Articles | Volume 36, issue 3
https://doi.org/10.5194/ejm-36-449-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/ejm-36-449-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Incorporation and substitution of ions and H2O in the structure of beryl
Institute of Geosciences, Johannes Gutenberg University Mainz, J.-J.-Becher-Weg 21, 55099 Mainz, Germany
Institute of Gemstone Research, Prof.-Schlossmacher-Straße 1, 55743 Idar-Oberstein, Germany
Tobias Häger
Institute of Geosciences, Johannes Gutenberg University Mainz, J.-J.-Becher-Weg 21, 55099 Mainz, Germany
Institute of Gemstone Research, Prof.-Schlossmacher-Straße 1, 55743 Idar-Oberstein, Germany
Roman Botcharnikov
Institute of Geosciences, Johannes Gutenberg University Mainz, J.-J.-Becher-Weg 21, 55099 Mainz, Germany
Institute of Gemstone Research, Prof.-Schlossmacher-Straße 1, 55743 Idar-Oberstein, Germany
Related authors
No articles found.
André Stechern, Magdalena Blum-Oeste, Roman E. Botcharnikov, François Holtz, and Gerhard Wörner
Eur. J. Mineral., 36, 721–748, https://doi.org/10.5194/ejm-36-721-2024, https://doi.org/10.5194/ejm-36-721-2024, 2024
Short summary
Short summary
Lascar volcano, located in northern Chile, is among the most active volcanoes of the Andes. Its activity culminated in the last major explosive eruption in April 1993. We carried out experiments at high temperatures (up to 1050 °C) and pressures (up to 5000 bar) in the lab, and we used a wide variety of geochemical methods to provide comprehensive constraints on the depth and temperature of the magma chamber beneath Lascar volcano.
Roman Botcharnikov, Max Wilke, Jan Garrevoet, Maxim Portnyagin, Kevin Klimm, Stephan Buhre, Stepan Krasheninnikov, Renat Almeev, Severine Moune, and Gerald Falkenberg
Eur. J. Mineral., 36, 195–208, https://doi.org/10.5194/ejm-36-195-2024, https://doi.org/10.5194/ejm-36-195-2024, 2024
Short summary
Short summary
The new spectroscopic method, based on the syncrotron radiation, allows for determination of Fe oxidation state in tiny objects or in heterogeneous samples. This technique is expected to be an important tool in geosciences unraveling redox conditions in rocks and magmas as well as in material sciences providing constraints on material properties.
Diao Luo, Marc K. Reichow, Tong Hou, M. Santosh, Zhaochong Zhang, Meng Wang, Jingyi Qin, Daoming Yang, Ronghao Pan, Xudong Wang, François Holtz, and Roman Botcharnikov
Eur. J. Mineral., 34, 469–491, https://doi.org/10.5194/ejm-34-469-2022, https://doi.org/10.5194/ejm-34-469-2022, 2022
Short summary
Short summary
Volcanoes on Earth are divided into monogenetic and composite volcanoes based on edifice shape. Currently the evolution from monogenetic to composite volcanoes is poorly understood. There are two distinct magma chambers, with a deeper region at the Moho and a shallow mid-crustal zone in the Wulanhada Volcanic Field. The crustal magma chamber represents a snapshot of transition from monogenetic to composite volcanoes, which experience more complex magma processes than magma stored in the Moho.
Related subject area
Crystal chemistry
Crystal chemistry of Belgian ardennites
Evidence of the existence of the As4S6 molecule produced by light exposure of alacranite, As8S9
Crystal chemistry and molar volume of potassic-chloro-hastingsite
Pilanesbergite: a new rock-forming mineral occurring in nepheline syenite from the Pilanesberg Alkaline Complex, South Africa
Thermodynamics of vivianite-group arsenates M3(AsO4)2 ⋅ 8H2O (M is Ni, Co, Mg, Zn, Cu) and chemical variability in the natural arsenates of this group
Trace and ultratrace elements in spinel subgroup minerals of ultramafic rocks from the Voltri Massif (NW Italy): the influence of microstructure and texture
Genetic model for the color anomalies at the termination of pegmatitic gem tourmaline crystals from the island of Elba, Italy
Fe-bearing vanadium dioxide–paramontroseite: structural details and high-temperature transformation
Cation and anion ordering in synthetic lepidolites and lithian muscovites: influence of the OH ∕ F and Li ∕ Al ratios on the mica formation studied by NMR (nuclear magnetic resonance) spectroscopy and X-ray diffraction
Tin weathering experiment set by nature for 300 years: natural crystals of the anthropogenic mineral hydroromarchite from Creussen, Bavaria, Germany
New secondary phosphate mineral occurrences and their crystal chemistry, at the Hagendorf Süd pegmatite, Bavaria
Na-feldspar: temperature, pressure and the state of order
Martin Depret, Frédéric Hatert, Michel Blondieau, Stéphane Puccio, Muriel M. L. Erambert, Fabrice Dal Bo, and Florent Bomal
Eur. J. Mineral., 36, 687–708, https://doi.org/10.5194/ejm-36-687-2024, https://doi.org/10.5194/ejm-36-687-2024, 2024
Short summary
Short summary
Ardennite is a rare Mn-rich aluminosilicate that was originally described in Salmchâteau, Belgium. In the last few years, new samples of ardennites have been found at several localities close to Salmchâteau. These samples were analysed by electron microprobe, single-crystal X-ray diffraction, and infrared spectroscopy. The results given in this paper allow us to identify the main substitution mechanisms that occur in Belgian ardennites and to discuss the nomenclature of the ardennite group.
Luca Bindi, Paola Bonazzi, Laura Chelazzi, Matteo M. N. Franceschini, Giovanni O. Lepore, Marta Morana, Giovanni Pratesi, Alice Taddei, Matteo Zoppi, and Silvio Menchetti
Eur. J. Mineral., 36, 615–622, https://doi.org/10.5194/ejm-36-615-2024, https://doi.org/10.5194/ejm-36-615-2024, 2024
Short summary
Short summary
The As4S6 molecule was missing in the reported structures of crystalline As chalcogenides. Here we report the first occurrence of the As4S6 molecule together with the other known As4Sn (n = 3, 4, 5) molecules randomly replacing each other in the crystalline structure of a new monoclinic product obtained by the light-induced alteration of the mineral alacranite, As8S9.
Jared P. Matteucci, David M. Jenkins, and M. Darby Dyar
Eur. J. Mineral., 36, 247–266, https://doi.org/10.5194/ejm-36-247-2024, https://doi.org/10.5194/ejm-36-247-2024, 2024
Short summary
Short summary
To explore the compositional constraints on Cl incorporation into amphiboles, which can be used to characterize transient brines, amphiboles were synthesized with a broad range of Cl concentrations. Amphibole Cl was found to be dependent on the Fe2+,3+ content, but not the tetrahedral Al content or K / Na ratio. Cl incorporation was found to contract the unit cell along a and expand it along b and c. Molar volumes were derived for endmember Cl-amphiboles using multivariate regressions.
Fabrice Dal Bo, Henrik Friis, Marlina A. Elburg, Frédéric Hatert, and Tom Andersen
Eur. J. Mineral., 36, 73–85, https://doi.org/10.5194/ejm-36-73-2024, https://doi.org/10.5194/ejm-36-73-2024, 2024
Short summary
Short summary
We report the description and the characterization of a new mineral species, found in a rock sample from the geological formation called the Pilanesberg Complex, South Africa. This is a silicate mineral that contains a significant amount of sodium, calcium, iron, titanium and fluorine. Its atomic structure shows that it is related to other wöhlerite-group minerals. This work provides new insights into the crystallization conditions that ruled the formation of the Pilanesberg complex.
Juraj Majzlan, Anna Reichstein, Patrick Haase, Martin Števko, Jiří Sejkora, and Edgar Dachs
Eur. J. Mineral., 36, 31–54, https://doi.org/10.5194/ejm-36-31-2024, https://doi.org/10.5194/ejm-36-31-2024, 2024
Short summary
Short summary
Minerals formed by weathering of toxic materials, of either natural or human origin, act as storage containers for toxic elements. In this work, we investigated properties of common minerals which store and release arsenic in the environment. The data presented here will allow for improved modeling of the polluted sites and for better remediation strategies that could be applied to minimize the impact of the pollution on the environment.
Silvia Fornasaro, Paola Comodi, Laura Crispini, Sandro Zappatore, Azzurra Zucchini, and Pietro Marescotti
Eur. J. Mineral., 35, 1091–1109, https://doi.org/10.5194/ejm-35-1091-2023, https://doi.org/10.5194/ejm-35-1091-2023, 2023
Short summary
Short summary
Using an innovative multi-analytical approach, we investigated the trace elements composition of spinel-group minerals in different ultramafic rocks from the Voltri Massif (Central Liguria, NW Italy). The knowledge of the trace elements within these minerals has an interesting implication both in petrological, mineralogical, and geochemical studies as well as environmental fields, since these elements can be potentially toxic and released into the environment during weathering processes.
Alessandra Altieri, Federico Pezzotta, Giovanni B. Andreozzi, Henrik Skogby, and Ferdinando Bosi
Eur. J. Mineral., 35, 755–771, https://doi.org/10.5194/ejm-35-755-2023, https://doi.org/10.5194/ejm-35-755-2023, 2023
Short summary
Short summary
Elba tourmaline crystals commonly display a sharp transition to dark colors at the analogous termination, but the mechanisms leading to the formation of such terminations are unclear. Here we propose a general genetic model in which, as a consequence of a pocket rupture event, chemical alteration of early formed Fe-/Mn-rich minerals in the enclosing pegmatite was responsible for the release of Fe and/or Mn in the geochemical system, allowing the formation of the late-stage dark terminations.
Nadia Curetti and Alessandro Pavese
Eur. J. Mineral., 35, 373–382, https://doi.org/10.5194/ejm-35-373-2023, https://doi.org/10.5194/ejm-35-373-2023, 2023
Short summary
Short summary
Paramontroseite is a V dioxide (a = 4.8960(14) Å, b = 9.395(3) Å, c = 2.9163(5) Å, V = 134.14(6) Å3; space group Pbnm). The sample under investigation (Prachovice mine, Czech Republic) bears 20 wt % of Fe2O3, and the Fe atoms occupy tetrahedral sites arranged in the
emptychannel along z. Thermal expansion is anisotropic. At T > 350 °C, paramontroseite decomposes and two new phases form: V2O5 (V-pentoxide) and V4Fe2O13 (Fe-tetrapolyvanadate).
Lara Sulcek, Bernd Marler, and Michael Fechtelkord
Eur. J. Mineral., 35, 199–217, https://doi.org/10.5194/ejm-35-199-2023, https://doi.org/10.5194/ejm-35-199-2023, 2023
Short summary
Short summary
Synthetic lepidolites and Li-muscovites were characterised by nuclear magnetic resonance (NMR) spectroscopy and X-ray diffraction. Both Li and F / OH content influence the occurrence of the impurity phases. A solid solution series exists for lepidolites with polylithionite and trilithionite as endmembers but does not between trilithionite and muscovite. NMR investigations indicate there is a preference for incorporating fluorine and OH groups near Li-rich and Al-rich environments, respectively.
Natalia Dubrovinskaia, Maria Messingschlager, and Leonid Dubrovinsky
Eur. J. Mineral., 34, 563–572, https://doi.org/10.5194/ejm-34-563-2022, https://doi.org/10.5194/ejm-34-563-2022, 2022
Short summary
Short summary
In this work we report a new locality for the rare mineral hydroromarchite, Sn3O2(OH)2. It was found not in a submarine environment but in soil at the Saint James Church archaeological site in Creussen, Germany. A tin artefact (a tin button) was exposed to weathering in soil for about 300 years. We solved and refined its structure based on single-crystal X-ray diffraction analysis.
Erich Keck, Ian E. Grey, Colin M. MacRae, Stephanie Boer, Rupert Hochleitner, Christian Rewitzer, William G. Mumme, A. Matt Glenn, and Cameron Davidson
Eur. J. Mineral., 34, 439–450, https://doi.org/10.5194/ejm-34-439-2022, https://doi.org/10.5194/ejm-34-439-2022, 2022
Short summary
Short summary
First occurrences of the secondary phosphate minerals kenngottite, Mn32+Fe43+(PO4)4(OH)6(H2O)2; allanpringite, Fe33+(PO4)2(OH)3·5H2O; iangreyite, Ca2Al7(PO4)2(PO3OH)2(OH,F)15·8H2O; and nizamoffite, MnZn2(PO4)2(H2O)4, from the Hagendorf Süd pegmatite are reported, with characterisation of their crystal chemistry and phase associations.
Herbert Kroll, Hans Ulrich Bambauer, and Horst Pentinghaus
Eur. J. Mineral., 32, 427–441, https://doi.org/10.5194/ejm-32-427-2020, https://doi.org/10.5194/ejm-32-427-2020, 2020
Short summary
Short summary
Feldspars constitute about 60 % of the earth's crust. Na-feldspar, Na[AlSi3O8], is central to this mineral group. Its structural response to changing conditions of temperature and pressure is complicated. In particular, this applies to the distribution of Al and Si on the atomic sites of its crystal structure. We clarify how this distribution varies in thermodynamic equilibrium with external conditions and provide procedures that allow easy determination of the atomic distribution.
Cited articles
Adamo, I., Pavese, A., Prosperi, L., Diella, V., Ajò, D., Gatta, G. D., and Smith, C. P.: Aquamarine, maxixe-type beryl, and hydrothermal synthetic blue beryl: analysis and identification, Gems Gemol., 44, 214–226, 2008a.
Adamo, I., Gatta, G. D., N. Rotiroti, Diella, V., and Pavese, A.: Gemmological investigation of a synthetic blue beryl: a multi-methodological study, Mineral. Mag., 72, 799–808, https://doi.org/10.1180/minmag.2008.072.3.799, 2008b.
Aines, R. D. and Rossman, G. R.: The high temperature behavior of water and carbon dioxide in cordierite and beryl, Am. Mineral., 69, 319–327, 1984.
Alkmim, D. G., de Almeida, F. O. T., and Lameiras, F. S.: FTIR study of aquamarines after gamma irradiation, heat treatment and electrodiffusion, REM, Int. Eng. J., 70, 289–292, https://doi.org/10.1590/0370-44672016700076, 2017.
Andersson, L. O.: The difference between maxixe beryl and maxixe-type beryl: an electron paramagnetic resonance investigation, J. Gemm., 16, 313–317, 1979.
Andersson, L. O.: The positions of H+, Li+ and Na+ impurities in beryl, Phys. Chem. Miner., 33, 403–416, https://doi.org/10.1007/s00269-006-0086-x, 2006.
Andersson, L. O.: EPR investigation of the methyl radical, the hydrogen atom and carbon oxide radicals in Maxixe-type beryl, Phys. Chem. Miner., 35, 505–520, https://doi.org/10.1007/s00269-008-0245-3, 2008.
Andersson, L. O.: EPR investigation of NO2 and CO2 – and other radicals in beryl, Phys. Chem. Miner., 37, 435–451, https://doi.org/10.1007/s00269-009-0345-8, 2010.
Andersson, L. O.: The yellow color center and trapped electrons in beryl, Can. Mineral., 51, 15–25, https://doi.org/10.3749/canmin.51.1.15, 2013.
Andersson, L. O.: Comments on Beryl Colors and on Other Observations Regarding Iron-containing Beryls, Can. Mineral., 57, 551–566, https://doi.org/10.3749/canmin.1900021, 2019.
Arivazhagan, V., Schmitz, F. D., Vullum, P. E., Van Helvoort, A. T. J., and Holst, B.: Atomic resolution imaging of beryl: an investigation of the nano-channel occupation: ATOMIC RESOLUTION IMAGING OF BERYL, Journal of Microscopy, 265, 245–250, https://doi.org/10.1111/jmi.12493, 2017.
Artioli, G., Rinaldi, R., Stahl, K., and Zanazzi, P. F.: Structure refinements of beryl by single-crystal neutron and X-ray diffraction, American Mineralogist, 78, 762–768, 1993.
Artioli, G., Rinaldi, R., Wilson, C. C., and Zanazzi, P. F.: Single-crystal pulsed neutron diffraction of a highly hydrous beryl, Acta Crystallogr B Struct Sci, 51, 733–737, https://doi.org/10.1107/S0108768194014631, 1995.
Aurisicchio, C., Fioravanti, G., Grubessi, O., and Zanazzi, P. F.: Reappraisal of the crystal chemistry of beryl, American Mineralogist, 73, 826–837, 1988.
Aurisicchio, C., Grubessi, O., and Zecchini, P.: Infrared spectroscopy and crystal chemistry of the beryl group, Can. Mineral., 32, 55–68, 1994.
Bakakin, V., Rylov, G., and Belov, N.: X-ray diffraction data for identification of beryl isomorphs, Geochem. Int., 7, 1302–1311, 1970.
Bauschlicher, C. W., Langhoff, S. R., Partridge, H., Rice, J. E., and Komornicki, A.: A theoretical study of Na(H2O) (n=1–4), J. Chem. Phys., 95, 5142–5148, https://doi.org/10.1063/1.461682, 1991.
Belyanchikov, M. A., Zhukova, E. S., Tretiak, S., Zhugayevych, A., Dressel, M., Uhlig, F., Smiatek, J., Fyta, M., Thomas, V. G., and Gorshunov, B. P.: Vibrational states of nano-confined water molecules in beryl investigated by first-principles calculations and optical experiments, Phys. Chem. Chem. Phys., 19, 30740–30748, https://doi.org/10.1039/C7CP06472A, 2017.
Bersani, D., Azzi, G., Lambruschi, E., Barone, G., Mazzoleni, P., Raneri, S., Longobardo, U., and Lottici, P. P.: Characterization of emeralds by micro-Raman spectroscopy: Characterization of emeralds, J. Raman Spectrosc., 45, 1293–1300, https://doi.org/10.1002/jrs.4524, 2014.
Bidny, A. S., Baksheev, I. A., Popov, M. P., and Anosova, M. O.: Beryl from deposits of the Ural Emerald Belt, Russia: ICP-MS-LA and infrared spectroscopy study, Moscow Univ. Geol. Bull., 66, 108–115, https://doi.org/10.3103/S0145875211020037, 2011.
Blak, A. R., Isotani, S., and Watanabe, S.: Optical absorption and electron spin resonance in blue and green natural beryl, Phys. Chem. Miner., 8, 161–166, https://doi.org/10.1007/BF00308238, 1982.
Bragg, W. L. and West, J.: The structure of beryl, Be 3 Al 2 Si 6 O 18, P. Roy. Soc. Lond. A Mat., 111, 691–714, https://doi.org/10.1098/rspa.1926.0088, 1926.
Bunnag, N., Kasri, B., Setwong, W., Sirisurawong, E., Chotsawat, M., Chirawatkul, P., and Saiyasombat, C.: Study of Fe ions in aquamarine and the effect of dichroism as seen using UV–Vis, NIR and x-ray, Radiat. Phys. Chem., 177, 109107, https://doi.org/10.1016/j.radphyschem.2020.109107, 2020.
Burns, R. G.: Mineralogical applications of crystal field theory, Cambridge University Press, ISBN 9780521430777, 1993.
Chankhantha, C., Thanasuthipitak, P., and Kidkhunthod, P.: Iron K-Edge Xanes Study of Heated Green Beryl from Madagascar, Walailak Journal of Science and Technology (WJST), 13, 977–983, 2016.
Charoy, B., de Donato, P., Barres, O., and Pinto-Coelho, C.: Channel occupancy in an alkali-poor beryl from Serra Branca (Goias, Brazil); spectroscopic characterization, Am. Mineral., 81, 395–403, https://doi.org/10.2138/am-1996-3-414, 1996.
de Almeida Sampaio Filho, H., Sighinolfi, G. P., and Galli, E.: Contribution to the crystal chemistry of beryl, Contrib. Mineral. Petr., 38, 279–290, https://doi.org/10.1007/BF00373593, 1973.
Dvir, M. and Low, W.: Paramagnetic Resonance and Optical Spectrum of Iron in Beryl, Phys. Rev., 119, 1587–1591, https://doi.org/10.1103/PhysRev.119.1587, 1960.
Edgar, A. and Vance, E. R.: Electron paramagnetic resonance, optical absorption, and magnetic circular dichroism studies of the CO molecular-ion in irradiated natural beryl, Phys. Chem. Miner., 1, 165–178, https://doi.org/10.1007/BF00307316, 1977.
Figueiredo, M. O., Pereira da Silva, T., Veiga, J. P., Leal Gomes, C., and De Andrade, V.: The blue colouring of beryls from Licungo, Mozambique: an X-ray absorption spectroscopy study at the iron K-edge, Mineral. Mag., 72, 175–178, https://doi.org/10.1180/minmag.2008.072.1.175, 2008.
Fridrichová, J., Baèík, P., Rusinová, P., Antal, P., Škoda, R., Bizovská, V., and Miglierini, M.: Optical and crystal-chemical changes in aquamarines and yellow beryls from Thanh Hoa province, Vietnam induced by heat treatment, Phys. Chem. Miner., 42, 287–302, https://doi.org/10.1007/s00269-014-0719-4, 2015.
Fridrichová, J., Baèík, P., Ertl, A., Wildner, M., Dekan, J., and Miglierini, M.: Jahn-Teller distortion of Mn3+-occupied octahedra in red beryl from Utah indicated by optical spectroscopy, J. Mol. Struct., 1152, 79–86, https://doi.org/10.1016/j.molstruc.2017.09.081, 2018.
Fritsch, E. and Rossman, G. R.: An update on color in gems. Part 2: Colors involving multiple atoms and color centers, Gems Gemol., 24, 3–15, 1988.
Fukuda, J.: Water in Rocks and Minerals – Species, Distributions, and Temperature Dependences, in: Infrared Spectroscopy – Materials Science, Engineering and Technology, edited by: Theophanides, T., InTech, https://doi.org/10.5772/35668, 2012.
Fukuda, J. and Shinoda, K.: Coordination of water molecules with Na+ cations in a beryl channel as determined by polarized IR spectroscopy, Phys. Chem. Miner., 35, 347–357, https://doi.org/10.1007/s00269-008-0228-4, 2008.
Fukuda, J., Shinoda, K., Nakashima, S., Miyoshi, N., and Aikawa, N.: Polarized infrared spectroscopic study of diffusion of water molecules along structure channels in beryl, Am. Mineral., 94, 981–985, https://doi.org/10.2138/am.2009.3124, 2009.
Gaite, J.-M., Izotov, V. V., Nikitin, S. I., and Prosvirnin, S. Y.: EPR and optical spectroscopy of impurities in two synthetic beryls, Appl. Magn. Reson., 20, 307–315, https://doi.org/10.1007/BF03162283, 2001.
Gatta, G. D., Nestola, F., Bromiley, G. D., and Mattauch, S.: The real topological configuration of the extra-framework content in alkali-poor beryl: A multi-methodological study, Am. Mineral., 91, 29–34, https://doi.org/10.2138/am.2006.1896, 2006.
Gatta, G. D., Adamo, I., Zullino, A., Gagliardi, V., Lorenzi, R., Rotiroti, N., Faldi, L., and Prosperi, L.: A Multi-Methodological Investigation of Natural and Synthetic Red Beryl Gemstones, Minerals, 12, 439, https://doi.org/10.3390/min12040439, 2022.
Goldman, D. S., Rossman, G. R., and Parkin, K. M.: Channel constituents in beryl, Phys. Chem. Miner., 3, 225–235, https://doi.org/10.1007/BF00633572, 1978.
Groat, L. A. and Turner, D.: Geology and mineralogy of gemstones, First edition, Wiley, American Geophysical Union, Hoboken, NJ, Washington, D.C., Wiley, ISBN 978-1-119-29987-5, 2022.
Groat, L. A., Giuliani, G., Marshall, D. D., and Turner, D.: Emerald deposits and occurrences: A review, Ore Geol. Rev., 34, 87–112, https://doi.org/10.1016/j.oregeorev.2007.09.003, 2008.
Groat, L. A., Rossman, G. R., Dyar, M. D., Turner, D., Piccoli, P. M. B., Schultz, A. J., and Ottolini, L.: Crystal chemistry of dark blue aquamarine from the true blue showing, Yukon territory, Canada, Can. Mineral., 48, 597–613, https://doi.org/10.3749/canmin.48.3.597, 2010.
Gübelin, E. J.: Gemological Characteristics of Pakistani Emeralds, in: Emeralds of Pakistan: geology, gemology, and genesis, Geological Survey of Pakistan; Van Nostrans Reinhold, Islamabad, Pakistan: New York, N.Y., 269 pp., 75–91, ISBN 0-442-30328-9, 1989.
Hagemann, H., Lucken, A., Bill, H., Gysler-Sanz, J., and Stalder, H. A.: Polarized Raman spectra of beryl and bazzite, Phys. Chem. Miner., 17, 395–401, https://doi.org/10.1007/BF00212207, 1990.
Häger, T., Rojas-Agramonte, Y., Charros-Leal, F., Villalobos-Basler, J. D., Gonzalez-Pinzon, M. A., and Hauzenberger, C.: Smaragde aus Kolumbien, Z. Dt. Gemmol. Ges., 69, 47–58, 2020.
Hänni, H.: Blue-green Emerald from Nigeria (A consideration of terminology), Australian Gemmologist, 28, 16–17, 1992.
Hanser, C. S., Gul, B., Häger, T., and Botcharnikov, R.: Emerald from the Chitral Region, Pakistan: A New Deposit, Journal of Gemmology, 38, 234–252, https://doi.org/10.15506/JoG.2022.38.3.234, 2022.
Hanser, C. S., Stephan, T., Gul, B., Häger, T., and Botcharnikov, R.: Comparison of Emeralds from the Chitral District, Pakistan, with other Pakistani and Afghan Emeralds, Journal of Gemmology, 38, 582–599, https://doi.org/10.15506/JoG.2023.38.6.582, 2023.
Hawthorne, F. and Černý, P.: The alkali-metal positions in Cs-Li beryl, Can. Mineral., 15, 414–421, 1977.
Hawthorne, F. C. and Huminicki, D. M. C.: The Crystal Chemistry of Beryllium, Rev. Miner. Geochem., 50, 333–403, https://doi.org/10.2138/rmg.2002.50.9, 2002.
Hu, Y. and Lu, R.: Color Characteristics of Blue to Yellow Beryl from Multiple Origins, Gems Gemol., 56, 54–65, https://doi.org/10.5741/GEMS.56.1.54, 2020.
Huong, L. T.-T., Häger, T., and Hofmeister, W.: Confocal micro-Raman spectroscopy: a powerful tool to identify natural and synthetic emeralds, Gems Gemol., 46, 36–41, 2010.
Jehlièka, J., Culka, A., Bersani, D., and Vandenabeele, P.: Comparison of seven portable Raman spectrometers: beryl as a case study: Beryl identification by portable Raman instruments, J. Raman Spectrosc., 48, 1289–1299, https://doi.org/10.1002/jrs.5214, 2017.
Karampelas, S., Al-Shaybani, B., Mohamed, F., Sangsawong, S., and Al-Alawi, A.: Emeralds from the Most Important Occurrences: Chemical and Spectroscopic Data, Minerals, 9, 561, https://doi.org/10.3390/min9090561, 2019.
Khaleal, F. M., Saleh, G. M., Lasheen, E. S. R., and Lentz, D. R.: Occurrences and genesis of emerald and other beryls mineralization in Egypt: A review, Phys. Chem. Earth, 128, 103266, https://doi.org/10.1016/j.pce.2022.103266, 2022.
Kimbler, F. S. and Haynes, P. E.: An occurrence of red beryl in the Black Range, New Mexico, New Mexico Geology, 2, 15–16, https://doi.org/10.58799/NMG-v2n1.15, 1980.
Kolesov, B.: Vibrational states of H2O in beryl: physical aspects, Phys. Chem. Miner., 35, 271–278, https://doi.org/10.1007/s00269-008-0220-z, 2008.
Kolesov, B. A. and Geiger, C. A.: The orientation and vibrational states of H2O in synthetic alkali-free beryl, Phys. Chem. Miner., 27, 557–564, https://doi.org/10.1007/s002690000102, 2000.
Krambrock, K., Pinheiro, M. V. B., Guedes, K. J., Medeiros, S. M., Schweizer, S., Castañeda, C., Botelho, N. F., and Pedrosa-Soares, A. C.: Radiation-induced centers in Cs-rich beryl studied by magnetic resonance, infrared and optical spectroscopy, Nucl. Instrum. Meth. B, 191, 285–290, https://doi.org/10.1016/S0168-583X(02)00577-3, 2002.
Krzemnicki, M., Cartier, L., Lefèvre, P., and Zhou, W.: Colour varieties of gems–Where to set the boundary, InColor, 45, 92–95, 2020.
Krzemnicki, M. S., Wang, H. A. O., and Büche, S.: A New Type of Emerald from Afghanistan's Panjshir Valley, J. Gemmol., 37, 474–495, https://doi.org/10.15506/JoG.2021.37.5.474, 2021.
Lambruschi, E., Gatta, G. D., Adamo, I., Bersani, D., Salvioli-Mariani, E., and Lottici, P. P.: Raman and structural comparison between the new gemstone pezzottaite Cs(Be 2 Li)Al 2 Si 6 O 18 and Cs-beryl, J. Raman Spectrosc., 45, 993–999, https://doi.org/10.1002/jrs.4479, 2014.
Laurs, B. M., Simmons, W. B., Rossman, G. R., Quinn, E. P., McClure, S. F., Peretti, A., Armbruster, T., Hawthorne, F., Falster, A. U., Günther, D., Cooper, M. A., and Grobéty, B.: Pezzottaite from ambatovita, madagascar: a new gem mineral, Gems Gemol., 39, 284–301, 2003.
Lee, H. M., Tarakeshwar, P., Park, J., Kołaski, M. R., Yoon, Y. J., Yi, H.-B., Kim, W. Y., and Kim, K. S.: Insights into the Structures, Energetics, and Vibrations of Monovalent Cation-(Water)1−6 Clusters, J. Phys. Chem. A, 108, 2949–2958, https://doi.org/10.1021/jp0369241, 2004.
Lin, J., Chen, N., Huang, D., and Pan, Y.: Iron pairs in beryl: New insights from electron paramagnetic resonance, synchrotron X-ray absorption spectroscopy, and ab initio calculations, Am. Mineral., 98, 1745–1753, https://doi.org/10.2138/am.2013.4472, 2013.
Lind, T. and Stephan, T.: Spektrentypen und Farben von eisen- und manganhaltigen Beryllen, Z. Dt. Gemmol. Ges., 71, 27–40, 2022.
Łodziñski, M., Sitarz, M., Stec, K., Kozanecki, M., Fojud, Z., and Jurga, S.: ICP, IR, Raman, NMR investigations of beryls from pegmatites of the Sudety Mts, J. Mol. Struct., 744–747, 1005–1015, https://doi.org/10.1016/j.molstruc.2004.12.042, 2005.
Manier-Glavinaz, V., Couty, R., and Lagache, M.: The removal of alkalis from beryl; structural adjustments, Can. Mineral., 27, 663–671, 1989.
Mashkovtsev, R. I. and Lebedev, A. S.: Infrared spectroscopy of water in beryl, J. Struct. Chem., 33, 930–933, https://doi.org/10.1007/BF00745616, 1993.
Mashkovtsev, R. I. and Smirnov, S. Z.: The nature of channel constituents in hydrothermal synthetic emerald, J. Gemmol., 29, 215–227, https://doi.org/10.15506/JoG.2004.29.4.215, 2004.
Mashkovtsev, R. I. and Solntsev, V. P.: Channel constituents in synthetic beryl: ammonium, Phys. Chem. Miner., 29, 65–71, https://doi.org/10.1007/s002690100206, 2002.
Mashkovtsev, R. I. and Thomas, V. G.: Nitrogen atoms encased in cavities within the beryl structure as candidates for qubits, Appl. Magn. Reson., 28, 401–409, https://doi.org/10.1007/BF03166771, 2005.
Mashkovtsev, R. I., Thomas, V. G., Fursenko, D. A., Zhukova, E. S., Uskov, V. V., and Gorshunov, B. P.: FTIR spectroscopy of D2O and HDO molecules in the c-axis channels of synthetic beryl, Am. Mineral., 101, 175–180, https://doi.org/10.2138/am-2016-5432, 2016.
Mathew, G., Karanth, R. V., Rao, T. K. G., and Deshpande, R. S.: Colouration in Natural Beryls: A Spectroscopic Investigation, J. Geol. Soc. India, 56, 285–303, 2000.
McManus, C. E., McMillan, N. J., Harmon, R. S., Whitmore, R. C., De Lucia Jr., F. C., and Miziolek, A. W.: Use of laser induced breakdown spectroscopy in the determination of gem provenance: beryls, Appl. Optics, 47, G72, https://doi.org/10.1364/AO.47.000G72, 2008.
McMillan, N. J., McManus, C. E., Harmon, R. S., De Lucia, F. C., and Miziolek, A. W.: Laser-induced breakdown spectroscopy analysis of complex silicate minerals–beryl, Anal. Bioanal. Chem., 385, 263–271, https://doi.org/10.1007/s00216-006-0374-9, 2006.
Mihalynuk, M. and Lett, R.: Composition of Logtung Beryl (aquamarine) by ICPES/MS: A Comparison with Beryl Worldwide, British Colombia Geological Survey, Geological Fieldwork 2003, 141–146, 2003.
Mittani, J. C. R., Watanabe, S., Chubaci, J. F. D., Baptista, D. L., and Zawislak, F. C.: Ion beam modification of colorless silicates of beryl, Surf. Coat. Tech., 158–159, 708–711, https://doi.org/10.1016/S0257-8972(02)00252-9, 2002a.
Mittani, J. C. R., Watanabe, S., Chubaci, J. F. D., Matsuoka, M., Baptista, D. L., and Zawislak, F. C.: γ-Radiation effects on colourless silicates of beryl, Nucl. Instrum. Meth. B, 191, 281–284, https://doi.org/10.1016/S0168-583X(02)00576-1, 2002b.
Mittani, J. C. R., Watanbe, S., Matsuoka, M., Baptista, D. L., and Zawislak, F. C.: Doping by diffusion and implantation of V, Cr, Mn and Fe ions in uncoloured beryl crystals, Nucl. Instrum. Meth. B, 218, 255–258, https://doi.org/10.1016/j.nimb.2003.12.023, 2004.
Mokhtar, H., Surour, A. A., Azer, M. K., Ren, M., and Said, A.: New insights into chemical and spectroscopic characterization of beryl mineralization related to leucogranites in the west Wadi El Gemal area, southern Eastern Desert of Egypt, Geochemistry, 125980, https://doi.org/10.1016/j.chemer.2023.125980, 2023.
Morosin, B.: Structure and thermal expansion of beryl, Acta Crystallogr B Struct Crystallogr. Cryst. Chem., 28, 1899–1903, https://doi.org/10.1107/S0567740872005199, 1972.
Nassau, K.: The origins of color in minerals, Am. Mineral., 63, 219–229, 1978.
Nassau, K.: Gemstone enhancement: history, science, and state of the art, St, Oxford and London (Butterworth Heinemann), 252 pp., 1994.
Nassau, K. and Wood, D.: The nature of the new Maxixe-type beryl, Lapidary Journal, 27, 1032–1034, 1973.
Nassau, K. and Wood, D. L.: An examination of red beryl from Utah, Am. Mineral., 53, 801–806, 1968.
Nassau, K., Prescott, B. E., and Wood, D. L.: The deep blue Maxixe-type color center in beryl, Am. Mineral., 61, 100–107, 1976.
Parkin, K. M., Loeffler, B. M., and Burns, R. G.: Mössbauer spectra of kyanite, aquamarine, and cordierite showing intervalence charge transfer, Phys. Chem. Miner., 1, 301–311, https://doi.org/10.1007/BF00307569, 1977.
Pecherskaya, S. G., Mikhailov, M. A., Demina, T. V., Bogdanova, L. A., and Belozerova, O. Yu.: Symmetry and ordering of compounds with a beryl-type structure in the Mg-enriched part of the beryllium indialite-cordierite-beryl system, Crystallogr. Rep., 48, 363–369, https://doi.org/10.1134/1.1578115, 2003.
Pieczka, A., Szełȩg, E., Szuszkiewicz, A., Gołȩbiowska, B., Zelek, S., Ilnicki, S., Nejbert, K., and Turniak, K.: Cs-Bearing Beryl Evolving To Pezzottaite From the Julianna Pegmatitic System, SW Poland, Can. Mineral., 54, 115–124, https://doi.org/10.3749/canmin.1500075, 2016.
Platonov, A., Khomenko, V., and Taran, M.: Crystal Chemistry, Optical Spectra and Color of Beryl. I. Heliodor and Golden Beryl – Two Varieties of Natural Yellow Beryl, Mineralogical Journal, 38, 3–14, https://doi.org/10.15407/mineraljournal.38.02.003, 2016.
Price, D. C., Vance, E. R., Smith, G., Edgar, A., and Dickson, B. L.: Mössbauer effect studies of beryl, J. Phys. Colloques, 37, C6-811–C6-817, https://doi.org/10.1051/jphyscol:19766171, 1976.
Pøikryl, J., Novák, M., Filip, J., Gadas, P., and Galiová, M. V.: Iron+magnesium-bearing beryl from granitic pegmatites: an EMPA, LA-ICP-MS, Mössbauer spectroscopy, and powder xrd study, Can. Mineral., 52, 271–284, https://doi.org/10.3749/canmin.52.2.271, 2014.
Rudnick, R. L. and Gao, S.: Composition of the Continental Crust, in: Treatise on Geochemistry, Elsevier, 1–64, https://doi.org/10.1016/B0-08-043751-6/03016-4, 2003.
Saeseaw, S., Renfro, N. D., Palke, A. C., Sun, Z., and McClure, S. F.: Geographic Origin Determination of Emerald, Gems Gemol., 55, 614–646, https://doi.org/10.5741/GEMS.55.4.614, 2019.
Schmetzer, K. and Kiefert, L.: Water in beryl – a contribution to the separability of natural and synthetic emeralds by infrared spectroscopy, J. Gemm., 22, 215–223, https://doi.org/10.15506/JoG.1990.22.4.215, 1990.
Schwarz, D., Kanis, J., and Kinnaird, J.: Emerald and green beryl from Central Nigeria, Journal of Gemmology, 25, 117–141, 1996.
Shang, Y., Guo, Y., and Tang, J.: Spectroscopy and chromaticity characterization of yellow to light-blue iron-containing beryl, Sci. Rep., 12, 10765, https://doi.org/10.1038/s41598-022-11916-z, 2022.
Shannon, R. D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A, 32, 751–767, https://doi.org/10.1107/S0567739476001551, 1976.
Sherriff, B., Grundy, H. D., Hartman, J. S., Hawthorne, F., and P. Èerný: The incorporation of alkalis in beryl; a multinuclear MAS NMR and crystal-structure study, Can. Mineral., 29, 271–285, 1991.
Skvortsova, V., Mironova-Ulmane, N., Trinkler, L., and Merkulov, V.: Optical Properties of Natural and Synthetic Beryl Crystals, IOP Conference Series: Materials Science and Engineering, 77, 012034, https://doi.org/10.1088/1757-899x/77/1/012034, 2015.
Solntsev, V. P., Tsvetkov, E. G., Alimpiev, A. I., and Mashkovtsev, R. I.: Valent state and coordination of cobalt Ions in beryl and chrysoberyl crystals, Phys. Chem. Miner., 31, 1–11, https://doi.org/10.1007/s00269-003-0363-x, 2004.
Stephan, T., Häger, T., Henn, U., and Hofmeister, W.: The influence of V3+ on the colour of rubies and emeralds, shown by spectral fitting of UV/Vis/NIR absorption spectra, Z. Dt. Gemmol. Ges., 68, 53–57, 2019.
Taran, M. N. and Vyshnevskyi, O. A.: Be, Fe2+-substitution in natural beryl: an optical absorption spectroscopy study, Phys. Chem. Miner., 46, 795–806, https://doi.org/10.1007/s00269-019-01040-2, 2019.
Uher, P., Chudík, P., Baèík, P., Vaculoviè, T., and Galliová, M.: Beryl composition and evolution trends: an example from granitic pegmatites of the beryl-columbite subtype, Western Carpathians, Slovakia, J. Geosci., 55, 69–80, https://doi.org/10.3190/jgeosci.060, 2012.
Viana, R. R., da Costa, G. M., De Grave, E., Stern, W. B., and Jordt-Evangelista, H.: Characterization of beryl (aquamarine variety) by Mössbauer spectroscopy, Phys. Chem. Miner., 29, 78–86, https://doi.org/10.1007/s002690100210, 2002a.
Viana, R. R., Jordt-Evangelista, H., da Costa, G. M., and Stern, W. B.: Characterization of beryl (aquamarine variety) from pegmatites of Minas Gerais, Brazil, Phys. Chem. Miner., 29, 668–679, https://doi.org/10.1007/s00269-002-0278-y, 2002b.
Wang, H., Shu, T., Chen, J., and Guo, Y.: Characteristics of Channel-Water in Blue-Green Beryl and Its Influence on Colour, Crystals, 12, 435, https://doi.org/10.3390/cryst12030435, 2022a.
Wang, H., Guan, Q., Liu, Y., and Guo, Y.: Effects of Transition Metal Ions on the Colour of Blue-Green Beryl, Minerals, 12, 86, https://doi.org/10.3390/min12010086, 2022b.
Wang, P., Gray, T. P., Li, Z., Anderson, E. J. D., Allaz, J., Smyth, J. R., Koenig, A. E., Qi, L., Zhou, Y., and Raschke, M. B.: Mineralogical classification and crystal water characterisation of beryl from the W–Sn–Be occurrence of Xuebaoding, Sichuan province, western China, Mineral. Mag., 85, 172–188, https://doi.org/10.1180/mgm.2021.13, 2021.
Wood, D. L. and Nassau, K.: Infrared Spectra of Foreign Molecules in Beryl, J. Chem. Phys., 47, 2220–2228, https://doi.org/10.1063/1.1703295, 1967.
Wood, D. L. and Nassau, K.: The characterization of beryl and emerald by visible and infrared absorption spectroscopy, Am. Mineral., 53, 777–800, 1968.
Yu, X., Hu, D., Niu, X., and Kang, W.: Infrared Spectroscopic Characteristics and Ionic Occupations in Crystalline Tunneling System of Yellow Beryl, JOM-J. Min. Met. Mat. S., 69, 704–712, https://doi.org/10.1007/s11837-017-2266-1, 2017.
Zoltai, T.: Classification of silicates and other minerals with tetrahedral structures, Am. Mineral., 45, 960–973, 1960.
Short summary
The structure of beryl has been a topic of research for decades but is still not entirely understood. This especially applies to substitutions by Fe ions and the occupation of the channels of beryl by H2O and alkalis. The growing amount of studies makes it difficult to gain an overview on these topics. Therefore, this article reviews the current consensus and debates found in the literature.
The structure of beryl has been a topic of research for decades but is still not entirely...