paris, 7–17 July 1980, BRGM, 3, 142, 1980.
Martin, A. M., Médard, E., Righter, K., and Lanzirotti, A.: Intraplate mantle oxidation by volatile-rich silicic magmas, Lithos, 292, 320–333, 2017.
Mergoil, J.: Gisement en filons annulaires de phonolites du Velay (Massif Central français), C.R. Acad. Sci. Paris, 267, 12–14, 1968.
Mergoil, J. and Boivin, P.: Le Velay: Son volcanisme et les formations associées, Notice de la carte à 1/100 000, Géologie de la France, no. 3, 3–96, 1993.
Mergoil-Daniel, J., Labernardière, H., and Maisonneuve, J.: Épisyénites-fenites et source de l'uranium, C.R. Acad. Sci. Paris, 302, 227–232, 1986.
Merle, O. and Michon, L.: The formation of the West European rift: a new model as exemplified by the Massif Central area, B. Soc. Géol. Fr., 172, 213–221, 2001.
Misra, S., Mandal, N., and Chakraborty, C.: Formation of Riedel shear fractures in granular materials: Findings from analogue shear experiments and theoretical analyses, Tectonophysics, 471, 253–259, 2009.
Morimoto, N.: Nomenclature of pyroxenes, Mineral. J., 14, 198–221, 1989.
Paterson, S. R., Fowler Jr., T. K., Schmidt, K. L., Yoshinobu, A. S., Yuan, E. S., and Miller, R. B.: Interpreting magmatic fabric patterns in plutons, Lithos, 44, 53–82, 1998.
Petford, N.: Which effective viscosity?, Mineral. Mag., 73, 167–191, 2009.
Picard, D., Arbaret, L., Pichavant, M., Champallier, R., and Launeau, P.: Rheology and microstructure of experimentally deformed plagioclase suspensions, Geology, 39, 747–750, 2011.
Philpotts, A. R. and Ague, J. J.: Principles of Igneous and Metamorphic Petrology, Cambridge University Press., 667 pp., 2009.
Saint Martin, M.: Carte géologique harmonisée du département de l'Ardèche, BRGM/RP-57097-FR, 423 pp., 2009.
Smith, J. V.: Ductile-brittle transition structures in the basal shear zone of a rhyolite lava flow, eastern Australia, J. Volcanol. Geoth. Res., 72, 217–223, 1996.
Smith, J. V.: Shear thickening dilatancy in crystal-rich flows, J. Volcanol. Geoth. Res., 79, 1–8, 1997.
Smith, J. V.: Structural analysis of flow related textures in laves, Earth-Sci. Rev., 57, 279–297, 2002.
Tchalenko, J. S.: The evolution of kink-bands and the development of compression textures in sheared clays, Tectonophysics, 6, 159–174, 1968.
Vernon, R. H.: Review of microstructural evidence of magmatic and solid-state flow, Visual Geosciences, 5, 1–23, 2000.
Vigneresse, J. L., Barbey, P., and Cuney, M.: Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer, J. Petrol., 37, 1579–1600, 1996.
Ward, K. M., Zandt, G., Beck, S. L., Christensen, D. H., and McFarlin, H.: Seismic imaging of the magmatic underpinnings beneath the Altiplano-Puna volcanic complex from the joint inversion of surface wave dispersion and receiver functions, Earth Planet. Sc. Lett., 404, 43–53, 2014.
Walters, J. B.: MinPlot: A mineral formula recalculation and plotting program for electron probe microanalysis, Mineralogia, 53, 51–66, 2022.
Warr, L. N.: IMA–CNMNC approved mineral symbols, Mineral. Mag., 85, 291–320, 2021.
Westerman, D., Rocchi, S., Breitkreuz, C., Stevenson, C., and Wilson, P.: Structures related to the emplacement of shallow-level intrusions, in: Physical Geology of Shallow Magmatic Systems, Springer, Cham., 83–118, https://doi.org/10.1007/11157_2017_31, 2017.
Short summary
This work presents the results on deformation-enhanced melt segregation and extraction in a phonolitic magma emplaced at shallow depth in the Velay volcanic province (France). We provide evidence of the segregation and subsequent extraction of the residual melt during magma ascent and final emplacement. We highlight that melt segregation started by compaction as a loose packing of microlites emerged and continued with melt filling of a shear band network.
This work presents the results on deformation-enhanced melt segregation and extraction in a...